首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dolichol-linked oligosaccharide donor (Glc(3)Man(9)GlcNAc(2)-PP-Dol) for N-linked glycosylation of proteins is assembled in a series of reactions that initiate on the cytoplasmic face of the rough endoplasmic reticulum and terminate within the lumen. The biochemical analysis of the oligosaccharyltransferase and the glycosyltransferases that mediate assembly of dolichol-linked oligosaccharides (OS-PP-Dol) has been hindered by the lack of structurally homogeneous substrate preparations. We have developed an improved method for the preparative-scale isolation of dolichol-linked oligosaccharides from vertebrate tissues and yeast cells. Preparations that were highly enriched in either Glc(3)Man(9)GlcNAc(2)-PP-Dol or Man(9)GlcNAc(2)-PP-Dol were obtained from porcine pancreas and a Man(5)GlcNAc(2)-PP-Dol preparation was obtained from an alg3 yeast culture. Chromatography of the OS-PP-Dol preparations on an aminopropyl silica column was used to obtain dolichol-linked oligosaccharides with defined structures. A single chromatography step could achieve near-baseline resolution of dolichol-linked oligosaccharides that differed by one sugar residue. A sensitive oligosaccharyltransferase endpoint assay was used to determine the concentration and composition of the OS-PP-Dol preparations. Typical yields of Glc(3)Man(9)GlcNAc(2)-PP-Dol, Man(9)GlcNAc(2)-PP-Dol, and Man(5)GlcNAc(2)-PP-Dol ranged between 5 and 15 nmol per chromatographic run. The homogeneity of these preparations ranged between 85 and 98% with respect to oligosaccharide composition. Purification of dolichol-linked oligosaccharides from cultures of alg mutant yeast strains provides a general method to obtain authentic OS-PP-Dol assembly intermediates of high purity. The analytical methods described here can be used to accurately evaluate the steady-state dolichol-linked oligosaccharide compositions of wild-type and mutant cell lines.  相似文献   

2.
The dolichol-linked oligosaccharide Glc3Man9GlcNAc2-PP-Dol is the in vivo donor substrate synthesized by most eukaryotes for asparagine-linked glycosylation. However, many protist organisms assemble dolichol-linked oligosaccharides that lack glucose residues. We have compared donor substrate utilization by the oligosaccharyltransferase (OST) from Trypanosoma cruzi, Entamoeba histolytica, Trichomonas vaginalis, Cryptococcus neoformans, and Saccharomyces cerevisiae using structurally homogeneous dolichol-linked oligosaccharides as well as a heterogeneous dolichol-linked oligosaccharide library. Our results demonstrate that the OST from diverse organisms utilizes the in vivo oligo saccharide donor in preference to certain larger and/or smaller oligosaccharide donors. Steady-state enzyme kinetic experiments reveal that the binding affinity of the tripeptide acceptor for the protist OST complex is influenced by the structure of the oligosaccharide donor. This rudimentary donor substrate selection mechanism has been refined in fungi and vertebrate organisms by the addition of a second, regulatory dolichol-linked oligosaccharide binding site, the presence of which correlates with acquisition of the SWP1/ribophorin II subunit of the OST complex.  相似文献   

3.
The assembly of the lipid-linked core oligosaccharide Glc3Man9GlcNAc2, the substrate for N-linked glycosylation of proteins in the endoplasmic reticulum (ER), is catalyzed by different glycosyltransferases located at the membrane of the ER. We report on the identification and characterization of the ALG12 locus encoding a novel mannosyltransferase responsible for the addition of the alpha-1,6 mannose to dolichol-linked Man7GlcNAc2. The biosynthesis of the highly branched oligosaccharide follows an ordered pathway which ensures that only completely assembled oligosaccharide is transferred from the lipid anchor to proteins. Using the combination of mutant strains affected in the assembly pathway of lipid-linked oligosaccharides and overexpression of distinct glycosyltransferases, we were able to define the substrate specificities of the transferases that are critical for branching. Our results demonstrate that branched oligosaccharide structures can be specifically recognized by the ER glycosyltransferases. This substrate specificity of the different transferases explains the ordered assembly of the complex structure of lipid-linked Glc3Man9GlcNAc2 in the endoplasmic reticulum.  相似文献   

