首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction between peroxynitrite and dopamine and the inhibition of this reaction by plant-derived antioxidants have been investigated. Peroxynitrite promoted the oxidation of dopamine to 6-hydroxyindole-5-one as characterised by HPLC and photodiode array spectra, akin to the products of the tyrosinase-dopamine reaction, but no evidence of dopamine nitration was obtained. Although peroxynitrite did not cause nitration of dopamine in vitro, the catecholamine is capable of inhibiting the formation of 3-nitrotyrosine from peroxynitrite-mediated nitration of tyrosine. The plant-derived phenolic compounds, caffeic acid and catechin, inhibited peroxynitrite-mediated oxidation of dopamine. This effect is attributed to the ability of catechol-containing antioxidants to reduce peroxynitrite through electron donation, resulting in their oxidation to the corresponding o-quinones. The antioxidant effect of caffeic acid and catechin was comparable to that of the endogenous antioxidant, glutathione. In contrast, the structurally related monohydroxylated hydroxycinnamates, p-coumaric acid and ferulic acid, which inhibit tyrosine nitration through a mechanism of competitive nitration, did not inhibit peroxynitrite-induced dopamine oxidation. The findings of the present study suggest that certain plant-derived phenolics can inhibit dopamine oxidation.  相似文献   

2.
Given the paradoxical effects of phenolics in oxidative stress, we evaluated the relative pro-oxidant and antioxidant properties of four natural phenolic compounds in DNA nicking. The phenolic compounds differed dramatically in their ability to nick purified supercoiled DNA, with the relative DNA nicking activity in the order: 1,2,4-benzenetriol (100% nicking) > gallic acid > caffeic acid > gossypol (20% nicking). Desferrioxamine (0.02 mM) decreased DNA strand breakage by each phenolic, most markedly with gallate (85% protection) and least with caffeic acid (26% protection). Addition of metals accelerated DNA nicking, with copper more effective (~5-fold increase in damage) than iron with all four phenolics. Scavengers revealed the participation of specific oxygen-derived active species in DNA breakage. Hydrogen peroxide participated in all cases (23–90%). Hydroxyl radicals were involved (32–85%), except with 1,2,4-benzenetriol. Superoxide participated (81–86%) with gallic acid and gossypol, but not with caffeic acid or 1,2,4-benzenetriol. With 1,2,4-benzenetriol, scavengers failed to protect significantly except in combination. Thus, in the presence of desferrioxamine, catalase or superoxide dismutase inhibited almost completely. When DNA breakage was induced by Fenton's reagent (ascorbate plus iron) the two catechols (caffeic acid and gossypol) were protective, whereas the two triols (1,2,4-benzenetriol and gallic acid) exacerbated damage.  相似文献   

3.
Given the paradoxical effects of phenolics in oxidative stress, we evaluated the relative pro-oxidant and antioxidant properties of four natural phenolic compounds in DNA nicking. The phenolic compounds differed dramatically in their ability to nick purified supercoiled DNA, with the relative DNA nicking activity in the order: 1,2,4-benzenetriol (100% nicking) > gallic acid > caffeic acid > gossypol (20% nicking). Desferrioxamine (0.02 mM) decreased DNA strand breakage by each phenolic, most markedly with gallate (85% protection) and least with caffeic acid (26% protection). Addition of metals accelerated DNA nicking, with copper more effective (approximately 5-fold increase in damage) than iron with all four phenolics. Scavengers revealed the participation of specific oxygen-derived active species in DNA breakage. Hydrogen peroxide participated in all cases (23-90%). Hydroxyl radicals were involved (32-85%), except with 1,2,4-benzenetriol. Superoxide participated (81-86%) with gallic acid and gossypol, but not with caffeic acid or 1,2,4-benzenetriol. With 1,2,4-benzenetriol, scavengers failed to protect significantly except in combination. Thus, in the presence of desferrioxamine, catalase or superoxide dismutase inhibited almost completely. When DNA breakage was induced by Fenton's reagent (ascorbate plus iron) the two catechols (caffeic acid and gossypol) were protective, whereas the two triols (1,2,4-benzenetriol and gallic acid) exacerbated damage.  相似文献   

