首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alloreactive T lymphocytes are central mediators of graft-versus-host disease and allograft rejection. A public CTL clonotype with specificity for the alloantigens HLA-B*4402 and B*4405 is often expanded to large numbers in healthy HLA-B*0801(+) individuals, driven by cross-reactive stimulation with the common, persistent herpesvirus EBV. Since such alloreactive memory CTL expansions have the potential to influence transplantation outcome, altered peptide ligands (APLs) of the target HLA-B*0801-binding EBV peptide, FLRGRAYGL, were screened as specific antagonists for this immunodominant clonotype. One APL, FLRGRFYGL, exerted powerful antagonism of a prototypic T cell clone expressing this immunodominant TCR when costimulated with target cells presenting HLA-B*0801(FLRGRAYGL). Significantly, this APL also reduced the lysis of allogeneic target cells expressing HLA-B*4402 by up to 99%. The affinities of the agonist and antagonist complexes for the public TCR, measured using solution and solid-phase assays, were 8 and 138 muM, respectively. Surprisingly, the half-life of the agonist and antagonist complexes was similar, yet the association rate for the antagonist complex was significantly slower. These observations were further supported by structural studies that suggested a large conformational hurdle was required to ligate the immunodominant TCR to the HLA-B*0801 antagonist complex. By defining an antagonist APL against an immunodominant alloreactive TCR, these findings raise the prospect of exploiting such peptides to inhibit clinical alloreactivity, particularly against clonal T cell expansions that react with alloantigens.  相似文献   

2.
The F pocket of major histocompatibility complex (in humans HLA) class I molecules accommodates the C terminus of the bound peptide. Residues forming this pocket exhibit considerable polymorphism, and a single difference (Asp116 in HLA-B*2705 and His116 in HLA-B*2709 heavy chains) confers differential association of these two HLA-B27 subtypes to the autoimmune disease ankylosing spondylitis. As peptide presentation by HLA molecules is of central importance for immune responses, we performed thermodynamic (circular dichroism, differential scanning calorimetry, fluorescence polarization) and X-ray crystallographic analyses of both HLA-B27 subtypes complexed with the epidermal growth factor response factor 1-derived self-peptide TIS (RRLPIFSRL) to understand the impact of the Asp116His exchange on peptide display. This peptide is known to be presented in vivo by both subtypes, and as expected for a self-peptide, TIS-reactive cytotoxic T lymphocytes are absent in the respective individuals. The thermodynamic analyses reveal that both HLA-B27:TIS complexes exhibit comparable, relatively high thermostability (Tm approximately 60 degrees C) and undergo multi-step unfolding reactions, with dissociation of the peptide in the first step. As shown by X-ray crystallography, only subtle structural differences between the subtypes were observed regarding the architecture of their F pockets, including the presence of distinct networks of water molecules. However, no consistent structural differences were found between the peptide presentation modes. In contrast to other peptides displayed by the two HLA-subtypes which show either structural or dynamical differences in their peptide presentation modes, the TIS-complexed HLA-B*2705 and HLA-B*2709 subtypes are an example for thermodynamic and structural equivalence, in agreement with functional data.  相似文献   

3.
A self-derived-peptide with the same amino acid sequence (N-RRYLENGKETLQR-C) as residues 169–181 of the human leukocyte antigen (HLA) B27 heavy chain is known to bind to MHC Class I complexes containing the HLA-B27 heavy chain. This observation has been invoked previously in at least two different (but related) molecular explanations for the disease-association of the HLA-B27 allele. Here, we use a combination of fluorescence polarization, competitive inhibition and gel filtration chromatographic studies to show that a fluorescently-labeled peptide of the above sequence binds to two disease-associated subtypes of HLA-B27 (namely HLA-B*27:04 and HLA-B*27:05) but not to non-disease-associated subtypes (HLA-B*27:06 or HLA-B*27:09). This differential binding behavior is seen both in (a) peptide binding to complexes of heavy chain (HLA-B27) and light chain (β2 microglobulin), and in (b) peptide binding to β2 microglobulin-free heavy chains in the aggregated state. Such subtype-specific differences are not seen with two other control peptides known to bind to HLA-B27. Our results support the likelihood of differential peptide binding holding at least one of the keys to HLA-B27’s disease association.  相似文献   

