首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibroblasts in culture were incubated with [3H]leucine and [35S]sulphate for 1-24 h. A large glucuronic acid-rich and a small iduronic acid-rich dermatan sulphate proteoglycan were isolated with the use of isopycnic density-gradient centrifugation, ion-exchange and gel chromatography. After 3 h the accumulation in the cell layer of the small proteoglycan reached a steady state, whereas the large one continued to increase, albeit more slowly. In the medium both proteoglycans accumulated 'linearly', although the large one appeared somewhat later than the small one. The composition of the polysaccharide chains and the size of the protein cores did not vary during the experiment. The two proteoglycans were synthesized at approximately similar rates, but were distributed differently in the culture. The small proteoglycan was mainly confined to the medium, whereas the large one was found in the medium as well as in a cell-associated pool. There was an intracellular accumulation of iduronic acid-rich dermatan sulphate as free polysaccharides.  相似文献   

2.
Heparan sulphate and chondroitin/dermatan sulphate proteoglycans of human skin fibroblasts were isolated and separated after metabolic labelling for 48 h with 35SO4(2-) and/or [3H]leucine. The proteoglycans were obtained from the culture medium, from a detergent extract of the cells and from the remaining ''matrix'', and purified by using density-gradient centrifugation, gel and ion-exchange chromatography. The core proteins of the various proteoglycans were identified by electrophoresis in SDS after enzymic removal of the glycosaminoglycan side chains. Skin fibroblasts produce a number of heparan sulphate proteoglycans, with core proteins of apparent molecular masses 350, 250, 130, 90, 70, 45 and possibly 35 kDa. The major proteoglycan is that with the largest core, and it is principally located in the matrix. A novel proteoglycan with a 250 kDa core is almost entirely secreted or shed into the culture medium. Two exclusively cell-associated proteoglycans with 90 kDa core proteins, one with heparan sulphate and another novel one with chondroitin/dermatan sulphate, were also identified. The heparan sulphate proteoglycan with the 70 kDa core was found both in the cell layer and in the medium. In a previous study [Fransson, Carlstedt, Cöster & Malmström (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 5657-5661] it was suggested that skin fibroblasts produce a proteoglycan form of the transferrin receptor. However, the core protein of the major heparan sulphate proteoglycan now purified does not resemble this receptor, nor does it bind transferrin. The principal secreted proteoglycans are the previously described large chondroitin sulphate proteoglycan (PG-L) and the small dermatan sulphate proteoglycans (PG-S1 and PG-S2).  相似文献   

3.
Human embryonic skin fibroblasts were pretreated with transforming growth factor-beta (TGF-beta) for 6 h and then labeled with [35S]sulphate and [3H]leucine for 24 h. Radiolabeled proteoglycans from the culture medium and the cell layer were isolated and separated by isopycnic density-gradient centrifugation, followed by gel, ion-exchange and hydrophobic-interaction chromatography. The major proteoglycan species were examined by polyacrylamide gel electrophoresis in sodium dodecyl sulphate before and after enzymatic degradation of the polysaccharide chains. The results showed that TGF-beta increased the production of several different 35S-labelled proteoglycans. A large chondroitin/dermatan sulphate proteoglycan (with core proteins of approximately 400-500 kDa) increased 5-7-fold and a small dermatan sulphate proteoglycan (PG-S1, also termed biglycan, with a core protein of 43 kDa) increased 3-4-fold both in the medium and in the cell layer. Only a small effect was observed on another dermatan sulphate proteoglycan, PG-S2 (also named decorin). These observations are generally in agreement with results of other studies using similar cell types. In addition, we have found that the major heparan sulphate proteoglycan of the cell layer (protein core approximately 350 kDa) was increased by TGF-beta treatment, whereas all the other smaller heparan sulphate proteoglycans with protein cores from 250 kDa to 30 kDa appeared unaffected. To investigate whether TGF-beta also influences the glycosaminoglycan (GAG) chain-synthesizing machinery, we also characterized GAGs derived from proteoglycans synthesized by TGF-beta-treated cells. There was generally no increase in the size of the GAG chains. However, the dermatan sulphate chains on biglycan and decorin from TGF-beta treated cultures contained a larger proportion of D-glucuronosyl residues than those derived from untreated cultures. No effect was noted on the 4- and 6-sulphation of the GAG chains. By the use of p-nitrophenyl beta-D-xyloside (an initiator of GAG synthesis) it could be demonstrated that chain synthesis was also enhanced in TGF-beta-treated cells (approximately twofold). Furthermore, the dermatan sulphate chains synthesized on the xyloside in TGF-beta-treated fibroblasts contained a larger proportion of D-glucuronosyl residues than those of the control. These novel findings indicate that TGF-beta affects proteoglycan synthesis both quantitatively and qualitatively and that it can also change the copolymeric structure of the GAG by affecting the GAG-synthesizing machinery. Altered proteoglycan structure and production may have profound effects on the properties of extracellular matrices, which can affect cell growth and migration as well as organisation of matrix fibres.  相似文献   