4.
Frank CG  Aebi M 《Glycobiology》2005,15(11):1156-1163
N-linked protein glycosylation follows a conserved pathway in eukaryotic cells. The assembly of the lipid-linked core oligosaccharide Glc3Man9GlcNAc2, the substrate for the oligosaccharyltransferase (OST), is catalyzed by different glycosyltransferases located at the membrane of the endoplasmic reticulum (ER). The substrate specificity of the different glycosyltransferase guarantees the ordered assembly of the branched oligosaccharide and ensures that only completely assembled oligosaccharide is transferred to protein. The glycosyltransferases involved in this pathway are highly specific, catalyzing the addition of one single hexose unit to the lipid-linked oligosaccharide (LLO). Here, we show that the dolichylphosphomannose-dependent ALG9 mannosyltransferase is the exception from this rule and is required for the addition of two different alpha-1,2-linked mannose residues to the LLO. This report completes the list of lumen-oriented glycosyltransferases required for the assembly of the LLO.  相似文献   

5.
The formation of N-glycosidic linkages of glycoproteins involves the ordered assembly of the common Glc3Man9GlcNAc2 core-oligosaccharide on the lipid carrier dolichyl pyrophosphate. Whereas early mannosylation steps occur on the cytoplasmic side of the endoplasmic reticulum with GDP-Man as donor, the final reactions from Man5GlcNAc2-PP-Dol to Man9GlcNAc2-PP-Dol on the lumenal side use Dol-P-Man. We have investigated these later stages in vitro using a detergent-solubilized enzyme extract from yeast membranes. Mannosyltransfer from Dol-P-Man to [3H]Man5GlcNAc2-PP-Dol with formation of all intermediates up to Man9GlcNAc2-PP-Dol occured in a rapid, time- and protein-dependent fashion. We find that the initial reaction from Man5GlcNAc2-PP-Dol to Man6GlcNAc2-PP-Dol is independent of metal ions, but further elongations need Mn2+ that can be partly replaced by Mg2+ or Ca2+. Zn2+ or Cd2+ ions were found to inhibit formation of Man(7-9)GlcNAc2-PP-Dol, but do not affect synthesis of Man6GlcNAc2-PP-Dol. Extension did not occur when the acceptor was added as a free Man5GlcNAc2 oligosaccharide or when GDP-Man was used as mannosyl donor. The alg3 mutant was described to accumulate Man5GlcNAc2-PP-Dol. We expressed a functional active HA-epitope tagged ALG3 fusion and succeeded to selectively immunoprecipitate the Dol-P-Man:Man5GlcNAc2-PP-Dol mannosyltransferase activity from the other enzymes of the detergent extract involved in the subsequent mannosylation reactions. This demonstrates that Alg3p represents the mannosyltransferase itself and not an accessory protein involved in the reaction.  相似文献   

