首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
C J Michel  B Jacq  D G Arquès  T A Bickle 《Gene》1986,44(1):147-150
We have found that the amino acid (aa) sequence of the tip of phage T4 tail fibre (gene 37) shows more than 50% homology with the aa sequence predicted from an open reading frame (ORF314) in the phage lambda genome. ORF314 is near the 3' end of the late morphogenetic operon, beyond gene J coding for the lambda tail fibre. The homologous sequences are for the most part composed of repeated aa, the most remarkable of which is a Gly-X-His-Y-His motif where X and Y are small, uncharged aa, found six times in the T4 protein and seven times in the lambda ORF314 sequence.  相似文献   

2.
The distal part of the long tail fiber of Escherichia coli bacteriophage T4 consists of a dimer of protein 37. Dimerization requires the catalytic action of protein 38, which is encoded by T4 and is not present in the virion. It had previously been shown that gene tfa of the otherwise entirely unrelated phage lambda can functionally replace gene 38. Open reading frame (ORF) 314, which encodes a protein that exhibits homology to a COOH-terminal area of protein 37, is located immediately upstream of tfa. The gene was cloned and expressed in E. coli. An antiserum against the corresponding polypeptide showed that it was present in phage lambda. The serum also reacted with the long tail fibers of phage T4 near their free ends. An area of the gene encoding a COOH-terminal region of ORF 314 was recombined, together with tfa, into the genome of T4, thus replacing gene 38 and a part of gene 37 that codes for a COOH-terminal part of protein 37. Such T4-lambda hybrids, unlike T4, required the presence of outer membrane protein OmpC for infection of E. coli B. An ompC missense mutant of E. coli K-12, which was still sensitive to T4, was resistant to these hybrids. We conclude that the ORF 314 protein represents a subunit of the side tail fibers of phage lambda which probably recognize the OmpC protein. ORF 314 was designated stf (side tail fiber). The results also offer an explanation for the very unusual fact that, despite identical genomic organizations, T4 and T2 produce totally different proteins 38. An ancestor of T4 from the T2 lineage may have picked up tfa and stf from a lambdoid phase, thus possibly demonstrating horizontal gene transfer between unrelated phage species.  相似文献   

3.
4.
A Zeeh  D A Shub 《Journal of bacteriology》1991,173(21):6980-6985
The sunY gene of bacteriophage T4 contains a self-splicing group I intron. The ligated exons encode an open reading frame of 605 amino acids, whose inferred molecular mass is 68 kDa. However, none of the proteins made following T4 infection have been assigned to the sunY gene, and no mutations have been mapped to this locus. We show here that the primary product of the sunY gene is a protein with an apparent molecular mass of 64 kDa, which is processed to a protein approximately 4 kDa smaller. Unlike most other processed T4 proteins, cleavage occurs independently of both the T4 processing protease, the product of gene 21, and late phage protein synthesis. Insertional mutagenesis demonstrated that the sunY protein is not necessary for normal T4 growth under the conditions tested.  相似文献   

5.
6.
K J Garvey  M S Saedi    J Ito 《Nucleic acids research》1986,14(24):10001-10008
The nucleotide sequence of Bacillus phage phi 29 genes 14 (g14) and 15 (g15) have been determined and shown to encode proteins with molecular weights of 15,014 and 28,022, respectively. The g14 open reading frame (ORF) was confirmed by sequencing a sus14(1241) mutant. Gene product 15 (gp15) has considerable homology with Salmonella phage P22 lysozyme and lesser homology with Escherichia coli phage T4 lysozyme. Putative translation signals are identified. In addition, the role of a previously described promoter, B2, is discussed.  相似文献   