4.
The major phenolics from the polar fraction of virgin olive oil (caffeic acid, oleuropein, tyrosol and hydroxytyrosol) have well-established antioxidant activities but their effects on reactive nitrogen species and nitrergic neurotransmission have not been fully investigated. The three catechol compounds were active as scavengers of nitric oxide generated spontaneously from the decomposition of sodium nitroprusside (approximately 50% inhibition achieved at 75 microM), and had similar ability to scavenge chemically generated peroxynitrite, as determined by an alpha1-antiproteinase inactivation assay (67.2%-92.4% reduction when added at 1 mM). Tyrosol was less active in these tests, but does not possess the catechol functionality. Despite their ability to interact with chemically prepared nitric oxide, neither oleuropein nor hydroxytyrosol at 5 microM altered NO*-mediated relaxations of the nerve-stimulated rat anococcygeus preparation, but this may be because the nitrergic transmitter is protected from the effects of externally applied scavengers. In conclusion, the phenolics found in virgin olive oil possess ability to scavenge reactive oxygen and nitrogen species that are implicated in human pathologies, but their impact may be restricted to those species present in the extracellular environment.  相似文献   

5.
为了解贵州金刺梨(Rosa sterilis D.Shi)果实和叶片中的活性成分及其抗氧化活性,以贵州普定县金刺梨种植基地的果实和叶片为试材,测定其活性成分含量及其抗氧化活性,并对各项指标进行相关性分析。结果显示:没食子酸、芦丁、槲皮素、儿茶素、鞣花酸、绿原酸、阿魏酸是供试金刺梨果实和叶片的主要酚类成分,金刺梨果实和叶片中活性组分差异显著(P<0.05),果实中p-香豆酸、总黄酮和抗坏血酸的含量相对较高,而叶片中没食子酸、儿茶素、绿原酸、表儿茶素、阿魏酸、鞣花酸、芦丁、槲皮素和总酚含量均高于果实;金刺梨果实抗氧化活性值均显著高于叶片(P<0.05);相关性分析发现:总黄酮对总还原力(TRPA)值的贡献极强,抗坏血酸对Fe3+还原抗氧化能力(FRAP)值贡献最强,槲皮素对ABTS值的贡献最强,说明金刺梨果实和叶片是一种具有较高开发价值的药食同源资源。  相似文献   

6.
The research focused on the changes of phenolic compounds as well as their antiradical activity and reducing power isolated from Amur grape (Vitis amurensis) seeds during germination under optimal conditions and under osmotic stress. The seeds were found to contain tannins, (+) catechin, (−) epicatechin, and gallic acid (in free, ester- and glycoside-bound forms). Extracts from the seeds were also shown to contain two other phenolic acids: caffeic and p-coumaric acids, in very low levels. During a 3-day seed germination test under osmotic stress (−0.5 MPa), the content of total phenolics, tannins and phenolic acids declined as compared to the control. However, seed germination under stress conditions led to a significant increase in the amount of catechins. Because catechin is the one of the units in condensed tannins, its dynamic increase during seed germination may be involved in metabolism of tannins under osmotic stress. It is also likely that the synthesis of catechins is greater under stress conditions and these compounds may be engaged in the process of acclimatization of grapevines to stress conditions. The content of total phenolic compounds in seed extracts is positively correlated with their antioxidant properties. The extracts from seeds germinated under optimal conditions exhibited strong antiradical properties against the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical as well as reducing power. As regards the extracts from grape seeds germinated under osmotic stress, this capability was much weaker. The research demonstrated that antioxidants could interfere with the oxidation process induced by various stresses by acting as oxygen scavengers, therefore the tolerance to drought stress might be correlated with an increase in the antioxidant potential.  相似文献   

