首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interactions of basement membrane components   总被引:23,自引:0,他引:23  
The binding of laminin, type IV collagen, and heparan sulfate proteoglycan to each other was assessed. Laminin binds preferentially to native type IV (basement membrane) collagen over other collagens. A fragment of laminin (Mr 600 000) containing the three short chains (Mr 200 000) but lacking the long chain (Mr 400 000) showed the same affinity for type IV collagen as the intact protein. The heparan sulfate proteoglycan binds well to laminin and to type IV collagen. These studies show that laminin, type IV collagen and heparan sulfate proteoglycan interact with each other. Such interactions in situ may determine the structure of basement membranes.  相似文献   

2.
The cell surface proteoglycan fraction isolated by mild trypsin treatment of NMuMG mouse mammary epithelial cells contains largely heparan sulfate, but also 15-24% chondroitin sulfate glycosaminoglycans. We conclude that this fraction contains a unique hybrid proteoglycan bearing both heparan sulfate and chondroitin sulfate glycosaminoglycans because (i) the proteoglycan behaves as a single species by sizing, ion exchange and collagen affinity chromatography, and by isopycnic centrifugation, even in the presence of 8 M urea or 4 M guanidine hydrochloride, (ii) the behavior of the chondroitin sulfate in these separation techniques is affected by heparan sulfate-specific probes and vice versa, and (iii) proteoglycan core protein bearing both heparan sulfate and chondroitin sulfate is recognized by a single monoclonal antibody. Removal of both types of glycosaminoglycan reduces the proteoglycan to a core protein of approximately 53 kDa. The proteoglycan fraction is heterogeneous in size, largely due to a variable number and/or length of the glycosaminoglycan chains. We estimate that one or two chondroitin sulfate chains (modal Mr of 17,000) exist on the proteoglycan for every four heparan sulfate chains (modal Mr of 36,000). Synthesis of these chains is reportedly initiated on an identical trisaccharide that links the chains to the same amino acid residues on the core protein. Therefore, some regulatory information, perhaps residing in the amino acid sequence of the core protein, must determine the type of chain synthesized at any given linkage site. Post-translational addition of these glycosaminoglycans to the protein may provide information affecting its ultimate localization. It is likely that the protein is directed to specific sites on the cell surface because of the ability of the glycosaminoglycans to recognize and bind extracellular components.  相似文献   

3.
The basement membrane heparan sulfate proteoglycan produced by the Englebreth-Holm-Swarm (EHS) tumor and by glomeruli were compared by immunological methods. Antibodies to the EHS proteoglycan immunoprecipitated a single precursor protein (Mr = 400,000) from [35S]methionine-pulsed glomeruli, the same size produced by EHS cells. These antibodies detected both heparan sulfate proteoglycans and glycoproteins in extracts of unlabeled glomeruli and glomerular basement membrane. The proteoglycans contained core proteins of varying size (Mr = 150,000 to 400,000) with a Mr = 250,000 species being predominant. The glycoproteins are fragments of the core protein which lack heparan sulfate side chains. Antibodies to glomerular basement membrane proteoglycan immunoprecipitated the precursor protein (Mr = 400,000) synthesized by EHS cells and also reacted with most of the proteolytic fragments of the EHS proteoglycan. This antibody did not, however, react with the P44 fragment, a peptide situated at one end of the EHS proteoglycan core protein. These data suggest that the glomerular basement membrane proteoglycan is synthesized from a large precursor protein which undergoes specific proteolytic processing.  相似文献   

4.
Various forms of heparan sulfate proteoglycan were solubilized from the mouse Engelbreth-Holm-Swarm (EHS) sarcoma by extraction with 0.5 M NaCl, collagenase digestion and extraction with 4 M guanidine. They could be separated into high (greater than or equal to 1.65 g/ml) and low (1.38 g/ml) buoyant density variants. The high-density form from the NaCl extract and collagenase digest had Mr = 130000 and So20,W = 4.5 S and contained 4-10% protein, indicating Mr = 5 000-12 000 for the protein core. This proteoglycan exhibited polydispersity as shown by rotary shadowing electron microscopy and ultracentrifugation. An average molecule consisted of four heparan sulfate chains (Mr = 29 000) each with a length of 32 +/- 10 nm. The low-density form (Mr about 400 000) could not be completely purified and contained about 50% protein. As shown by radioimmunoassay, the various proteoglycans shared similar protein cores. Labeling of the tumor in vivo or in vitro demonstrated preferential incorporation of radioactive sulfate in the high-density form. The high-density proteoglycan interacted in affinity chromatography by virtue of its heparan sulfate chains with laminin, fibronectin, the globular domain NC1 and the triple helix of collagen IV. These interactions were abolished at moderate concentrations of NaCl (0.1-0.2 M) and in the presence of heparin, chondroitin sulfate or dextran sulfate. Interactions with the globule NC1 could also be demonstrated by velocity band centrifugation in sucrose gradients and a binding constant of about 10(6) M-1 was derived.  相似文献   