4.
HLA-B27 is strongly associated with ankylosing spondylitis. Natural HLA-B27 ligands derived from polymorphic regions of its own or other class I HLA molecules might be involved in autoimmunity or provide diversity among HLA-B27-bound peptide repertoires from individuals. In particular, an 11-mer spanning HLA-B27 residues 169-179 is a natural HLA-B27 ligand with homology to proteins from Gram-negative bacteria. Proteasomal digestion of synthetic substrates demonstrated direct generation of the B27-(169-179) ligand. Cleavage after residue 181 generated a B27-(169-181) 13-mer that was subsequently found as a natural ligand of B*2705 and B*2704. Its binding to HLA-B27 subtypes in vivo correlated better than B27-(169-179) with association to spondyloarthropathy. Proteasomal cleavage generated also a peptide spanning B*2705 residues 150-158. This region is polymorphic among HLA-B27 subtypes and class I HLA antigens. The peptide was a natural B*2704 ligand. Since this subtype differs from B*2705 at residue 152, it was concluded that the ligand arose from HLA-B*3503, synthesized in the cells used as a source for B*2704-bound peptides. Thus, polymorphic HLA-B27 ligands derived from HLA-B27 or other class I molecules are directly produced by the 20 S proteasome in vitro, and this can be used for identification of such ligands in the constitutive HLA-B27-bound peptide pool.  相似文献   

5.
It has been demonstrated previously that lymphocytes of donor CF (HLA-A29,w33; B7,14) are not recognized by the HLA-B7-specific CTL clone HG-31. This report presents a structural comparison of the HLA-B7 antigen of donor CF with a "normal" HLA-B7 antigen, derived from the cell line JY. Isoelectric focusing showed that CF HLA-B7 heavy chains were more acidic than JY HLA-B7 heavy chains by the equivalent of a single charge. High pressure liquid chromatography and ion exchange chromatography comparisons of double-labeled tryptic peptides revealed a single detectable difference, which corresponded to the tryptic peptide spanning residues 112 to 121 on the HLA-B7 heavy chain. Although the complete amino acid sequence of this peptide was not obtained, the partial sequence indicates a substitution of an unidentified amino acid for tyrosine at position 116 of the heavy chain. This residue is found to vary among HLA specificities and to be altered in many H-2Kb mutants.  相似文献   

6.
The B pocket of the class I major histocompatibility complex-encoded protein HLA-B*2705 has recently been suggested to be responsible for the misfolding of this HLA haplotype and thus to induce susceptibility to autoimmune inflammatory diseases. Four mutants of the B*2705 heavy chain were refolded in the presence of three control peptides. The monitoring of the thermal unfolding of the B*2705-peptide complexes by circular dichroism spectroscopy showed that all heterotrimeric mutants were markedly less stable than the corresponding complexes with the wild-type heavy chain. Among the four heavy chain mutations, the C67S change was investigated for unfolding and peptide binding properties because this position may mediate disulfide pair bridging and alter T-cell recognition of HLA-B*2705. Wild-type heterotrimers completely unfold in a single transition at mild acidic pH whereas increase of the pH to mild basic conditions induce only a partial biphasic unfolding. Cys-67 seems to play a crucial role in controlling the thermodynamic stability of the B*2705-peptide complexes as the C67S mutant unfolds faster and with a single transition, independent of pH. Fluorescence polarization and size exclusion chromatography of unfolding intermediates suggest that the peculiar unfolding of the B*2705 wild-type heavy chain cannot be explained by modified peptide binding properties but more likely by the formation of high molecular weight species.  相似文献   