7.
8.
The immunity (imm) gene of Escherichia coli bacteriophage T4.   总被引:3,自引:1,他引:2       下载免费PDF全文
M J Lu  U Henning 《Journal of virology》1989,63(8):3472-3478
The immunity (imm) gene of the Escherichia coli bacteriophage T4 effects exclusion of phage superinfecting cells already infected with T4. A candidate for this gene was placed under the control of the lac regulatory elements in a pUC plasmid. DNA sequencing revealed the presence of an open reading frame encoding a very lipophilic 83-residue (or 73-residue, depending on the unknown site of translation initiation) polypeptide which most likely represents a plasma membrane protein. This gene could be identified as the imm gene because expression from the plasmid caused exclusion of T4 and because interruption of the gene in the phage genome resulted in a phage no longer effecting superinfection immunity. It was found that the fraction of phage which was excluded upon infection of cells possessing the plasmid-encoded Imm protein ejected only about one-half of their DNA. Therefore, the Imm protein inhibited, directly or indirectly, DNA ejection.  相似文献   

9.
Y Liu  Y Han  W Huang  Y Duan  L Mou  Z Jiang  P Fa  J Xie  R Diao  Y Chen  Y Ye  R Yang  J Chen  X Sun  Z Li  A Tang  Y Gui  Z Cai 《PloS one》2012,7(7):e41124

Background

Unprecedented progresses in high-throughput DNA sequencing and de novo gene synthesis technologies have allowed us to create living organisms in the absence of natural template.

Methodology/Principal Findings

The sequence of wild-type S13 phage genome was downloaded from GenBank. Two synonymous mutations were introduced into wt-S13 genome to generate m1-S13 genome. Another mutant, m2-S13 genome, was obtained by engineering two nonsynonymous mutations in the capsid protein coding region of wt-S13 genome. A chimeric phage genome was designed by replacing the F capsid protein open reading frame (ORF) from phage S13 with the F capsid protein ORF from phage G4. The whole genomes of all four phages were assembled from a series of chemically synthesized short overlapping oligonucleotides. The linear synthesized genomes were circularized and electroporated into E.coli C, the standard laboratory host of S13 phage. All four phages were recovered and plaques were visualized. The results of sequencing showed the accuracy of these synthetic genomes. The synthetic phages were capable of lysing their bacterial host and tolerating general environmental conditions. While no phenotypic differences among the variant strains were observed when grown in LB medium with CaCl2, the S13/G4 chimera was found to be much more sensitive to the absence of calcium and to have a lower adsorption rate under calcium free condition.

Conclusions/Significance

The bacteriophage S13 and its variants can be chemically synthesized. The major capsid gene of phage G4 is functional in the phage S13 life cycle. These results support an evolutional hypothesis which has been proposed that a homologous recombination event involving gene F of quite divergent ancestral lineages should be included in the history of the microvirid family.  相似文献   

10.
11.
Mutation in the tubby gene causes adult‐onset obesity, progressive retinal, and cochlear degeneration with unknown mechanism. In contrast, mutations in tubby‐like protein 1 (Tulp1), whose C‐terminus is highly homologous to tubby, only lead to retinal degeneration. We speculate that their diverse N‐terminus may define their distinct disease profile. To elucidate the binding partners of tubby, we used tubby N‐terminus (tubby‐N) as bait to identify unknown binding proteins with open‐reading‐frame (ORF) phage display. T7 phage display was engineered with three improvements: high‐quality ORF phage display cDNA library, specific phage elution by protease cleavage, and dual phage display for sensitive high throughput screening. The new system is capable of identifying unknown bait‐binding proteins in as fast as ~4–7 days. While phage display with conventional cDNA libraries identifies high percentage of out‐of‐frame unnatural short peptides, all 28 tubby‐N‐binding clones identified by ORF phage display were ORFs. They encode 16 proteins, including 8 nuclear proteins. Fourteen proteins were analyzed by yeast two‐hybrid assay and protein pull‐down assay with ten of them independently verified. Comparative binding analyses revealed several proteins binding to both tubby and Tulp1 as well as one tubby‐specific binding protein. These data suggest that tubby‐N is capable of interacting with multiple nuclear and cytoplasmic protein binding partners. These results demonstrated that the newly‐engineered ORF phage display is a powerful technology to identify unknown protein–protein interactions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
13.
F K Chu  G F Maley  A M Wang  F Maley 《Gene》1987,57(1):143-148
The nucleotide (nt) sequence in a 757-bp [corrected] segment downstream from the intron-containing T4 phage thymidylate synthase gene (td) has been determined. This region was found to contain two open reading frames (ORFs). The first ORF(ORF2) [corrected] 261 bp [corrected] in length, is 24 [corrected] nt downstream from the td gene. The second ORF(ORF3) [corrected]) is 200 bp long at 558 [corrected] nt from the td gene and extends to the end of the Eco RI fragment. The amino acid (aa) sequence (66 aa residues) deduced from the second truncated ORF shows 59% homology to the sequence of the N-terminal portion of the ribonucleotide reductase large subunit of either Escherichia coli (B1 subunit) or mouse (M1 subunit). This tentatively identifies the truncated gene to be the 5' end of the T4 phage ribonucleotide reductase subunit B1 (nrdA) gene and pinpoints its exact location on the T4 phage genomic map. Southern hybridization analysis suggests good sequence homology among the nrdA genes of various T-even phages.  相似文献   