4.
The characteristics of cell-associated proteoglycans were studied and compared with those from the medium in suspension cultures of calf articular-cartilage chondrocytes. By including hyaluronic acid or proteoglycan in the medium during [35S]sulphate labelling the proportion of cell-surface-associated proteoglycans could be decreased from 34% to about 15% of all incorporated label. A pulse-chase experiment indicated that this decrease was probably due to blocking of the reassociation with the cells of proteoglycans exported to the medium. Three peaks of [35S]sulphate-labelled proteoglycans from cell extracts and two from the medium were isolated by gel chromatography on Sephacryl S-500. These were characterized by agarose/polyacrylamide-gel electrophoresis, by SDS/polyacrylamide-gel electrophoresis of core proteins, by glycosaminoglycan composition and chain size as well as by distribution of glycosaminoglycans in proteolytic fragments. The results showed that associated with the cells were (a) large proteoglycans, typical for cartilage, apparently bound to hyaluronic acid at the cell surface, (b) an intermediate-size proteoglycan with chondroitin sulphate side chains (this proteoglycan, which had a large core protein, was only found associated with the cells and is apparently not related to the large proteoglycans), (c) a small proteoglycan with dermatan sulphate side chains with a low degree of epimerization, and (d) a somewhat smaller proteoglycan containing heparan sulphate side chains. The medium contained a large aggregating proteoglycan of similar nature to the large cell-associated proteoglycan and small proteoglycans with dermatan sulphate side chains with a higher degree of epimerization than those of the cells, i.e. containing some 20% iduronic acid.  相似文献   

5.
Proteoglycans, metabolically labelled with [3H]leucine and 35SO4(2-), were isolated from the spent media and from guanidinium chloride extracts of cultured human umbilical-vein endothelial cells by using isopycnic density-gradient centrifugation, gel filtration and ion-exchange h.p.l.c. The major proteoglycan species were subjected to SDS/polyacrylamide-gel electrophoresis before and after enzymic degradation of the polysaccharide chains. The cell extract contained mainly a heparan sulphate proteoglycan that has a buoyant density of 1.31 g/ml and a protein core with apparent molecular mass 300 kDa. The latter was heterogeneous and migrated as one major and one minor band. After reduction, the apparent molecular mass of the major band increased to approx. 350 kDa, indicating the presence of intrachain disulphide bonds. The proteoglycan binds to octyl-Sepharose and its polysaccharide chains are extensively degraded by heparan sulphate lyase. The proteoglycans of the medium contained 90% of all the incorporated 35SO4(2-). Here the predominant heparan sulphate proteoglycan was similar to that of the cell extract, but was more heterogeneous and contained an additional core protein with apparent molecular mass 210 kDa. Furthermore, two different chondroitin sulphate proteoglycans were found: one 200 kDa species with a high buoyant density (approx. 1.45 g/ml) and one 100 kDa species with low buoyant density (approx. 1.3 g/ml). Both these proteoglycans have a core protein of molecular mass approx. 47 kDa.  相似文献   