5.
Isolation of two forms of basement membrane proteoglycans   总被引:22,自引:0,他引:22  
Sequential extractions of the basement membrane producing Engelbreth-Holm-Swarm tumor yielded heparan sulfate proteoglycans with different size core proteins, but the same size heparan sulfate side chains. Saline, a nondenaturing solvent, extracted a small high density proteoglycan with a heterodisperse core protein of Mr = 95,000-130,000 whereas subsequent extraction with 7 M urea, a denaturing solvent, removed a large, low density proteoglycan with a Mr = 350,000-400,000 protein core. The denaturing conditions required for extraction of the large proteoglycan suggest that it interacts strongly with other basement membrane components. Antibodies to these proteoglycans cross-react with both proteoglycans, but the large proteoglycan has additional antigenic sites not present on the small proteoglycan. These proteoglycans may be derived from the same or similar gene products.  相似文献   

6.
We have identified a protein(s) on the surface of hepatocytes that binds to the core protein of the heparan sulfate proteoglycan of basement membranes. These cells attached and spread on substrates prepared from the basement membrane heparan sulfate proteoglycan (HSPG) and its core protein (HSPG-core). Three proteins (Mr = 38,000, 36,000, and 26,000) were found to bind to a HSPG-core affinity column using extracts of iodinated hepatocytes, whereas proteins extracted from isolated membranes contained primarily the larger protein (Mr = 38,000). Similar results were obtained using a solid phase binding technique using labeled HSPG-core. Binding of HSPG-core to the protein (Mr = 38,000) was not altered by the presence of an excess of heparin, heparan sulfate, fibronectin, laminin, or collagen IV but was reduced by unlabeled HSPG-core. Similar studies showed that the binding protein (Mr = 3,0000) was present in extracts from the membranes of Engelbreth-Holm-Swarm tumor cells, Madin-Darby canine kidney cells, COS cells, melanoma cells, and rat kidney epithelial cells but not in fibroblasts. The protein was found in increased amounts in 3T3 cells treated with retinoic acid. These observations suggest that a variety of cells that contact basement membrane contain the proteoglycan-binding protein.  相似文献   

7.
《The Journal of cell biology》1989,109(6):3187-3198
Reichert's membrane, an extraembryonic membrane present in developing rodents, has been proposed as an in vivo model for the study of basement membranes. We have used this membrane as a source for isolation of basement membrane proteoglycans. Reichert's membranes were extracted in a guanidine/3-[(3-cholamidopropyl)dimethylammonio]-1- propanesulfonate buffer followed by cesium chloride density-gradient ultracentrifugation under dissociative conditions. The proteoglycans were subsequently purified from the two most dense fractions (greater than 1.3 g/ml) by ion-exchange chromatography. Mice were immunized with the proteoglycan preparation and four mAbs recognizing the core protein of a high-density, buoyant chondroitin sulfate proteoglycan were raised. Confirmation of antibody specificity was carried out by the preparation of affinity columns made from each of the mAbs. Chondroitin sulfate proteoglycans (CSPGs) were purified from both supernatant and tissue fractions of Reichert's membranes incubated in short-term organ culture in the presence of radiolabel. The resultant affinity-purified proteoglycan samples were examined by gel filtration, SDS-PAGE, and immunoblotting. This proteoglycan is of high molecular weight (Mr = 5-6 x 10(5)), with a core protein of Mr = approximately 1.5-1.6 x 10(5) and composed exclusively of chondroitin sulfate chains with an average Mr = 1.6-1.8 x 10(4). In addition, a CSPG was purified from adult rat kidney, whose core protein was also Mr = 1.6 x 10(5). The proteoglycan and its core protein were also recognized by all four mAbs. Indirect immunofluorescence of rat tissue sections stained with these antibodies reveal a widespread distribution of this proteoglycan, localized specifically to Reichert's membrane and nearly all basement membranes of rat tissues. In addition to heparan sulfate proteoglycans, it therefore appears that at least one CSPG is a widespread basement membrane component.  相似文献   