7.
Carriage of the natural killer (NK) receptor genotype KIR3DL1*h/*y with its HLA-B*57 ligand (*h/*y+B*57) is associated with slow time to AIDS and low viral load (VL). To provide a functional basis for these epidemiological observations, we assessed whether HIV-1-infected slow progressors (SP) carrying the *h/*y+B*57 compound genotype would have increased NK cell polyfunctional potential in comparison to SP with other killer immunoglobulin-like receptor (KIR)/HLA compound genotypes and whether this enhanced polyfunctionality was dependent upon the coexpression of both KIR3DL1*h/*y and HLA-B*57. The functional potential of NK cells was investigated by stimulating peripheral blood mononuclear cells with HLA-devoid targets or single HLA transfectants. Multiparametric flow cytometry was used to detect NK cells with seven functional profiles representing all permutations of CD107a expression and gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) secretion. NK cells from individuals carrying KIR3DL1 receptor-HLA-Bw4 ligand pairs had greater trifunctional responses than those from KIR3DL1 homozygotes (hmz), who were Bw6 homozygotes. NK cells from subjects carrying the *h/*y+B*57 genotypes exhibited the highest trifunctional potential, and this was dependent on cocarriage of the NK receptor and its ligand. Trifunctional cells secreted more of each function tested on a per-cell basis than each corresponding monofunctional NK subset. Although VL influenced NK functionality, individuals with defined KIR/HLA genotypes exhibited differences in NK cell polyfunctionality that could not be accounted for by VL alone. The protective effect of HLA-B*57 on slow progression to AIDS and low VL may be mediated through its interaction with KIR3DL1 alleles to educate NK cells for potent activity upon stimulation.  相似文献   

8.
Mutations within T cell epitopes represent a common mechanism of viral escape from the host protective immune response. The diverse T cell repertoire and the extensive human leukocyte antigen (HLA) polymorphism across populations is the evolutionary response to viral mutation. However, the molecular basis underpinning the interplay between HLA polymorphism, the T cell repertoire, and viral escape is unclear. Here we investigate the T cell response to a HLA-B*35:01- and HLA-B*35:08-restricted 407HPVGEADYFEY417 epitope from Epstein-Barr virus and naturally occurring variants at positions 4 and 5 thereof. Each viral variant differently impacted on the epitope''s flexibility and conformation when bound to HLA-B*35:08 or HLA-B*35:01. We provide a molecular basis for understanding how the single residue polymorphism that discriminates between HLA-B*35:01/08 profoundly impacts on T cell receptor recognition. Surprisingly, one viral variant (P5-Glu to P5-Asp) effectively changed restriction preference from HLA-B*35:01 to HLA-B*35:08. Collectively, our study portrays the interplay between the T cell response, viral escape, and HLA polymorphism, whereby HLA polymorphism enables altered presentation of epitopes from different strains of Epstein-Barr virus.  相似文献   

9.
Long-term nonprogression during acute HIV infection has been strongly associated with HLA-B*5701 or HLA-B*5703. In this study, we present the high resolution crystal structures of HLA-B*5703 complexes with three HIV-1 epitopes: ISPRTLNAW (ISP), KAFSPEVIPMF (KAF-11), and KAFSPEVI (KAF-8). These reveal peptide anchoring at position 2 and their C termini. The different peptide lengths and primary sequences are accommodated by variation in the specific contacts made to the HLA-B*5703, flexibility in water structure, and conformational adjustment of side chains within the peptide-binding groove. The peptides adopt markedly different conformations, and trap variable numbers of water molecules, near a cluster of tyrosine side chains located in the central region of the peptide-binding groove. The KAF-11 epitope completely encompasses the shorter KAF-8 epitope but the peptides are presented in different conformations; the KAF-11 peptide arches out of the peptide-binding groove, exposing a significant main chain surface area. Bioinformatic analysis of the MHC side chains observed to contribute to the peptide anchor specificity, and other specific peptide contacts, reveals HLA alleles associated with long-term nonprogression and a number of related HLA alleles that may share overlapping peptide repertoires with HLA-B*5703 and thus may display a similar capacity for efficient immune control of HIV-1 infection.  相似文献   

10.
A single residue polymorphism distinguishes HLA-B*4402(D116) from HLA-B*4405(Y116), which was suggested to allow HLA-B*4405 to acquire peptides without binding to tapasin-TAP complexes. We show that HLA-B*4405 is not inherently unable to associate with tapasin-TAP complexes. Under conditions of peptide deficiency, both allotypes bound efficiently to TAP and tapasin, and furthermore, random nonamer peptides conferred higher thermostability to HLA-B*4405 than to HLA-B*4402. Correspondingly, under conditions of peptide sufficiency, more rapid peptide-loading, dissociation from TAP complexes, and endoplasmic reticulum exit were observed for HLA-B*4405, whereas HLA-B*4402 showed greater endoplasmic reticulum retention and enhanced tapasin-TAP binding. Together, these studies suggest that position 116 HLA polymorphisms influence peptide occupancy, which in turn determines binding to tapasin and TAP. Relative to HLA-B*4405, inefficient peptide loading of HLA-B*4402 is likely to underlie its stronger tapasin dependence for cell surface expression and thermostability, and its enhanced susceptibility to pathogen interference strategies.  相似文献   