7.
The simultaneous production of nitric oxide and superoxide anion leads to the formation of peroxynitrite, a potent oxidant which may be an important mediator of cellular injury. Oxidation of dichlorofluorescin to the fluorescent dichlorofluorescein has been used as a marker for cellular oxidant production. The mechanisms of peroxynitrite-mediated oxidation of dichlorofluorescin to dichlorofluorescein were investigated. Chemically synthesized peroxynitrite (50-500 nM) induced the oxidation of dichlorofluorescin to dichlorofluorescein in a linear fashion. In addition, the simultaneous generation of nitric oxide and superoxide anion induced the oxidation of dichlorofluorescin to dichlorofluorescein, while nitric oxide (1-10 μM) alone under aerobic conditions did not. Peroxynitrite-mediated oxidation of dichlorofluorescin was not inhibited by the hydroxyl radical scavengers mannitol (100 mM) or dimethylsulfoxide (100 mM). Moreover, peroxynitrite-mediated oxidation of dichlorofluorescin was not dependent upon metal ion-catalyzed reactions. Furthermore, dichlorofluorescein formation was diminished at alkaline pH. These findings suggest that peroxynitrite-mediated dichlorofluorescein formation results directly from the protonation of peroxynitrite to form the conjugate peroxynitrous acid. L-cysteine was an efficient inhibitor (K1 = 25 μM) of dichlorofluorescin oxidation through competitive oxidation of free sulfhydryls. Urate was a less efficient with a maximum inhibition of only 49%. These results demonstrate that dichlorofluorescin is efficiently oxidized by peroxynitrite.

Therefore, under conditions where nitric oxide and superoxide are produced simultaneously, oxidation of dichlorofluorescin may be mediated by the formation of peroxynitrite.  相似文献   

8.
Grape seed polyphenols have been reported to exhibit a broad spectrum of biological properties. In this study, eleven phenolic phytochemicals from grape seeds were purified by gel chromatography and high performance liquid chromatography (HPLC). The antioxidant activities of five representative compounds with different structure type were assessed by the free radical-scavenging tests and the effects of the more potent phytochemicals on oxidative damage to DNA in mice spleen cells were investigated. Procyanidin B4, catechin, epicatechin and gallic acid reduced ferricyanide ion and scavenged the stable free radical, alpha, alpha-diphenyl-beta-picrylhydrazyl (DPPH) much more effectively than the known antioxidant vitamin ascorbic acid, while epicatechin lactone A, an oxidative derivative of epicatechin, did not reduce ferricyanide ion appreciably at concentrations used and was only about half as effective on free radical-scavenging as epicatechin. Mice spleen cells, when pre-incubated with relatively low concentration of procyanidin B4, catechin or gallic acid, were less susceptible to DNA damage induced by hydrogen peroxide (H2O2), as evaluated by the comet assay. In contrast, noticeable DNA damage was induced in mice spleen cells by incubating with higher concentration (150 microM) of catechin. Collectively, these data suggest that procyanidin B4, catechin, gallic acid were good antioxidants, at low concentration they could prevent oxidative damage to cellular DNA. But at higher concentration, these compounds may induce cellular DNA damage, taking catechin for example, which explained the irregularity of dose-effect relationship.  相似文献   

9.
10.
An assay for the ability of antioxidants to prevent mutations induced by various oxidants in Salmonella typhimurium TA102 cells was developed. Protection against hydrogen-peroxide-induced mutagenicity was observed for quercetin, caffeic acid, ascorbic acid and dimethyl sulfoxide (used as a solvent for water-insoluble antioxidants). No protective effect was observed for green tea extract (weakly pro-oxidative), catechin, rutin, sinigrin, ferulic acid and alpha-tocopherol. Mutagenicity caused by tert-butyl hydroperoxide (tBOOH) was prevented most effectively by quercetin and ascorbic acid, whereas weaker effects were observed for green tea extract and for rutin, and no effect being observed for the other antioxidants tested. The results for hydrogen peroxide indicate iron chelation to be the most important protective mechanism. Radical scavenging appeared to be effective only with dimethyl sulfoxide and ascorbic acid, which are effective scavengers of hydroxyl radicals and were used here in high concentrations. It is proposed that the hydrogen-peroxide-induced mutations in the Salmonella cells are caused by hydroxyl radicals generated by iron ions closely associated with DNA. Protection against mutagenicity caused by tert-butyl hydroperoxide appears to occur mainly through the scavenging of alkoxyl and possibly of alkyl radicals.  相似文献   