6.
We recently presented a model for site-specific protein N-glycosylation in Trypanosoma brucei whereby the TbSTT3A oligosaccharyltransferase (OST) first selectively transfers biantennary Man(5)GlcNAc(2) from the lipid-linked oligosaccharide (LLO) donor Man(5)GlcNAc(2)-PP-Dol to N-glycosylation sequons in acidic to neutral peptide sequences and TbSTT3B selectively transfers triantennary Man(9)GlcNAc(2) to any remaining sequons. In this paper, we investigate the specificities of the two OSTs for their preferred LLO donors by glycotyping the variant surface glycoprotein (VSG) synthesized by bloodstream-form T. brucei TbALG12 null mutants. The TbALG12 gene encodes the α1-6-mannosyltransferase that converts Man(7)GlcNAc(2)-PP-Dol to Man(8)GlcNAc(2)-PP-Dol. The VSG synthesized by the TbALG12 null mutant in the presence and the absence of α-mannosidase inhibitors was characterized by electrospray mass spectrometry both intact and as pronase glycopetides. The results show that TbSTT3A is able to transfer Man(7)GlcNAc(2) as well as Man(5)GlcNAc(2) to its preferred acidic glycosylation site at Asn263 and that, in the absence of Man(9)GlcNAc(2)-PP-Dol, TbSTT3B transfers both Man(7)GlcNAc(2) and Man(5)GlcNAc(2) to the remaining site at Asn428, albeit with low efficiency. These data suggest that the preferences of TbSTT3A and TbSTT3B for their LLO donors are based on the c-branch of the Man(9)GlcNAc(2) oligosaccharide, such that the presence of the c-branch prevents recognition and/or transfer by TbSTT3A, whereas the presence of the c-branch enhances recognition and/or transfer by TbSTT3B.  相似文献   

7.
Burda  P; Aebi  M 《Glycobiology》1998,8(5):455-462
The biosynthesis of the lipid-linked oligosaccharide substrate for N- linked protein glycosylation follows a highly conserved pathway at the membrane of the endoplasmic reticulum. Based on the synthetic growth defect in combination with a reduced oligosaccharyltransferase activity (wbp1), we have identified alg10 mutant strains which accumulate lipid- linked Glc2Man9GlcNAc2. We cloned the corresponding wild-type gene and show in a novel in vitro assay that Alg10p is a dolichyl-phosphoglucose- dependent glucosyltransferase which adds the terminal alpha-1,2 glucose to the lipid-linked Glc2Man9GlcNAc2 oligosaccharide. Hypoglycosylation of secreted proteins in alg10 deletion strains demonstrates that the terminal alpha-1,2-linked glucose residue is a key element in substrate recognition by the oligosaccharyltransferase. This ensures that primarily completely assembled oligosaccharide is transferred to protein.   相似文献   

8.
The central reaction in the process of N-linked protein glycosylation in eukaryotic cells, the transfer of the oligosaccharide Glc(3)Man(9)GlcNAc(2) from the lipid dolicholpyrophosphate to selected asparagine residues, is catalyzed by the oligosaccharyltransferase (OTase). This enzyme consists of multiple subunits; however, purification of the complex has revealed different results with respect to its protein composition. To determine how many different loci are required for OTase activity in vivo, we performed a novel, specific screen for mutants with altered OTase activity. Based on the synthetic lethal phenotype of OTase mutants in combination with a deficiency of dolicholphosphoglucose biosynthesis which results in non-glucosylated lipid-linked oligosaccharide, we identified seven complementation groups with decreased OTase activity. Beside the known OTase loci, STT3, OST1, WBP1, OST3, SWP1 and OST2, a novel locus, OST5, was identified. OST5 is an intron-containing gene encoding a putative membrane protein of 9.5 kDa present in highly purified OTase preparations. OST5 protein is not essential for growth but its depletion results in a reduced OTase activity. Suppression of an ost1 mutation by overexpression of OST5 indicates that this small membrane protein directly interacts with other OTase components, most likely with Ost1p. A strong genetic interaction with a stt3 mutation implies a role in complex assembly.  相似文献   