8.
Disulfide-bonded aggregates of heparan sulfate proteoglycans   总被引:1,自引:0,他引:1  
Heparan sulfate proteoglycans have been isolated from Swiss mouse 3T3 cells by using two nondegradative techniques: extraction with 4 M guanidine or 2.5% 1-butanol. These proteoglycans were separated from copurifying chondroitin sulfate proteoglycans by using ion-exchange chromatography on DEAE-cellulose in the presence of 2 M urea. The purified heparan sulfate proteoglycans are substantially smaller, ca. Mr 20 000, than those isolated from these same cells with trypsin, ca. Mr 720 000 [Johnston, L.S., Keller, K. L., & Keller, J. M. (1979) Biochim. Biophys. Acta 583, 81-94]. However, all of the heparan sulfate proteoglycans extracted by these three methods contain similar glycosaminoglycan chains (Mr 7500) and are derived from the same pool of cell surface associated molecules. The trypsin-released heparan sulfate proteoglycan (ca. Mr 720 000) can be significantly reduced in size (ca. Mr 33 000) under strong denaturing conditions in the presence of the disulfide reducing agent dithiothreitol, which suggests that this form of the molecule is a disulfide-bonded aggregate. The heparan sulfate proteoglycan isolated from the medium also undergoes a significant size reduction in the presence of dithiothreitol, indicating that a similar aggregate is formed as part of the normal release of heparan sulfate proteoglycans into the medium. These results suggest that well-shielded disulfide bonds between individual heparan sulfate proteoglycan monomers may account for the large variation in sizes which has been reported for heparan sulfate proteoglycans isolated from a variety of cells and tissues with a variety of extraction procedures.  相似文献   

9.
We demonstrate that the cell surface heparan sulfate proteoglycan of human colon carcinoma cells has an affinity for a hydrophobic matrix. This property is mediated by sequences in the core protein, since papain-or alkaline borohydride-released heparan sulfate chains do not bind to the matrix. Trypsin releases a [3H]leucine-rich, unsulfated, hydrophobic peptide, with Mr approximately 5000. This domain is present in neither the proteoglycan released into the medium nor in the intracellular degradation products. It is proposed that this peptide may represent the portion of the core protein intercalated into the plasma membrane.  相似文献   

10.
To characterize proteoglycans in the prechondrogenic limb bud, proteoglycans were extracted with 4 M guanidine HCl containing a detergent and protease inhibitors from Day 13 fetal rat limb buds which had been labeled with [35S]sulfate for 3 h in vitro. About 90% of 35S-labeled proteoglycans was solubilized under the conditions used. The proteoglycan preparation was separated by DEAE-Sephacel column chromatography into three peaks; peak I eluted at 0.45 M NaCl concentration, peak II at 0.52 M, and peak III at 1.4 M. Peaks I and III were identified as proteoglycans bearing heparan sulfate side chains. The heparan sulfate proteoglycan in peak III was larger in hydrodynamic size than the proteoglycan in peak I. The heparan sulfate side chains of peak III proteoglycan were smaller in the size and more abundant in N-sulfated glucosamine than those of peak I proteoglycan. Peak II contained a chondroitin sulfate proteoglycan with a core protein of a doublet of Mr 550,000 and 500,000. The chondroitin sulfate proteoglycan was easily solubilized with a physiological salt solution and the heparan sulfate proteoglycan in peak I was partially solubilized with the physiological salt solution. The remainder of the proteoglycan in peak I and the heparan sulfate proteoglycan in peak III could be solubilized effectively only with a solution containing a detergent, such as nonanoyl-N-methylglucamide. This observation indicates the difference in the localization among these three proteoglycans in the developing rat limb bud.  相似文献   

11.
Radiolabelled proteoheparan sulphates were isolated from confluent monolayers of fibroblasts and from their spent media. The cell-surface-associated proteoglycan (Mr 350 000) has a core protein of Mr 180 000 that is cleaved by reduction of disulphide bonds into polypeptides of Mr 90 000, both of which can bind transferrin [Fransson, Carlstedt, Cöster & Malmström (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 5657-5661]. Thrombin digestion of the proteoglycan yielded two major fragments. The larger one contained the heparan sulphate chains and glycoprotein-type oligosaccharides, whereas the smaller one contained interchain disulphide bond(s) and had affinity for transferrin as well as for octyl-Sepharose. The larger thrombic fragment was cleaved by trypsin into fragments containing the heparan sulphate chains and the oligosaccharides respectively. The smaller proteoheparan sulphate derived from the culture medium (Mr 150 000) had a core protein of Mr 30 000, which contained heparan sulphate-attachment and oligosaccharide-attachment regions, but no domains for binding of transferrin or for hydrophobic interactions.  相似文献   