11.
The existence of cytotoxic T cells (CTL) cross-reacting with the human major histocompatibility antigens HLA-B14 and HLA-B27 suggests that their alloreactivity could be due to presentation of shared peptides in similar binding modes by these molecules. We therefore determined the crystal structures of the subtypes HLA-B*1402, HLA-B*2705, and HLA-B*2709 in complex with a proven self-ligand, pCatA (peptide with the sequence IRAAPPPLF derived from cathepsin A (residues 2–10)), and of HLA-B*1402 in complex with a viral peptide, pLMP2 (RRRWRRLTV, derived from latent membrane protein 2 (residues 236–244) of Epstein-Barr virus). Despite the exchange of 18 residues within the binding grooves of HLA-B*1402 and HLA-B*2705 or HLA-B*2709, the pCatA peptide is presented in nearly identical conformations. However, pLMP2 is displayed by HLA-B*1402 in a conformation distinct from those previously found in the two HLA-B27 subtypes. In addition, the complexes of HLA-B*1402 with the two peptides reveal a nonstandard, tetragonal mode of the peptide N terminus anchoring in the binding groove because of the exchange of the common Tyr-171 by His-171 of the HLA-B*1402 heavy chain. This exchange appears also responsible for reduced stability of HLA-B14-peptide complexes in vivo and slow assembly in vitro. The studies with the pCatA peptide uncover that CTL cross-reactive between HLA-B14 and HLA-B27 might primarily recognize the common structural features of the bound peptide, thus neglecting amino acid replacements within the rim of the binding grooves. In contrast, structural alterations between the three complexes with the pLMP2 peptide indicate how heavy chain polymorphisms can influence peptide display and prevent CTL cross-reactivity between HLA-B14 and HLA-B27 antigens.T cells possessing the ability to recognize major histocompatibility complex (MHC)2 molecules from another individual of the same species, also termed alloreactive T cells, may constitute up to 10% of the T cell pool of an individual, and their precursor frequency can be 100–1,000-fold higher than that of self-restricted T cells directed against a foreign peptide (1, 2). The ability of alloreactive T cells to cross-react with nonself-MHC molecules is a major obstacle preventing successful organ transplantations (35). Two mechanisms, direct or indirect allorecognition, can be responsible for the rejection of a transplant by alloreactive T cells (6). In the first case, donor cells expressing MHC molecules are directly recognized by host T cells (7), whereas indirect allorecognition involves the presentation of peptides derived from donor proteins by MHC molecules of the host, followed by the detection of the complexes by the host T cells (8). However, although alloreactive T cells are very common and of great clinical importance, neither the primary basis for their existence nor the reasons underlying their cross-reactivity are sufficiently understood to draw general conclusions (911). Only very few studies have addressed the structural basis for the recognition of distinct MHC antigens by cross-reactive T cells (1218). One of the most important questions regards the individual contribution of the bound peptide and binding groove residues of the heavy chain (HC) of MHC class I antigens to the interaction with T cell receptors (TCR).Here we analyze an HLA-B14 subtype, HLA-B*1402 (named B*1402), as well as two HLA-B27 subtypes, HLA-B*2705 and HLA-B*2709 (named B*2705 and B*2709), to shed light on the structural basis of peptide presentation and T cell alloreactivity among these HLA-B molecules. The amino acid sequences of B*1402 and B*2705 HC differ from each other at 18 positions, all of which are part of the peptide-binding groove (Fig. 1). These amino acid exchanges result in different repertoires of bound peptides; B*1402 and B*2705 share only about 4% of their peptides (19), whereas this value rises to 88% for the B*2705 and B*2709 subtypes (20), which are distinguished only by a single residue at the floor of the binding groove (B*2705, Asp-116; B*2709, His-116). The structural similarities between the two HLA-B27 subtypes (2127) permit extensive cross-reactivity (up to 90%) of cytotoxic T cells (CTL) (28), whereas CTL alloreactivity between B*1402 and B*2705 is drastically reduced (to about 3%) (19), in line with the very limited overlap of their peptide repertoires.Open in a separate windowFIGURE 1.Amino acid sequence differences among B*1402 and B*2705 HC. The 18 residues distinguishing the two subtypes are all located in or in the immediate vicinity of the