9.
Studies on N-linked oligosaccharide processing in the mouse lymphoma glucosidase II-deficient mutant cell line (PHAR2.7) as well as the parent BW5147 cells indicated that the former maintain their capacity to synthesize complex carbohydrate units through the use of the deglucosylation mechanism provided by endomannosidase. The in vivo activity of this enzyme was evident in the mutant cells from their production of substantial amounts of glucosylated mannose saccharides, predominantly Glc2Man; moreover, in the presence of 1-deoxymannojirimycin or kifunensine to prevent processing by mannosidase I, N-linked Man8GlcNAc2 was observed entirely in the form of the characteristic isomer in which the terminal mannose of the alpha 1,3-linked branch is missing (isomer A). In contrast, parent lymphoma cells, as well as HepG2 cells in the presence of 1-deoxymannojirimycin accumulated Man9GlcNAc2 as the primary deglucosylated N-linked oligosaccharide and contained only about 16% of their Man8GlcNAc2 as isomer A. In the presence of the glucosidase inhibitor castanospermine the mutant released Glc3Man instead of Glc2Man, and the parent cells converted their deglucosylation machinery to the endomannosidase route. Despite the mutant's capacity to accommodate a large traffic through this pathway no increase in the in vitro determined endomannosidase activity was evident. The exclusive utilization of endomannosidase by the mutant for the deglucosylation of its predominant N-linked Glc2Man9GlcNAc2 permitted an exploration of the in vivo site of this enzyme's action. Pulse-chase studies utilizing sucrose-D2O density gradient centrifugation indicated that the Glc2Man9GlcNAc2 to Man8GlcNAc2 conversion is a relatively late event that is temporally separated from the endoplasmic reticulum-situated processing of Glc3Man9GlcNAc2 to Glc2Man9GlcNAc2 and in contrast to the latter takes place in the Golgi compartment.  相似文献   

10.
Phosphomannomutase (PMM) deficiency causes congenital disorder of glycosylation (CDG)-Ia, a broad spectrum disorder with developmental and neurological abnormalities. PMM converts mannose 6-phosphate (M6P) to mannose-1-phosphate, a precursor of GDP-mannose used to make Glc(3)Man(9)GlcNAc(2)-P-P-dolichol (lipid-linked oligosaccharide; LLO). LLO, in turn, is the donor substrate of oligosaccharyltransferase for protein N-linked glycosylation. Hepatically produced N-linked glycoproteins in CDG-Ia blood are hypoglycosylated. Upon labeling with [(3)H]mannose, CDG-Ia fibroblasts have been widely reported to accumulate [(3)H]LLO intermediates. Since these are thought to be poor oligosaccharyltransferase substrates, LLO intermediate accumulation has been the prevailing explanation for hypoglycosylation in patients. However, this is discordant with sporadic reports of specific glycoproteins (detected with antibodies) from CDG-Ia fibroblasts being fully glycosylated. Here, fluorophore-assisted carbohydrate electrophoresis (FACE, a nonradioactive technique) was used to analyze steady-state LLO compositions in CDG-Ia fibroblasts. FACE revealed that low glucose conditions accounted for previous observations of accumulated [(3)H]LLO intermediates. Additional FACE experiments demonstrated abundant Glc(3)Man(9)GlcNAc(2)-P-P-dolichol, without hypoglycosylation, CDG-Ia fibroblasts grown with physiological glucose. This suggested a "missing link" to explain hypoglycosylation in CDG-Ia patients. Because of the possibility of its accumulation, the effects of M6P on glycosylation were explored in vitro. Surprisingly, M6P was a specific activator for cleavage of Glc(3)Man(9)GlcNAc(2)-P-P-dolichol. This led to futile cycling the LLO pathway, exacerbated by GDP-mannose/PMM deficiency. The possibilities that M6P may accumulate in hepatocytes and that M6P-stimulated LLO cleavage may account for both hypoglycosylation and the clinical failure of dietary mannose therapy with CDG-Ia patients are discussed.  相似文献   