14.
The phage T4 thymidylate synthase (td) gene contains an intron open reading frame that encodes a 245-amino acid-long basic protein (Chu, F. K., Maley, G. F., West, D. K., Belfort, M., and Maley, F. (1986) Cell 45, 157-166). The open reading frame (Irf) has been cloned as a fusion protein behind a phage T7 promoter and overexpressed in Escherichia coli. The amplified Irf protein is associated with insoluble inclusion bodies and migrates on sodium dodecyl sulfate-polyacrylamide gel electrophoresis about 7 kDa smaller than expected. Data obtained from DNA sequencing, amino acid sequencing of the fusion protein, and carboxypeptidase Y digestion suggest that although the cloned gene is not altered and the protein is made from the expected start codon, it appears to terminate about 90 amino acids before the encoded stop codon. Proteolytic cleavage during or soon after synthesis appears to be responsible for the truncated Irf. The expressed protein is solubilized in guanidine HCl and renatured by dialysis against high salt. This partially purified preparation has been found to contain a DNA endonuclease activity specific for the td delta I gene, which contains a precise deletion of the intron.  相似文献   

15.
Doan PL  Belanger KG  Kreuzer KN 《Genetics》2001,157(3):1077-1087
Recombination hotspots have previously been discovered in bacteriophage T4 by two different approaches, marker rescue recombination from heavily damaged phage genomes and recombination during co-infection by two undamaged phage genomes. The phage replication origin ori(34) is located in a region that has a hotspot in both assays. To determine the relationship between the origin and the two kinds of hotspots, we generated phage carrying point mutations that should inactivate ori(34) but not affect the gene 34 reading frame (within which ori(34) is located). The mutations eliminated the function of the origin, as judged by both autonomous replication of plasmids during T4 infection and two-dimensional gel analysis of phage genomic replication intermediates. As expected from past studies, the ori(34) mutations also eliminated the hotspot for marker rescue recombination from UV-irradiated genomes. However, the origin mutations had no effect on the recombination hotspot that is observed with co-infecting undamaged phage genomes, demonstrating that some DNA sequence other than the origin is responsible for inflated recombination between undamaged genomes. The hotspots for marker rescue recombination may result from a replication fork restart process that acts upon origin-initiated replication forks that become blocked at nearby DNA damage. The two-dimensional gel analysis also revealed phage T4 replication intermediates not previously detected by this method, including origin theta forms.  相似文献   