6.
Macrophages were obtained from the mouse peritoneal cavity and culturedin vitro. The cells were exposed to35S-sulphate for 20 h, and labelled proteoglycans were recovered from both medium and cell fractions by sodium dodecylsulphate solubilization. The cell fraction contained both proteoglycans and glycosaminoglycans, whereas only intact proteoglycans could be recovered from the medium fraction. 35S-Glycosaminoglycans isolated from cell and medium fractions by papain digestion were shown to contain approximately 25% heparan sulphate and 75% galactosaminoglycans comprising 55% chondroitin sulphate and 20% dermatan sulphate. The galactosaminoglycans were shown by paper chromatography to contain more than 95% 4-sulphated units. Pulse-chase experiments showed that approximately 80% of the cell-associated material was released within 6 h of incubation.35S-Proteoglycans released did not bind to the macrophages, but were recovered in a soluble form from the culture medium.Abbreviations CSPG chondroitin sulphate proteoglycan - HSPG heparan sulphate proteoglycan - SDS sodium dodecylsulphate - DME Dulbecco's Minimum Essential Medium - GAG glycosaminoglycan  相似文献   

7.
From cultures of human umbilical vein endothelial cells incubated with3H-glucosamine or35S-sulphate, we have purified three heparan sulphate proteoglycans: 1) a low density (1.31 g/ml) proteoglycan from the cell extract, 2) a low density proteoglycan from the medium, and 3) a high density (>1.4 g/ml) proteoglycan from the medium. The disaccharide composition of heparan sulphate chains from the low density proteoglycan of the medium was examined, using specific chemical and enzymic degradations followed by gel chromatography and strong anion exchange HPLC. Chains released from each of the different proteoglycan populations were then compared by gel chromatography and gradient polyacrylamide gel electrophoresis before and after various specific degradations. The results indicate that heparan sulphate from human endothelial cells are large polymers (MW>50,000) of low overall sulphation (32–35%N-sulphated glucosamine and an N/O-linked sulphate ratio of 2.0) with rare and solitary heparin-like disaccharides. Heparan sulphate from the different proteoglycan populations appeared to have similar structure except that chains from the high density fraction were larger polymers.Abbreviations HSPG heparan sulphate proteoglycan - DSPG dermatan sulphate proteoglycan - GlcNAc(6S) N-acetylglucosamine 6-sulphate - GlcNAc6R glucosamine with either-OH or-OSO3 at C-6 - GlcNR glucosamine with either-SO3 or-COCH3 as N-substituent - GlcNSO3 N-sulphated glucosamine - GlcNSO3(3S) N-sulphated glucosamine 3-sulphate - GlcA d-glucuronic acid - IdoA l-iduronic acid - IdoA(2S) iduronic acid 2-sulphate - HexA hexuronic acid - DHexA hexuronic acid with a 4,5-double bond - Xyl xylose - SAX strong anion exchange - d.p. degree of polymerization (a disaccharide has d.p.=1 etc) - AUFS absorbance units full scale The codes used for proteoglycans denote in turn: C 2, low-density (1.35–1.28 g/ml) HSPG from the cell extract; M 1a, high density (>1.4 g/ml) HSPG fraction from the spent medium; M 2a, low-density (1.31 g/ml) HSPG from the spent medium [6].  相似文献   

8.
The proteoglycans synthesized by fibroblasts derived from healthy human gingivae were isolated and characterized. The largest medium proteoglycan was excluded from Sepharose CL-4B but not from Sepharose CL-2B; it was recovered in the most-dense density gradient fraction and identified as a chondroitin sulfate proteoglycan. The medium contained two smaller proteoglycans; one contained predominantly chondroitin sulfate proteoglycan, while the other was comprised predominantly of dermatan sulfate proteoglycan and was quantitatively the major species. The largest proteoglycan in the cell layer fraction, excluded from both Sepharose CL-2B and Sepharose CL-4B, was found in the least-dense density gradient fraction and contained heparan sulfate and chondroitin sulfate proteoglycan. It could be further dissociated by treatment with detergent, suggesting an intimate association with cell membranes. Two other proteoglycan populations of intermediate size were identified in the cell layer extracts which contained variable proportions of heparan sulfate, dermatan sulfate, or chondroitin sulfate proteoglycan. Some small molecular weight material indicative of free glycosaminoglycan chains was also associated with the cell layer fraction. Carbohydrate analysis of the proteoglycans demonstrated the glycosaminoglycan chains to have approximate average molecular weights of 25,000. In addition, N- and O-linked oligosaccharides which were associated with the proteoglycans appeared to be sulfated in varying degrees.  相似文献   