11.
T. R. Mehta  R. Dawson  Jr. 《Amino acids》2001,20(4):419-433
Summary. Many studies have suggested an antioxidant role for taurine, but few studies have directly measured its free radical scavenging activity. The aim of the present study was to directly determine the action of taurine and taurine analogs to inhibit peroxynitrite-mediated oxidation of dihydrorhodamine 123 (DHR) to rhodamine. Taurine was also tested to determine if it could attenuate the toxicity of sodium nitroprusside (SNP) to neuronal cultures. Taurine at concentrations above 30 mM had a modest ability to inhibit peroxynitrite formation derived from SIN-1. Hypotaurine could inhibit peroxynitrite formation from both SIN-1 (↓75%) and SNP (↓50%) at 10 mM. Other taurine analogs (homotaurine, β-alanine & isethionic acid) slightly potentiated DHR oxidation by SIN-1. Short-term (1-hour) treatment of PC12 cultures with either SNP (1–2 mM) or taurine (20–40 mM) appeared to induce cellular proliferation. In contrast, 24-hour treatment with SNP (1 mM) induced cell death. Combination treatments with taurine and SNP appeared to interact in an additive fashion for both cell proliferation and neurotoxic actions. It appears unlikely that taurine is a major endogenous scavenger of peroxynitrite. Received May 9, 2000 Accepted June 13, 2000  相似文献   

12.
Thiourea and, more recently, dimethylthiourea, have been used as hydroxyl radical (OH√) scavengers in experiments both in vitro and in vivo. We show that both compounds can inhibit nitration of the amino acid tyrosine on addition of peroxynitrite, and also the inactivation of -antiproteinase by peroxynitrite. Hence, protective effects of (dimethyl) thiourea could be due to inhibition of peroxynitrite-dependent damage as well as to OH√ scavenging, and these compounds must not be regarded as specific OH√ scavengers. © 1997 Elsevier Science Inc.  相似文献   

13.
《Free radical research》2013,47(4):241-253
We have evaluated the abilities of ferulic acid, (±) catechin, (+) catechin and (-) epicatechin to scavenge the reactive oxygen species hydroxyl radical (OH±), hypochlorous acid (HOCl) and peroxyl radicals (RO2).

Ferulic acid tested at concentrations up to 5 mM inhibited the peroxidation of phospholipid liposomes. Both (±) and (+) catechin and (-) epicatechin were much more effective. All the compounds tested reacted with trichloromethyl peroxyl radical (CCl3O2) with rate constants > 1 × 106M?1s?1.

A mixture of FeCl3-EDTA, hydrogen peroxide (H2O2) and ascorbic acid at pH 7.4, has often been used to generate hydroxyl radicals (OH.) which are detected by their ability to cause damage to the sugar deoxyribose. Ferulic acid, (+) and (±) catechin and (-) epicatechin inhibited deoxyribose damage by reacting with OH. with rate constants of 4.5 × 109M?1s?1, 3.65 × 109M?1s?1, 2.36 × 109M?1s?1 and 2.84 × 109M?1s?1 respectively. (-) Epicatechin, ferulic acid and the (+) and (±) catechins exerted pro-oxidant action, accelerating damage to DNA in the presence of a bleomycin-iron complex. On a molar basis, ferulic acid was less effective in causing damage to DNA compared with the catechins.

A mixture of hypoxanthine and xanthine oxidase generates O2 which reduces cytochrome c to ferrocytochrome c. (+) Catechin and (-) epicatechin inhibited the reduction of cytochrome c in a concentration dependent manner. Ferulic acid and (±) catechin had only weak effects.