16.
Binding of bacteriophage T5 to its receptor, the Escherichia coli FhuA protein, is mediated by tail protein pb5. In this article we confirm that pb5 is encoded by the T5 oad gene and describe the isolation, expression, and sequencing of this gene. In order to locate oad precisely, we analyzed recombinants between BF23, a T5-related phage with a different host range, and plasmid clones containing segments of the T5 chromosome. This analysis also showed that oad has little or no homology with hrs, the analogous BF23 gene. We were able to overproduce a protein that comigrates with pb5 after fusing a 2-kb segment containing oad to a phage T7 promoter. This segment contains an open reading frame that can encode a protein of the appropriate size. Its deduced amino acid sequence does not closely resemble that of any other protein in the database. The sequence upstream of the open reading frame shows typical characteristics of a promoter region with two overlapping, divergently orientated promoters.  相似文献   

17.
We have determined the DNA sequence of the bacteriophage P2 tail genes G and H, which code for polypeptides of 175 and 669 residues, respectively. Gene H probably codes for the distal part of the P2 tail fiber, since the deduced sequence of its product contains regions similar to tail fiber proteins from phages Mu, P1, lambda, K3, and T2. The similarities of the carboxy-terminal portions of the P2, Mu, ann P1 tail fiber proteins may explain the observation that these phages in general have the same host range. The P2 H gene product is similar to the products of both lambda open reading frame (ORF) 401 (stf, side tail fiber) and its downstream ORF, ORF 314. If 1 bp is inserted near the end of ORF 401, this reading frame becomes fused with ORF 314, creating an ORF that may represent the complete stf gene that encodes a 774-amino-acid-long side tail fiber protein. Thus, a frameshift mutation seems to be present in the common laboratory strain of lambda. Gene G of P2 probably codes for a protein required for assembly of the tail fibers of the virion. The entire G gene product is very similar to the products of genes U and U' of phage Mu; a region of these proteins is also found in the tail fiber assembly proteins of phages TuIa, TuIb, T4, and lambda. The similarities in the tail fiber genes of phages of different families provide evidence that illegitimate recombination occurs at previously unappreciated levels and that phages are taking advantage of the gene pool available to them to alter their host ranges under selective pressures.  相似文献   

18.
Fertility inhibition gene of plasmid R100.   总被引:6,自引:0,他引:6       下载免费PDF全文
  相似文献   

19.
Lactobacillus helveticus 481 produces a 37-kDa bacteriocin called helveticin J. Libraries of chromosomal DNA from L. helveticus were prepared in lambda gt11 and probed for phage-producing fusion proteins that could react with polyclonal helveticin J antibody. Two recombinant phage, HJ1 and HJ4, containing homologous inserts of 350 and 600 bp, respectively, produced proteins that reacted with antibody. These two phage clones specifically hybridized to L. helveticus 481 total genomic DNA but not to DNA from strains that did not produce helveticin J or strains producing unrelated bacteriocins. HJ1 and HJ4 lysogens produced beta-galactosidase fusion proteins that shared similar epitopes with each other and helveticin J. The intact helveticin J gene (hlv) was isolated by screening a library of L. helveticus chromosomal DNA in lambda EMBL3 with the insert DNA from phage HJ4 as a probe. The DNA sequence of a contiguous 3,364-bp region was determined. Two complete open reading frames (ORF), designated ORF2 and ORF3, were identified within the sequenced fragment. The 3' end of another open reading frame, ORF1, was located upstream of ORF2. A noncoding region and a putative promoter were located between ORF1 and ORF2. ORF2 could encode an 11,808-Da protein. The L. helveticus DNA inserts of the HJ1 and HJ4 clones reside within ORF3, which begins 30 bp downstream from the termination codon of ORF2. ORF3 could encode a 37,511-Da protein. Downstream from ORF3, the 5' end of another ORF (ORF4) was found. A Bg/II fragment containing ORF2 and ORF3 was cloned into pGK12, and the recombinant plasmid, pTRK135, was transformed into Lactobacillus acidophilus via electroporation. Transformants carrying pTRK135 produced a bacteriocin that was heat labile and exhibited an acitivity spectrum that was the same as that of helveticin J.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号