12.
We have identified a Mr 80K cell surface protein(s) from adult rat hepatocytes that binds basement membrane components, including collagen IV, heparan sulfate proteoglycan, and laminin. Freshly isolated hepatocytes were cell surface-labeled with 125I using the lactoperoxidase-catalyzed method, and detergent-solubilized membrane proteins were chromatographed on affinity columns prepared with purified basement membrane components. A Mr 80K protein was eluted with 0.15-1 M NaCl from a collagen IV column. Two proteins (Mr 80K and 38K) were eluted from a heparan sulfate proteoglycan column. The larger protein was also eluted from a column made with heparan sulfate side chains. Several proteins (Mr 80K, 67K, 45K, and 32K) bound to an affinity chromatography column made with the laminin A chain-derived synthetic peptide PA22-2, which is active for promoting cell attachment. When fractions eluted from these columns were analyzed by two-dimensional gel electrophoresis, the Mr 80K proteins showed similar patterns with a pI ranging from 8 to 9. The Mr 80K protein(s) may have an important role in the interaction of hepatocytes with basement membrane.  相似文献   

13.
Cultured arterial smooth muscle cells synthesize a cell-associated heparan sulfate proteoglycan which consists of a 92 kDa core protein with 3 to 4 heparan sulfate side chains covalently attached. Biosynthesis of the cell-associated heparan sulfate proteoglycan was compared in proliferating and in non-dividing vascular smooth muscle cells which are preincubated in the presence of [35]sulfate or a combination of [35S]methionine and [3H]glucosamine. The Mr of the core protein was identical in either growth state, but changes in the structure of the heparan sulfate side chains were observed. Non-dividing (postconfluent) arterial smooth muscle cells form longer heparan sulfate chains with a higher proportion of hydrophobic (N-acetyl) groups than proliferating (preconfluent) cells as judged from gel filtration experiments, hydrophobic interaction chromatography and heparitinase degradation. An enzyme preparation from proliferating cells catalyzes deacetylation and N-sulfation of heparan sulfate at a 5-fold higher activity than from non-dividing cells. Cell density-dependent structural differences of heparan sulfate are related to the finding that heparan sulfate isolated from non-dividing cells has a 10-fold higher antiproliferative potency than heparan sulfate from proliferating (preconfluent) cells.  相似文献   

14.
Extraction of stage 22-23 chick embryo limb buds that had been metabolically labeled with [35S]sulfate yielded heparan sulfate proteoglycan, small chondroitin sulfate proteoglycan, and large chondroitin sulfate proteoglycan (designated PG-M). PG-M constituted over 60% of the total macromolecular [35S]sulfates. It was larger in hydrodynamic size, richer in protein, and contained fewer chondroitin sulfate chains as compared to the predominant proteoglycan (PG-H, Mr congruent to 1.5 X 10(6)) of chick embryo cartilage. The chondroitin sulfate chains were notable for their large size (Mr greater than or equal to 60,000) and high content of nonsulfated chondroitin units (about 20% of the total hexosamine). Hexosamine-containing chains corresponding in size to N-linked and O-linked oligosaccharides were also present. The core protein was rich in serine, glutamic acid (glutamine), and glycine which together comprised about 38% of the total amino acids. Following chondroitinase AC II (or ABC) digestion, core molecules were obtained which migrated on sodium dodecyl sulfate gel electrophoresis as a doublet of bands with approximately Mr = 550,000 (major) and 500,000, respectively. The Mr = 550,000 core glycoprotein was structurally different from the core glycoprotein (Mr congruent to 400,000) of PG-H, as ascertained by tryptic peptide mapping and immunochemical criteria. Immunofluorescent localization of PG-M showed that the intensity of PG-M staining progressively became higher in the core mesenchyme region than in the peripheral loose mesenchyme, closely following the condensation of mesenchymal cells. Since the cell condensation process has been shown to begin with the increase of fibronectin and type I collagen concentration, the similar change in PG-M distribution suggests that PG-M plays an important role in the cell condensation process by means of its interaction with fibronectin and type I collagen.  相似文献   