peptide-binding groove. B*2705 differs from B*2709 only by a D116H exchange (not shown). The residues are indicated by spheres with volumes roughly proportional to the volumes of the respective amino acid side chain in solution (77). The spheres are colored according to the biochemical properties of the respective amino acids, as indicated at the bottom of the image.The HLA-B14 and HLA-B27 subtypes are distinguished from most other HLA class I molecules in their requirement for an arginine at anchor position 2 of the bound peptide (p2) (20, 29, 30). This preference is nearly absolute in B*2705 and B*2709 (31), whereas B*1402 tolerates also glutamine, glutamate, and proline as p2 anchors (19, 29). Statistically significant differences between B*1402 and B*2705 are also found at several other peptide positions (19). Previous structural and cellular studies of the HLA-B27 subtypes have suggested that molecular mimicry between the viral peptide pLMP2 (RRRWRRLTV, derived from Epstein-Barr virus latent membrane protein 2, residues 236–244) and the self-peptide pVIPR (RRKWRRWHL, derived from vasoactive intestinal peptide type 1 receptor, residues 400–408), when bound to B*2705, serves as an example of how a cellular immune response could be triggered that might contribute to the onset of ankylosing spondylitis (AS) through an autoimmune mechanism (22, 24). CTL that recognize the B*2705 and the B*2709 subtypes in complex with the self-peptide pVIPR (22) exemplify alloreactivity in this system, although the D116H micropolymorphism is deeply buried and not directly accessible to a TCR.Alloreactive T cells are known to recognize a very diverse array of alloantigen-bound peptides (32, 33), so that virtually each T cell clone can be assumed to be specific for a distinct peptide. For this reason, the substantial correlation found in previous studies between peptide and the alloreactive T cell epitope sharing among HLA-B27 (reviewed in Ref. 34) or HLA-B14 subtypes (only 28.4% partial or full cross-reactivity, similar to peptide overlapping between the subtypes B*1402 and B*1403, see Ref. 19) supports a prominent role of peptides in determining alloreactive T cell cross-reaction, and it suggests that many shared ligands adopt antigenically similar conformations when bound to distinct HLA-B molecules. On the other hand, the results reported by Merino et al. (19) also demonstrate that the few CTL that cross-react with B*1402 and B*2705 did not exhibit cross-reactivity with B*1403, which is distinguished from B*1402 only by a single amino acid exchange in the α2-helix. Furthermore, they show that alloreactive CTL from various donors directed against B*2705 did not lyse cells expressing either B*1402 or B*1403, although the number of CTL tested might not have been high enough to detect a presumably low degree of cross-reactivity. Without structural data from HLA-B14 subtypes, however, these results are difficult to interpret.The pCatA peptide (IRAAPPPLF, derived from the signal sequence of cathepsin A, residues 2–10) is among the very few known common ligands of B*1402, B*2705 (19), and B*27093 and can thus serve to study how a very different (B*1402) and two very similar subtypes (B*2705 and B*2709) handle a common ligand. On the other hand, the pLMP2 peptide is a proven natural ligand only of B*2705, whose possible presentation in vivo by B*2709 and HLA-B14 is not yet known, although this peptide can be complexed in vitro with B*2709 (24) and also with B*1402 (35). From previous crystallographic studies, it was known that pLMP2 is presented by the two HLA-B27 antigens in very different conformations (24). We expected that the pronounced sequence differences between B*1402 and the HLA-B27 alloantigens (Fig. 1) might even enhance the conformational dissimilarities that are observed when two very closely related subtypes such as B*2705 and B*2709 are compared. Discrepancies in peptide display could reasonably be expected to prevent CTL cross-reaction, so that pLMP2 might be considered as a representative of the vast majority of HLA-B14- and HLA-B27-presented ligands that must be responsible for the low degree of CTL cross-reactivity between these alloantigens. Despite these presumed differences between pCatA and pLMP2, both peptides may be seen as examples of ligands that could principally allow direct allorecognition.Here we report the crystal structures of B*1402·pCatA, B*2705·pCatA, B*2709·pCatA, and B*1402·pLMP2, and we compare them with each other and with the previously reported structures of B*2705·pLMP2 and B*2709·pLMP2 (24).  相似文献   