9.
Confluent cultures of mouse aortic endothelial (END-D) were incubated with either [35S]methionine or 35SO4 2-, and the radiolabelled proteoglycans in media and cell layers were analysed for their hyaluronate-binding activity. The proteoglycan subfraction which bound to hyaluronate accounted for about 18% (media) and 10% (cell layers) of the total 35S radioactivity of each proteoglycan fraction. The bound proteoglycan molecules could be dissociated from the aggregates either by digestion with hyaluronate lyase or by treatment with hyaluronate decasaccharides. Digestion of [methionine-35S]proteoglycans with chondroitinase and/or heparitinase, followed by SDS/polyacrylamide-gel electrophoresis, indicated that the medium and cell layer contain at least three chondroitin sulphate proteoglycans, one dermatan sulphate proteoglycan, and two heparan sulphate proteoglycans which differ from one another in the size of core molecules. Among these, only the hydrodynamically large chondroitin sulphate species with an Mr 550,000 core molecule was shown to bind to hyaluronate. A very similar chondroitin sulphate proteoglycan capable of binding to hyaluronate was also found in cultures of calf pulmonary arterial endothelial cells (A.T.C.C. CCL 209). These observations, together with the known effects of hyaluronate on various cellular activities, suggest the existence of possible specialized functions of this proteoglycan subspecies in cellular processes characteristic of vascular development and diseases.  相似文献   

10.
A chondroitin sulphate proteoglycan capable of forming large aggregates with hyaluronic acid was identified in cultures of human glial and glioma cells. The glial- cell- and glioma-cell-derived products were mutually indistinguishable and had some basic properties in common with the analogous chondroitin sulphate proteoglycan of cartilage: hydrodynamic size, dependence on a minimal size of hyaluronic acid for recognition, stabilization of aggregates by link protein, and precipitability with antibodies raised against bovine cartilage chondroitin sulphate proteoglycan. However, they differed in some aspects: lower buoyant density, larger, but fewer, chondroitin sulphate side chains, presence of iduronic acid-containing repeating units, and absence (less than 1%) of keratan sulphate. Apparently the major difference between glial/glioma and cartilage chondroitin sulphate proteoglycans relates to the glycan rather than to the protein moiety of the molecule.  相似文献   

11.
  • 1.1. The proteoglycan peak from anion exchange chromatography of an extract of bovine aorta was digested with chondroitinase ABC. The residual heparan sulphate proteoglycans were further purified by chromatography on Sepharose CL4B and DEAE-Sephacel to yield two species, of high and low charge density.
  • 2.2. Higher molecular weight material had a higher proportion of high charge density proteoglycan, while the lower molecular weight species had a higher proportion of low charge density heparan sulphate proteoglycan.
  • 3.3. The two species shared epitopes as they both reacted with an antibody to heparan sulphate proteoglycan from bovine glomerular basement membrane.
  • 4.4. On electron microscopy, both high and low charge density proteoglycans were visualized as ‘tadpole-like’ molecules, which showed a tendency to aggregate via their globular heads.
  • 5.5. Bovine aortic smooth muscle cells were cultured in the presence of [35S]sulphate and [3H]glucosamine. Proteoglycans were isolated from medium and cell layer extract by the methods outlined above.
  • 6.6. The major HSPG species isolated from medium were significantly larger than those from cell layer and displayed substantial heterogeneity in both size of HS chain after papain digestion and size of protein core after heparitinase digestion. 7. The major cell layer species yielded two HS species of widely differing mol. wt after papain digestion, and a very small protein core after heparitinase digestion. Therefore cell layer-associated HSPGs show a good deal more homogeneity than those found in the medium.
  • 7.8. Further ion-exchange chromatography after digestion with chondroitinase ABC revealed HSPG species of lower charge density, possibly derived from a hybrid chondroitin sulphate-dermatan sulphate proteoglycan (CS/DSPG) after removal of the CS/DS chains.
  相似文献   