11.
N-linked glycosylation is a ubiquitous protein modification, and is essential for viability in eukaryotic cells. A lipid-linked core-oligosaccharide is assembled at the membrane of the endoplasmic reticulum and transferred to selected asparagine residues of nascent polypeptide chains by the oligosaccharyl transferase (OTase) complex. Based on the synthetic lethal phenotype of double mutations affecting the assembly of the lipid-linked core-oligosaccharide and the OTase activity, we have performed a novel screen for mutants in Saccharomyces cerevisiae with altered N-linked glycosylation. Besides novel mutants deficient in the assembly of the lipid-linked oligosaccharide (alg mutants), we identified the STT3 locus as being required for OTase activity in vivo. The essential STT3 protein is approximately 60% identical in amino acid sequence to its human homologue. A mutation in the STT3 locus affects substrate specificity of the OTase complex in vivo and in vitro. In stt3-3 cells very little glycosyl transfer occurs from incomplete lipid-linked oligosaccharide, whereas the transfer of full-length Glc3Man9GlcNAc2 is hardly affected as compared with wild-type cells. Depletion of the STT3 protein results in loss of transferase activity in vivo and a deficiency in the assembly of OTase complex.  相似文献   

12.
Incubations of thyroid microsomes with radiolabeled dolichyl pyrophosphoryl oligosaccharide (Glc3Man9-GlcNAc2) under conditions optimal for the N-glycosylation of protein resulted in the release, by apparently independent enzymatic reactions, of two types of neutral glucosylated polymannose oligosaccharides which differed from each other by terminating either in an N-acetylglucosamine residue (Glc3Man9GlcNAc1) or a di-N-acetylchitobiose moiety (Glc3Man9GlcNAc2). The first mentioned oligosaccharide, which was released in a steady and slow process unaffected by the addition of EDTA, appeared to be primarily the product of endo-beta-N-acetylglucosaminidase action on newly synthesized glycoprotein and such an enzyme with a neutral pH optimum capable of hydrolyzing exogenous glycopeptides and oligosaccharides (Km = 18 microM) was found in the thyroid microsomal fraction. The Glc3Man9GlcNAc2 oligosaccharide, in contrast, appeared to originate from the oligosaccharide-lipid by a rapid hydrolysis reaction which closely paralleled the N-glycosylation step, progressing as long as oligosaccharide transfer to protein occurred and terminating when carbohydrate attachment ceased either due to limitation of lipid-saccharide donor or addition of EDTA. There was a striking similarity between oligosaccharide release and transfer to protein with lipid-linked Glc3Man9GlcNAc2 serving as a 10-fold better substrate for both reactions than lipid-linked Man9-8GlcNAc2. The coincidence of transferase and hydrolase activities suggest the possibility of the existence of one enzyme with both functions. The physiological relevance of oligosaccharide release was indicated by the formation of such molecules in thyroid slices radiolabeled with [2-3H]mannose. Large oligosaccharides predominated (12 nmol/g) and consisted of two families of components; one group terminating in N-acetylglucosamine, ranged from Glc1Man9GlcNAc1 to Man5GlcNAc1 while the other contained the di-N-acetylchitobiose sequence and included Glc3Man9GlcNAc2, Glc1Man9GlcNAc2, and Man9GlcNAc2.  相似文献   

13.
Congenital disorders of glycosylation: genetic model systems lead the way   总被引:11,自引:0,他引:11  
N-linked glycosylation is the most frequent modification of secretory proteins in eukaryotic cells. The highly conserved glycosylation process is initiated in the endoplasmic reticulum (ER), where the Glc(3)Man(9)GlcNAc(2) oligosaccharide is assembled on the lipid carrier dolichylpyrophosphate and then transferred to selected asparagine residues of polypeptide chains. In recent years, several inherited human diseases, congenital disorders of glycosylation (CDG), have been associated with deficiencies in this pathway. The ER-associated glycosylation pathway has been studied in the budding yeast Saccharomyces cerevisiae, and this model system has been invaluable in elucidating the molecular basis of novel types of CDG.  相似文献   