All the compounds tested were able to scavenge hypochlorous acid at a rate sufficient to protect alpha-1-antiproteinase against inactivation. Our results show that catechins and ferulic acid possess antioxidant properties. This may become important given the current search for “natural” replacements for synthetic antioxidant food additives.  相似文献   

14.
Protective effect of Moringa oleifera leaf extract (MoLE) against radiation-induced lipid peroxidation has been investigated. Swiss albino mice, selected from an inbred colony, were administered with MoLE (300 mg/kg body wt) for 15 days before exposing to a single dose of 5 Gy 60Co-gamma radiation. After treatments, animals were necropsied at different post irradiation intervals (days 1, 7 and 15) and hepatic lipid peroxidation and reduced glutathione (GSH) contents were estimated to observe the relative changes due to irradiation and its possible amelioration by MoLE. It was observed that, MoLE treatment restored GSH in liver and prevented radiation induced augmentation in hepatic lipid peroxidation. Phytochemical analysis showed that MoLE possess various phytochemicals such as ascorbic acid, phenolics (catechin, epicatechin, ferulic acid, ellagic acid, myricetin) etc., which may play the key role in prevention of hepatic lipid peroxidation by scavenging radiation induced free radicals.  相似文献   

15.
Peroxynitrite, a potent oxidant formed in vivo from the reaction of nitric oxide with superoxide, can mediate low-density liprotein (LDL) oxidation which is thought to increase the risk of atherosclerosis. This study investigates the inhibitory effect of the isoflavones, genistein and daidzein, together with their glycosidic forms, genistin and daidzin, on the peroxynitrite-mediated LDL oxidation and nitration of tyrosine. Genistein and daidzein were observed to dose-dependently inhibit peroxynitrite-mediated LDL oxidation, while their glucoside conjugates showed less activity. Moreover, all the isoflavones used in this study were found to be potent peroxynitrite scavengers, preventing the nitration of tyrosine. The ability of the isoflavones at 50 microM to decrease the tyrosine nitration induced by peroxynitrite (1 mM) was in the ratios of genistein (49%), daidzein (40%), daidzin (41%) and genistin (42%) when compared to the control (tyrosine incubated only with peroxynitrite). These results suggest that an intake of isoflavones could contribute to protecting against cardiovascular diseases and chronic inflammatory diseases.  相似文献   

16.
The phenols of Paul's Scarlet rose stems and stem-derived cell cultures have been analyzed using C18-reversed-phase high performance liquid chromatography.

Rose stems were found to contain gallic acid, (+)catechin, (−)epicatechin, the dimers (−)epicatechin-(+)catechin and (+)catechin-(+)catechin, a polymeric procyanidin, ferulic acid, and several gallotannins. In contrast, a cell suspension of Paul's Scarlet rose which has been maintained in culture for over 25 years contained only low levels of gallic acid and (−)epicatechin-(+)catechin. The phenol content of a second rose cell line which was started from the same initial isolate in 1957, but which was maintained in a laboratory other than our own was quantitatively and qualitatively similar to the cell line kept in our laboratory for the last 20 years. A third cell line which we started 6 months ago contained a wide variety of phenols, most of which were in common with those of rose stems.

Selective subculturing of smaller cell clumps of our oldest cell line failed to enhance either the quantities or the diversity of phenols which accumulated in these cultured cells. Possible reasons for the failure of selective subculturing to enhance phenol levels in this long-established cell line are discussed.

  相似文献   

17.
It has been proposed that hypotaurine may function as an antioxidant in vivo. We investigated whether this compound can act as protective agent able to prevent damage from peroxynitrite, a strong oxidizing and nitrating agent that reacts with several biomolecules. The results showed that the compound efficiently protects tyrosine against nitration, alpha1-antiproteinase against inactivation, and human low-density lipoprotein against modification by peroxynitrite. Hypotaurine is also highly effective in inhibiting peroxynitrite-mediated nitration of tyrosine in the presence of added bicarbonate. This result suggests that hypotaurine could play an important role as protective agent under physiological conditions. Moreover, it was found that cysteine sulfinic acid, but not taurine, possesses protective properties against peroxynitrite-dependent damage similar to hypotaurine. These findings indicate that the protective effects exerted by these compounds may be attributable to the presence of the sulfinic group oxidizable into sulfonate by scavenging peroxynitrite and/or its derived species.  相似文献   