12.
Maintenance of fibroblasts in 0.5% serum results in viable but non-proliferative cells that may be analogous to fibroblasts in vivo. The synthesis of proteoglycans by human embryo lung fibroblasts in Eagle's minimal essential medium with 0.5% newborn-bovine serum or with 10% serum has been compared. A similar amount of [35S]sulphate-labelled glycosaminoglycan per cell was secreted by fibroblasts in 10% or 0.5% serum. 35SO42-incorporation into sulphated glycosaminoglycans was enhanced in 0.5% serum when expressed per mg of cell protein, but [3H]glucosamine incorporation was decreased. The charge density of these glycosaminoglycans was not changed as determined by ion-exchange chromatography. It was concluded that decreased protein/ cell resulted in an apparent increase in 35S-labelled glycosaminoglycan synthesis/mg of cell protein, whereas decreased uptake of [3H]glucosamine resulted in a decrease in their glucosamine labelling. The proteoglycans secreted by fibroblasts in 0.5% serum were similar in glycosaminoglycan composition, chain length and buoyant density to the dermatan sulphate proteoglycan, which is the major secreted component of cells in 10% serum. Larger heparan sulphate and chondroitin sulphate proteoglycans, which comprise about 40% of the total secreted proteoglycans of cultures in 10% serum, were greatly diminished in the medium of cultures in 0.5% serum. The proteoglycan profile of medium from density-inhibited cultures in 10% serum resembles that of proliferating cultures, indicating that lack of proliferation was not responsible for the alteration. The dermatan sulphate proteoglycan, participating in extracellular matrix structure, may be the primary tissue product of lung fibroblasts in vivo.  相似文献   

13.
1. The structure of chondroitin/dermatan and heparan-sulphate chains from various proteoglycan populations derived from cultured human skin fibroblasts have been examined. Confluent cell cultures were biosynthetically labelled with [3H]-glucosamine and 35SO4(2-), and proteoglycans were purified according to buoyant density, size and charge density [Schmidtchen, A., Carlstedt, I., Malmstr?m, A. & Fransson, L.-A. (1990) Biochem. J. 265, 289-300]. Some proteoglycan fractions were further fractionated according to hydrophobicity on octyl-Sepharose in Triton X-100 gradients. The glycosaminoglycan chains, intact or degraded by chemical or enzymic methods were then analysed by gel chromatography on Sepharose CL-6B, Bio-Gel P-6, ion exchange HPLC and gel electrophoresis. 2. Three types of dermatan-sulphate chains were identified on the basis of disaccharide composition and chain length. They were derived from the large proteoglycan, two small proteoglycans and a cell-associated proteoglycan with core proteins of 90 kDa and 45 kDa. Intracellular, free dermatan-sulphate chains were very similar to those of the small proteoglycans. 3. Heparan-sulphate chains from different proteoglycans had, in spite of small but distinct differences in size, strikingly similar compositional features. They contained similar amounts of D-glucuronate, L-iduronate (with or without sulphate) and N-sulphate groups. They all displayed heparin-lyase-resistant domains with average molecular mass of 10-15 kDa. The heparan-sulphate chains from proteoglycans with 250-kDa and 350-kDa cores were the largest greater than 50 kDa), containing an average of four or five domains, in contrast to heparan-sulphate chains from the small heparan-sulphate proteoglycans which had average molecular mass of 45 kDa and consisted of three or four such domains. Free, cell-associated heparan-sulphate chains were heterogeneous in size (5-45 kDa). 4. These results suggest that the core protein may have important regulatory functions with regard to dermatan-sulphate synthesis. On the other hand, synthesis of heparan sulphate may be largely controlled by the cell that expresses a particular proteoglycan core protein.  相似文献   