15.
The embryonic rat parietal yolk sac has been previously shown to synthesize a number of basement membrane glycoconjugates including type IV procollagen, laminin, and entactin. In this study, parietal yolk sacs were isolated from 14.5-day rat embryos and incubated in organ culture for 4-7 h with [35S]sulfate, [3H] glucosamine, and/or 3H-labeled amino acids, and the newly synthesized proteoglycans were characterized. The major [35S]sulfate-labeled macromolecule represented approximately 90% of the medium and 80% of the tissue radioactivity. It also represented nearly 80% of the total [3H]glucosamine-labeled glycosaminoglycans. After purification by sequential ion-exchange chromatography and isopycnic CsCI density gradient ultracentrifugation, size-exclusion high-performance liquid chromatography showed a single species with an estimated Mr of 8-9 X 10(5). The intact proteoglycan did not form aggregates in the presence of exogenous hyaluronic acid or cartilage aggregates. Alkaline borohydride treatment released glycosaminoglycan chains with Mr of 2.0 X 10(4) which were susceptible to chondroitinase AC II and chondroitinase ABC digestion. Analysis by high-performance liquid chromatography of the disaccharides generated by chondroitinase ABC digestion revealed that chondroitin 6-sulfate was the predominant isomer. The uronic acid content of the glycosaminoglycans was 92% glucuronic acid and 8% iduronic acid, and the hexosamine content was 96% galactosamine and 4% glucosamine. No significant amounts of N- or O-linked oligosaccharides were detected. Deglycosylation of the proteoglycan with chondroitinase ABC in the presence of protease inhibitors revealed a protein core with an estimated Mr of 1.25-1.35 X 10(5). These results indicated that the major proteoglycan synthesized by the 14.5-day rat embryo parietal yolk sac is a high-density chondroitin sulfate containing small amounts of copolymeric dermatan sulfate. Hyaluronic acid and minor amounts of heparan sulfate proteoglycan were also detected.  相似文献   

16.
When calf aortic tissue, preincubated under organ culture conditions in the presence of [35S]sulfate, was submitted to a sequential collagenase and elastase digestion and guanidinium chloride extraction, the bulk of proteoheparan sulfate was obtained in the elastase fraction. Ion-exchange chromatography on DEAE-cellulose of the elastase digest under dissociative conditions yielded a proteoglycan fraction that contained heparan sulfate as the sole glycosaminoglycan. The proteoheparan sulfate fraction was resolved into a high-molecular-mass (P-HS 1) and a low-molecular-mass (P-HS 2) fraction by gel filtration on Sephacryl S-400. P-HS 1 has a Mr of 175,000 and possesses four heparan sulfate side-chains (Mr 32,000) covalently bound to the protein core via a galactose- and xylose-containing polysaccharide-protein binding region. The protein core (Mr 38,000), which was obtained after deglycosylation of PG-HS 1 with trifluormethane sulfonic acid, contained in addition a few N-glycosidically linked oligosaccharide units representing a complex type with terminal neuraminic acid residues. P-HS 2 is a single-chain peptidoheparan sulfate of Mr of 38,000 containing one heparan sulfate chain (Mr 32,000) linked to a polypeptide (Mr 6000). The ratio of specific radioactivities of P-HS 1 and P-HS 2 was 1:0.66.  相似文献   

17.
We have isolated and characterized the cell-associated and secreted proteoglycans synthesized by a clonal line of rat adrenal medullary PC12 pheochromocytoma cells, which have been extensively employed for the study of a wide variety of neurobiological processes. Chondroitin sulfate accounts for 70-80% of the [35S] sulfate-labeled proteoglycans present in PC12 cells and secreted into the medium. Two major chondroitin sulfate proteoglycans were detected with molecular sizes of 45,000-100,000 and 120,000-190,000, comprising 14- and 105-kDa core proteins and one or two chondroitin sulfate chains with an average molecular size of 34 kDa. In contrast to the chondroitin sulfate proteoglycans, one major heparan sulfate proteoglycan accounts for most of the remaining 20-30% of the [35S] sulfate-labeled proteoglycans present in the PC12 cells and medium. It has a molecular size of 95,000-170,000, comprising a 65-kDa core protein and two to six 16-kDa heparan sulfate chains. Both the chondroitin sulfate and heparan sulfate proteoglycans also contain O-glycosidically linked oligosaccharides (25-28% of the total oligosaccharides) and predominantly tri- and tetraantennary N-glycosidic oligosaccharides. Proteoglycans produced by the original clone of PC12 cells were compared with those of two other PC12 cell lines (B2 and F3) that differ from the original clone in morphology, adhesive properties, and response to nerve growth factor. Although the F3 cells (a mutant line derived from B2 and reported to lack a cell surface heparan sulfate proteoglycan) do not contain a large molecular size heparan sulfate proteoglycan species, there was no significant difference between the B2 and F3 cells in the percentage of total heparan sulfate released by mild trypsinization, and both the B2 and F3 cells synthesized cell-associated and secreted chondroitin sulfate and heparan sulfate proteoglycans having properties very similar to those of the original PC12 cell line but with a reversed ratio (35:65) of chondroitin sulfate to heparan sulfate.  相似文献   