14.
Larkin A  Imperiali B 《Biochemistry》2011,50(21):4411-4426
Asparagine-linked glycosylation involves the sequential assembly of an oligosaccharide onto a polyisoprenyl donor, followed by the en bloc transfer of the glycan to particular asparagine residues within acceptor proteins. These N-linked glycans play a critical role in a wide variety of biological processes, such as protein folding, cellular targeting and motility, and the immune response. In the past decade, research in the field of N-linked glycosylation has achieved major advances, including the discovery of new carbohydrate modifications, the biochemical characterization of the enzymes involved in glycan assembly, and the determination of the biological impact of these glycans on target proteins. It is now firmly established that this enzyme-catalyzed modification occurs in all three domains of life. However, despite similarities in the overall logic of N-linked glycoprotein biosynthesis among the three kingdoms, the structures of the appended glycans are markedly different and thus influence the functions of elaborated proteins in various ways. Though nearly all eukaryotes produce the same nascent tetradecasaccharide (Glc(3)Man(9)GlcNAc(2)), heterogeneity is introduced into this glycan structure after it is transferred to the protein through a complex series of glycosyl trimming and addition steps. In contrast, bacteria and archaea display diversity within their N-linked glycan structures through the use of unique monosaccharide building blocks during the assembly process. In this review, recent progress toward gaining a deeper biochemical understanding of this modification across all three kingdoms will be summarized. In addition, a brief overview of the role of N-linked glycosylation in viruses will also be presented.  相似文献   

15.
A new membrane preparation from Saccharomyces cerevisiae was developed, which effectively catalyzes the synthesis of large oligosaccharide-lipids from GDP-Man and UDP-Glc allowing a detailed study of their formation and size. The oligosaccharide from an incubation with GDP-Man could be separated by gel filtration chromatography into several species consisting of two N-acetylglucosamine (GlcNAc) residues at the reducing end and differing by one mannos unit; the major compound formed has the composition (Man)9(GlcNAc)2. Upon incubation with UDP-Glc, three oligosaccharides corresponding to the size of (Glc)1-3(Man)9(GlcNAc)2 are formed. Thus, the oligosaccharides generated in vitro by the yeast membranes appear to be identical in size with the oligosaccharides found in animal systems. In addition the results indicate that dolichyl phosphate mannoe (DolP-Man) is the immediate donor in assembling the oligosaccharide moiety from (Man)5(GlcNAc)2 to (Man)9(GlcNAc)2. All three glucose residues are transferred from DolP-Glc. Experiments with isolated [Glc-14C]oligosaccharide-lipid as substrate demonstrated that the oligosaccharide chain is transferred to an endogenous membrane protein acceptor. Moreover, transfer is followed by an enzymic removal of glucose residues, due to a glucosidase activity associated with the membranes. Glucose release from the free [Glc-14C]oligosaccharide is less effective than from protein-bound oligosaccharide. Glycosylation was also observed using [Man-14C]oligosaccharide-lipid or DolPP-(GlcNAc)2 as donor. However, transfer in the presence of glucose seems to be more rapid. The mannose-containing oligosaccharide, released from the lipid, was shown to function as a substrate for further chain elongation reactions utilizing GDP-Man but not DolPP-Man as donor. It is suggested that the immediate precursor in the synthesis of the heterogeneous core region, (Man)12-17(GlcNAc)2, of yeast mannoproteins is a glucose-containing lipid-oligosaccharide with the composition (Glc)3(Man)9(GlcNAc)2, i.e. only part of what has been defined as inner core is built up on the lipid carrier. After transfer to protein the oligosaccharide is modified by excision of the glucose residues, followed subsequently by further elongation from GDP-Man to give the size of th oligosaccharide chains found in native mannoproteins.  相似文献   