14.
1. Proteoglycans were extracted from sclera with 4 M-guanidine hydrochloride in the presence of proteinase inhibitors and purified by ion-exchange chromatography and density-gradient centrifugation. 2. The entire proteoglycan pool was characterized by compositional analyses and by specific chemical (periodate oxidation) and enzymic (chondroitinases) degradations. The glycan moieties of the molecules were exclusively galactosaminoglycans (dermatan sulphate-chondroitin sulphate co-polymers). In addition, the preparations contained small amounts of oligosaccharides. 3. The scleral proteodermatan sulphates were fractionated into one larger (I) and one smaller (II) component by gel chromatography. Proteoglycan I was eluted in a more excluded position on gel chromatography in 0.5 M-sodium acetate than in 4.0 M-guanidine hydrochloride. Reduced and alkylated proteoglycan I was eluted in the same position (in 0.5 M-sodium acetate) as was the starting material (in 4.0 M-guanidine hydrochloride). The elution position of proteoglycan II was the same in both solvents. Proteoglycans I and II had s0 20,w values of 2.8 x 10(-13) and 2.2 x 10(-13) s respectively in 6.0 M-guanidine hydrochloride. 4. The two proteoglycans differed with respect to the nature of the protein core and the co-polymeric structure of their side chains. Also proteoglycan I contained more side chains than did proteoglycan II. The dermatan sulphate side chains of proteoglycan I were D-glucuronic acid-rich (80%), whereas those of proteoglycan II contained equal amounts of D-glucuronic acid and L-iduronic acid. Furthermore, the co-polymeric features of the side chains of proteoglycans I and II were different. The protein core of proteoglycan I was of larger size than that of proteoglycan II. The latter had an apparent molecular weight of 46 000 (estimated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis), whereas the former was greater than 100 000. In addition, the amino-acid composition of the two core preparations was different. 5. As proteoglycan I altered its elution position on gel chromatography in 4 M-guanidine hydrochloride compared with 0.5 M-sodium acetate it is proposed that a change in conformation or a disaggregation took place. If the latter hypothesis is favoured, aggregation may be due to self-association or mediated by an extrinsic molecule, e.g. hyaluronic acid.  相似文献   

15.
Human skin fibroblasts were metabolically labelled in the presence of affinity-purified antibodies against the core protein of small dermatan sulphate proteoglycan II. The treatment resulted in a dose- and time-dependent accumulation of this proteoglycan in the culture medium, with a 2-3-fold increase found within an experimental period of 4 h. The presence of antibodies was without influence on the rate of biosynthesis of the proteoglycan. However, proteoglycan-antibody complexes were inefficiently endocytosed. Addition of unlabelled proteoglycan, which served as a competitor for uptake, similarly led to an accumulation of newly formed [35S]sulphate-labelled proteoglycans. Proteoglycan accumulation also occurred as a consequence of its binding to collagen fibrils which were physically separated from the cell layer. Together, these results establish the quantitative importance of the secretion-recapture pathway of small dermatan sulphate proteoglycan II in cultured fibroblasts.  相似文献   

16.
Heterogeneity of heparan sulfate proteoglycans synthesized by PYS-2 cells   总被引:5,自引:0,他引:5  
Antibodies to the basement membrane proteoglycan produced by the EHS tumor were used to immunoprecipitate [35S]sulfate-labeled protoglycans produced by PYS-2 cells. The immunoprecipitated proteoglycans were subsequently fractionated by CsCl density gradient centrifugation and Sepharose CL-4B chromatography. The culture medium contained a low-density proteoglycan eluting from Sepharose CL-4B at Kav = 0.18, containing heparan sulfate side chains of Mr = 35-40,000. The medium also contained a high-density proteoglycan eluting from Sepharose CL-4B at Kav = 0.23, containing heparan sulfate side chains of Mr = 30,000. The corresponding proteoglycans of the cell layer were all smaller than those in the medium. Since the antibodies used to precipitate those proteoglycans were directed against the protein core, this suggests that these proteoglycans share common antigenic features, and may be derived from a common precursor which undergoes modification by the removal of protein segments and a portion of each heparan sulfate chain.  相似文献   

17.
Dermatan sulphate proteoglycans have been extracted from bovine lung with 2.0 M CaCl2 and isolated using CsCl density gradient centrifugation, DEAE ion-exchange chromatography, gel chromatography and preparative sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Ultrastructurally these proteoglycans are specifically associated with collagen fibrils. Dermatan sulphate (Mr 15.10(3)-35.10(3), with a strong prevalence for the higher Mr) is link via an O-glycosidic bond to a protein core, which is rich in Asx, Glx and Leu. Of the total uronic acid, 91% is iduronic acid. A part of the glucuronic acid residues is located near the protein core and a large cluster of disaccharides is devoid of glucuronic acid residues. An inhibition enzyme immunoassay has been developed to quantitate the proteoglycan. A model for the interaction between dermatan sulphate proteoglycans and collagen fibrils is proposed.  相似文献   