12.
As an MHC class I protein, the disease association of HLA-B27 with inflammatory arthritis has been widely assumed to imply a role for the T cell antigen receptor (TCR) in disease. However, in addition to their classical antigen-presenting role, HLA class I proteins are recognised by members of the killer immunoglobulin receptor (KIR) and leukocyte immunoglobulin-like receptor (LILR/ILT/LIR) families. Unusual properties of HLA-B27 include an ability of free heavy chains (FHC) to reach the cell surface in the absence of beta2m and to maintain their peptide-binding groove in vitro. This review describes immunomodulatory receptors that recognise HLA class I, and the recognition of HLA-B27 in both the classical beta2m-associated and beta2m-independent forms by members of the KIR and LILR families. Alternative recognition of different forms of HLA-B27 by leukocyte receptors could influence the function of cells from both innate and adaptive immune systems, and may indicate a role for various leukocyte populations in HLA-B27-associated inflammatory disease.  相似文献   

13.
The human major histocompatibility complex class I antigen HLA‐B*2705 binds several sequence‐related peptides (pVIPR, RRKWRRWHL; pLPM2, RRRWRRLTV; pGR, RRRWHRWRL). Cross‐reactivity of cytotoxic T cells (CTL) against these HLA‐B*2705:peptide complexes seemed to depend on a particular peptide conformation that is facilitated by the engagement of a crucial residue within the binding groove (Asp116), associated with a noncanonical bulging‐in of the middle portion of the bound peptide. We were interested whether a conformational reorientation of the ligand might contribute to the lack of cross‐reactivity of these CTL with a peptide derived from voltage‐dependent calcium channel α1 subunit (pCAC, SRRWRRWNR), in which the C‐terminal peptide residue pArg9 could engage Asp116. Analyses of the HLA‐B*2705:pCAC complex by X‐ray crystallography at 1.94 Å resolution demonstrated that the peptide had indeed undergone a drastic reorientation, leading it to adopt a canonical binding mode accompanied by the loss of molecular mimicry between pCAC and sequence‐related peptides such as pVIPR, pLMP2, and pGR. This was clearly a consequence of interactions of pArg9 with Asp116 and other F‐pocket residues. Furthermore, we observed an unprecedented reorientation of several additional residues of the HLA‐B*2705 heavy chain near the N‐terminal region of the peptide, including also the presence of double conformations of two glutamate residues, Glu63 and Glu163, on opposing sides of the peptide binding groove. Together with the Arg‐Ser exchange at peptide position 1, there are thus multiple structural reasons that may explain the observed failure of pVIPR‐directed, HLA‐B*2705‐restricted CTL to cross‐react with HLA‐B*2705:pCAC complexes.  相似文献   

14.
Residue 116 of major histocompatibility complex (MHC) class I heavy chains is an important determinant of assembly, that can influence rates of ER-Golgi trafficking, binding to the transporter associated with antigen processing (TAP), tapasin dependence of assembly, and the efficiency and specificity of peptide binding. Here, we investigated assembly and peptide-binding differences between HLA-B*3501(S116) and HLA-B*3503(F116), two alleles differing only at position 116 of the MHC class I heavy chain, that are associated respectively with normal or rapid AIDS progression. A reduced intracellular maturation rate was observed for HLA-B*3503 in HIV-infected and uninfected cells, which correlated with enhanced binding of HLA-B*3503 to TAP. No significant differences in the intrinsic efficiency of in vitro peptide binding by HLA-B*3501 and HLA-B*3503 were measurable with several common peptides or peptide libraries, and both allotypes were relatively tapasin-independent for their assembly. However, thermostability differences between the two allotypes were measurable in a CD4+ T cell line. These findings suggest that compared to HLA-B*3501, a reduced intracellular peptide repertoire for HLA-B*3503 could contribute to its slower intracellular trafficking and stronger association with rapid AIDS progression.  相似文献   