16.
The effect of castanospermine on the processing of N-linked oligosaccharides was examined in the parent mouse lymphoma cell line and in a mutant cell line that lacks glucosidase II. When the parent cell line was grown in the presence of castanospermine at 100 micrograms/ml, glucose-containing high-mannose oligosaccharides were obtained that were not found in the absence of inhibitor. These oligosaccharides bound tightly to concanavalin A-Sepharose and were eluted in the same position as oligosaccharides from the mutant cells grown in the absence or presence of the alkaloid. The castanospermine-induced oligosaccharides were characterized by gel filtration on Bio-Gel P-4, by h.p.l.c. analysis, by enzymic digestions and by methylation analysis of [3H]mannose-labelled and [3H]galactose-labelled oligosaccharides. The major oligosaccharide released by endoglucosaminidase H in either parent or mutant cells grown in castanospermine was a Glc3Man7GlcNAc, with smaller amounts of Glc3Man8GlcNAc and Glc3Man9GlcNAc. On the other hand, in the absence of castanospermine the mutant produces mostly Glc2Man7GlcNAc. In addition to the above oligosaccharides, castanospermine stimulated the formation of an endoglucosaminidase H-resistant oligosaccharide in both cell lines. This oligosaccharide was characterized as a Glc2Man5GlcNAc2 (i.e., Glc(1,2)Glc(1,3)Man(1,2)Man(1,2)Man(1,3)[Man(1,6)]Man-GlcNAc-GlcNAc). Castanospermine was tested directly on glucosidase I and glucosidase II in lymphoma cell extracts by using [Glc-3H]Glc3Man9GlcNAc and [Glc-3H]Glc2Man9GlcNAc as substrates. Castanospermine was a potent inhibitor of both activities, but glucosidase I appeared to be more sensitive to inhibition.  相似文献   

17.
The lipid-linked oligosaccharide Glc3-Man9(GlcNAc)2 (Glc, glucose; Man, mannose; GlcNAc, N-acetylglucosamine) serves as a precursor for the biosynthesis of the inner core portion of the asparagine-linked polysaccharide of Saccharomyces cerevisiae mannoproteins. It has been shown previously that incubation of a microsomal preparation from this organism with UDP-N-acetylglucosamine and GDP-[14C]mannose gives rise to a series of lipid-linked oligosaccharides of the general structure Mann(GlcNAc)2, with n from 1 to 9. A structural characterization of Man1- to Man5(GlcNAc)2 oligosaccharides indicated that the major structures among these were identical to the intermediates proposed for the biosynthesis of animal glycoproteins (C. Prakash and I. K. Vijay, Biochemistry 21:4810-4818, 1982). In the present study, the structural characterization of the Man6- through Man9(GlcNAc)2 species was conducted. The Man6- through Man8(GlcNAc)2 species have two isomers, whereas Man9(GlcNAc)2 is monoisomeric. One isomer each of Man6- through Man8(GlcNAc)2 and the monoisomeric Man9(GlcNAc)2 are identical to the intermediates for the biosynthesis of asparagine-linked glycoproteins in animal systems. It is proposed that the steps of the lipid-linked assembly of the carbohydrate precursor for S. cerevisiae mannoproteins are identical to those of the major pathway in animal systems. A lack of acceptor substrate specificity by the mannosyltransferases, as observed with in vitro studies with animal systems, also might be responsible for the biosynthesis of multiple isomers reported here.  相似文献   

18.
In order to purify the glycosyltransferases involved in the assembly of lipid-linked oligosaccharides and to be able to study the acceptor substrate specificity of these enzymes, methods were developed to prepare and purify a variety of lipid-linked oligosaccharides, differing in the structure of the oligosaccharide moiety. Thus, Man9 (GlcNAc)2-pyrophosphoryl-dolichol was prepared by isolation and enzymatic synthesis using porcine pancreatic microsomes, while Glc3Man9(GlcNAc)2-PP-dolichol was isolated from Madin-Darby canine kidney cells. Treatment of these oligosaccharide lipids with a series of selected glycosidases led to the preparation of Man alpha 1,2Man alpha 1,2Man alpha 1,3[Man alpha 1,6(Man alpha 1,3)Man alpha 1,6]Man beta 1,4GlcNAc beta 1,4GlcNAc-PP-dolichol; Man alpha 1,2Man alpha 1,2Man alpha 1,3[Man alpha 1,6]Man beta 1,4GlcNAc beta 1, 4GlcNac-PP-dolichol; and Man alpha 1,6(Man alpha 1,3)Man alpha 1, 6[Man alpha 1,3]Man beta 1,4GlcNAc-beta 1,4GlcNAc-PP-dolichol. The preparation, isolation, and characterization of each of these lipid-linked oligosaccharide substrates are described.  相似文献   