18.
Endocytosis and subsequent degradation of iduronic acid-rich small dermatan sulfate proteoglycan from fibroblast secretions were studied in human fibroblasts. Upon endocytosis of [3H]leucine- and [35S]sulfate-labeled proteoglycan release of free leucine was 10 to 15 times more rapid than that of inorganic sulfate. Within approximately 3 h a steady state was approached between transport of proteoglycan to the compartment of core protein degradation and release of free leucine. No such steady state could be found with respect to the dermatan sulfate chains. In the presence of benzyloxycarbonyl-Phe-Ala-diazomethylketone or of other SH-protease inhibitors the degradation of the protein moiety of endocytosed proteoglycan was much less inhibited than the degradation of the polysaccharide chain. Benzyloxycarbonyl-Phe-Ala-diazomethylketone did not affect the degradation of dermatan sulfate chains taken up by fluid phase endocytosis and the activities of all known dermatan sulfate-degrading enzymes. Percoll gradient centrifugation indicated that also in the presence of the protease inhibitor the partially degraded proteoglycan accumulated in dense lysosomes. The isolation of intracellular dermatan sulfate peptides and molecular size determinations of endocytosed dermatan sulfate proteoglycan supported the conclusion that a critical proteolytic step is required before the dermatan sulfate chain becomes accessible to hydrolytic enzymes.  相似文献   

19.
Cells having a fibroblast-like morphology were cultured from explants of adult rat lung tissue. (35S)Sulfate was incorporated into sulfated proteoglycans in the medium at a linear rate for up to 96 h, while the rate of incorporation into the cell layer increased gradually until reaching a plateau at 40 h. The culture medium contained proteoglycans which migrated as a single peak with Kav = 0.10 on Bio-Gel A-15. Their glycosaminoglycan components (Kav = 0.70 on Bio-Gel A-15) contained predominantly chondroitin sulfate (33 to 44% of the total galactosaminoglycans) or dermatan sulfate chains. Based on the results of chondroitinase AC-II and periodate degradation, disaccharide repeating units of the dermatan sulfate were composed of 36% iduronic acid, 50% 2-sulfoiduronate, and 14% glucuronic acid. A similar composition was found for the dermatan sulfate in the cell fraction. Almost one-half of the sulfate label in the cell fraction was in a heparan sulfate proteoglycan which migrated on Bio-Gel A-15 with Kav = 0.30. The heparan sulfate chains (Kav = 0.81 on Bio-Gel A-15) had few, if any, sulfated N-acetylglucosamine residues and did not contain 2-sulfoiduronic acid in neighboring disaccharide repeat sequences. These results indicate that fibroblast-like lung cells synthesize several types of multichain sulfated proteoglycans which have properties in common with those found in lung tissues.  相似文献   

20.
Non-aggregating dermatan sulphate proteoglycans can be extracted from both fetal and adult human articular cartilage. The dermatan sulphate proteoglycans appear to be smaller in the adult, this presumably being due to shorter glycosaminoglycan chains, and these chains contain a greater proportion of their uronic acid residues as iduronate. Both the adult and fetal dermatan sulphate proteoglycans contain a greater amount of 4-sulphation than 6-sulphation of the N-acetylgalactosamine residues, in contrast with the aggregating proteoglycans, which always show more 6-sulphation on their chondroitin sulphate chains. In the fetus the major dermatan sulphate proteoglycan to be synthesized is DS-PGI, though DS-PGII is synthesized in reasonable amounts. In the adult, however, DS-PGI synthesis is barely detectable relative to DS-PGII, which is still synthesized in substantial amounts. Purification of the dermatan sulphate proteoglycans from adult cartilage is hampered by the presence of degradation products derived from the large aggregating proteoglycans, which possess similar charge, size and density properties, but which can be distinguished by their ability to interact with hyaluronic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号