18.
The effect of nitrophenyl-beta-D-xyloside (xyloside), a synthetic initiator of glycosaminoglycan synthesis, on proteoglycan and glycosaminoglycan synthesis by a basement membrane producing tumor was studied. While xyloside markedly stimulated the formation of chondroitin sulfate chains, it depressed the formation of a basement membrane heparan sulfate proteoglycan and caused only little formation of free heparan sulfate chains. However, when the synthesis of the core protein of the proteoglycan was inhibited by cycloheximide, heparan sulfate chains were produced by xyloside treatment. These heparan sulfate chains had a sulfate content higher than that of heparan sulfate found on the proteoglycan. The data indicate that xyloside can substitute for the heparan sulfate initiation site on the core protein of the proteoglycan and that this initiation is enhanced in the absence of core protein. This suggests that under normal conditions the formation of heparan sulfate chains may be tightly linked to the production of the core protein.  相似文献   

19.
Structural Properties of the Heparan Sulfate Proteoglycans of Brain   总被引:1,自引:1,他引:0  
The heparan sulfate proteoglycans present in a deoxycholate extract of rat brain were purified by ion exchange chromatography, affinity chromatography on lipoprotein lipase agarose, and gel filtration. Heparitinase treatment of the heparan sulfate proteoglycan fraction (containing 86% heparan sulfate and 10% chondroitin sulfate) that was eluted from the lipoprotein lipase affinity column with 1 M NaCl led to the appearance of a major protein core with a molecular size of 55,000 daltons, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Comparison of the effects of heparinase and heparitinase treatment revealed that the heparan sulfate proteoglycans of brain contain a significant proportion of relatively short N-sulfoglucosaminyl 6-O-sulfate [or N-sulfoglucosaminyl](alpha 1-4)iduronosyl 2-O-sulfate(alpha 1-4) repeating units and that the portions of the heparan sulfate chains in the vicinity of the carbohydrate-protein linkage region are characterized by the presence of D-glucuronic acid rather than L-iduronic acid. After chondroitinase treatment of a proteoglycan fraction that contained 62% chondroitin sulfate and 21% heparan sulfate (eluted from lipoprotein lipase with 0.4 M NaCl), the charge and density of a portion of the heparan sulfate-containing proteoglycans decreased significantly. These results indicate that a population of "hybrid" brain proteoglycans exists that contain both chondroitin sulfate and heparan sulfate chains covalently linked to a common protein core.  相似文献   

20.
A high molecular weight basement membrane heparan sulfate proteoglycan, isolated from murine Englebreth-Holm-Swarm tumor, is seen in platinum replicas as an elongated flexible core (Mr = 450,000) consisting of a series of tandem globular domains from which extend, at one end, two to three heparan sulfate chains (average Mr = 80,000 each). This macromolecule will self-assemble into dimers and lesser amounts of oligomers when incubated in neutral isotonic buffer. These molecular species can be separated by zonal velocity sedimentation and assembly is seen to be time- and concentration-dependent. In rotary-shadowed platinum replicas the binding region is found at or near the end of the core at the pole opposite the origin of the heparan sulfate chains. Dimers are double-length structures and oligomers are seen as stellate clusters: in both, the heparan sulfate chains appear peripherally oriented. While isolated cores self-assemble, isolated heparan sulfate chains do not bind intact proteoglycans. Furthermore, proteolytic removal of a non-heparan sulfate containing core moiety destroys the ability of the proteoglycan monomer to form larger species or bind intact proteoglycan, further supporting the binding topography determined morphologically. These negatively charged macromolecular complexes may be important contributors to basement membrane structure and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号