19.
The lipid-linked oligosaccharides synthesized in the presence of the alpha-glucosidase inhibitors, 1-deoxynojirimycin (DJN) and N-methyl-1-deoxynojirimycin (MDJN), were compared in IEC-6 intestinal epithelial cells in culture. HPLC analysis of the oligosaccharides obtained before and after exhaustive jack bean alpha-mannosidase digestion indicates that control and MDJN-treated cells synthesize similar amounts of Glc3Man9GlcNAc2-PP-dolichol. In contrast, the formation of this compound is greatly reduced in DJN-treated cells, the major lipid-linked oligosaccharide found being Man9GlcNAc2-PP-dolichol. The decreased availability of the preferred donor for protein glycosylation may account for the impaired glycosylation and secretion of certain glycoproteins in the presence of DJN.  相似文献   

20.
Golgi membranes from rat liver have been shown to contain an endo-alpha-D-mannosidase which can convert Glc1Man9GlcNAc to Man8GlcNAc with the release of Glc alpha 1----3Man (Lubas, W. A., and Spiro, R. G. (1987) J. Biol. Chem. 262, 3775-3781). We now report that this enzyme has the capacity to cleave the alpha 1----2 linkage between the glucose-substituted mannose residue and the remainder of the polymannose branch in a wide range of oligosaccharides (Glc3Man9GlcNAc to Glc1Man4GlcNAc) as well as glycopeptides and oligosaccharide-lipids. Whereas the tri- and diglucosylated species (Glc3Man9GlcNAc and Glc2Man9GlcNAc), which yielded Glc3Man and Glc2Man, respectively, were processed more slowly than Glc1Man9GlcNAc, the monoglucosylated components with truncated mannose chains (Glc1Man8GlcNAc to Glc1Man4GlcNAc) were trimmed at an increased rate which was inversely related to the number of mannose residues present. The endomannosidase was not inhibited by a number of agents which are known to interfere with N-linked oligosaccharide processing by exoglycosidases, including 1-deoxynojirimycin, castanospermine, bromoconduritol, 1-deoxymannojirimycin, swainsonine, and EDTA. However, Tris and other buffers containing primary hydroxyl groups substantially decreased its activity. After Triton solubilization, the endomannosidase was observed to be bound to immobilized wheat germ agglutinin, indicating the presence of a type of carbohydrate unit consistent with Golgi localization of the enzyme. The Man8GlcNAc isomer produced by endomannosidase action was found to be processed by Golgi enzymes through a different sequence of intermediates than the rough endoplasmic reticulum-generated Man8GlcNAc variant, in which the terminal mannose of the middle branch is absent. Whereas the latter oligosaccharide is converted to Man5GlcNAc via Man7GlcNAc and Man6GlcNAc at an even rate, the processing of the endomannosidase-derived Man8GlcNAc stalls at the Man6GlcNAc stage due to the apparent resistance to Golgi mannosidase I of the alpha 1,2-linked mannose of the middle branch. The results of our study suggest that the Golgi endomannosidase takes part in a processing route for N-linked oligosaccharides which have retained glucose beyond the rough endoplasmic reticulum; the distinctive nature of this pathway may influence the ultimate structure of the resulting carbohydrate units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号