18.
In the present study, the Salmonella typhimurium tester strain TA 100 was used in the plate-incorporation test to examine the antimutagenic potential of caffeic, ferulic and cichoric acids extracted from plant species of genera Echinacea (L) Moench, as well as of another phenolic acids, on 3-(5-nitro-2-furyl)acrylic acid (5NFAA) and sodium azide mutagenicity. All tested compounds possess antimutagenic activity. In the case of 5NFAA, the antimutagenic potency of tested compounds was in the order of gallic acid > ferulic acid > caffeic acid > syringic acid > vanillic acid. The mutagenic effect of sodium azide was inhibited by tested phenolic acids by about 20-35 %. The most effective compound, gallic acid inhibits this effect by 82 % in the concentration of 500 mug/plate. The only exception from favourable properties of tested phenolic acids is cichoric acid, which in the contrary significantly increased the mutagenic effect of 5NFAA.  相似文献   

19.
Epidemiological studies have shown that moderate intake of red wine reduces the risk of coronary heart disease. It has been proposed that the antiatherogenic effect be due to the scavenging of reactive oxygen species by polyphenols and ethanol or an effect on endothelial nitric oxide (NO) production. We have determined the reaction rates of superoxide with four different polyphenols and ethanol. The superoxide reaction rates were determined at 37 degrees C and pH 7.4 using competitive spin trapping and electron paramagnetic resonance (EPR) spectroscopy. Ethanol did not scavenge superoxide. For the polyphenols catechin, epicatechin, gallic acid, and quercetin, we find rate constants of respectively 2.3*10(4), 2.2*10(4), 2.3*10(3) and 1.9*10(4)(mole per second)(-1). Polyphenols can only exert a significant scavenging effect, if the plasma concentration reach sufficiently high levels. At concentrations found in vivo (low nanomolar range), the scavenging of superoxide by polyphenols and ethanol is negligible in comparison with endogenous protection against superoxide. Incubation of cultured endothelial cells with 5 micromol/L of catechin, epicatechin, gallic acid, quercetin, or ethanol 0.05% (v/v) did not influence the maximal production of NO by these cells as measured by fluorescent nitric oxide cheletropic traps (FNOCT). The observed antiatherogenic effects must be caused by a mechanism other than direct scavenging of superoxide or influence on maximal endothelial NO production.  相似文献   

20.
Peroxynitrite anion is a reactive and short-lived species and its formation in vivo has been implicated in several human diseases. In view of the potential usefulness of compounds that can protect against peroxynitrite or their reactive intermediates, a study focused on flavonoid compounds was carried out. Since the reactivity of peroxynitrite may be modified by [Formula: See Text] which is an important plasma buffer, the protection of flavonoids against peroxynitrite was evaluated by their ability to inhibit the peroxynitrite-mediated dihydrorhodamine (DHR123) oxidation with or without physiological concentrations of bicarbonate. Flavonoids from different classes were studied to elucidate which structural features are required for an effective protection. The most efficient flavonoids on protecting DHR123 against oxidation by peroxynitrite have their ability diminished in the presence of bicarbonate, but they maintain the hierarchy established in the absence of bicarbonate. The flavones are the most effective flavonoids and their effects depend mainly on the number of hydroxyl groups. These must include either a catechol group in the B-ring or a hydroxyl group at the 3-position. This work also included some isoflavones, flavanones and a flavanol, which enable us to conclude about the importance of another structural feature: the 2,3-double bond. These results indicate that the ability of flavonoids to protect against peroxynitrite depends on some structural features, also important to scavenge oxygen free radicals and to chelate metal ions. The most efficient flavonoids are effective at low concentrations with IC50 of the same magnitude as Ebselen, a selenocompound that has been reported to be excellent at protecting against peroxynitrite. Their effectiveness at low concentrations is an important aspect to take into account when characterizing a compound as an antioxidant with biological interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号