15.
KIR3DL1 is a polymorphic, inhibitory NK cell receptor specific for the Bw4 epitope carried by subsets of HLA-A and HLA-B allotypes. The Bw4 epitope of HLA-B*5101 and HLA-B*1513 is determined by the NIALR sequence motif at positions 77, 80, 81, 82, and 83 in the alpha(1) helix. Mutation of these positions to the residues present in the alternative and nonfunctional Bw6 motif showed that the functional activity of the Bw4 epitopes of B*5101 and B*1513 is retained after substitution at positions 77, 80, and 81, but lost after substitution of position 83. Mutation of leucine to arginine at position 82 led to loss of function for B*5101 but not for B*1513. Further mutagenesis, in which B*1513 residues were replaced by their B*5101 counterparts, showed that polymorphisms in all three extracellular domains contribute to this functional difference. Prominent were positions 67 in the alpha(1) domain, 116 in the alpha(2) domain, and 194 in the alpha(3) domain. Lesser contributions were made by additional positions in the alpha(2) domain. These positions are not part of the Bw4 epitope and include residues shaping the B and F pockets that determine the sequence and conformation of the peptides bound by HLA class I molecules. This analysis shows how polymorphism at sites throughout the HLA class I molecule can influence the interaction of the Bw4 epitope with KIR3DL1. This influence is likely mediated by changes in the peptides bound, which alter the conformation of the Bw4 epitope.  相似文献   

16.
A naturally processed and presented ligand that is shared by human leukocyte antigen (HLA) B*4402, B*4403 and B*4405 molecules has been identified in peptides isolated from immunoaffinity purified HLA B44 complexes. This peptide derived from HLA DPalpha residues 46-54, an endogenous product of HLA DP expressed in the cell line Hmy2.C1R, is a prominent peptide in the mass spectra of species isolated as bound peptides from each allele when the three HLA B44 subtypes were introduced as transfected gene products. Recombinant truncated forms of HLA B*4405(1-276), HLA B*4403(1-276), HLA B*4402(1-276) and beta(2)-microglobulin have been prepared as inclusion bodies in Escherichia coli and refolded in the presence of the DPalpha(46-54) peptide and purified by a combination of size exclusion and anion exchange chromatography. This material was determined to be correctly folded based on detection of a conformational epitope recognized by the W6/32 monoclonal antibody. Large, plate-like crystals of the three complexes were produced using polyethylene glycol as the precipitant. All the crystals belong to the space group P2(1)2(1)2(1) with unit cell dimensions of approximately a=51, b=82, c=110 A. The crystals of three B44/DPalpha complexes diffracted to a resolution of 1.9 A or better. For the first time, using this natural, high abundance ligand of the HLA B44 molecules we have successfully expressed and refolded the three HLA B44 molecules and produced crystals amenable to structural studies.  相似文献   

17.
The association of HLA class I heavy chains with beta2-microglobulin (beta2m) changes their antigenic profile. As a result, Abs react with either beta2m-free or beta2m-associated HLA class I heavy chains. An exception to this rule is the mAb TP25.99, which reacts with both beta2m-associated and beta2m-free HLA class I heavy chains. The reactivity with beta2m-associated HLA class I heavy chains is mediated by a conformational determinant expressed on all HLA-A, -B, and -C Ags. This determinant has been mapped to amino acid residues 194-198 in the alpha3 domain. The reactivity with beta2m-free HLA class I heavy chains is mediated by a linear determinant expressed on all HLA-B Ags except the HLA-B73 allospecificity and on <50% of HLA-A allospecificities. The latter determinant has been mapped to amino acid residues 239-242, 245, and 246 in the alpha3 domain. The conformational and the linear determinants share several structural features, but have no homology in their amino acid sequence. mAb TP25.99 represents the first example of a mAb recognizing two distinct and spatially distant determinants on a protein. The structural homology of a linear and a conformational determinant on an antigenic entity provides a molecular mechanism for the sharing of specificity by B and TCRs.  相似文献   

18.
The human HLA-B27 class I molecule exhibits a strong association with the inflammatory arthritic disorder ankylosing spondylitis and other related arthropathies. Major histocompatibility complex class I heavy chains normally associate with beta(2)-microglobulin and peptide in the endoplasmic reticulum before transit to the cell surface. However, an unusual characteristic of HLA-B27 is its ability to form heavy chain homodimers through an unpaired cysteine at position 67 in the peptide groove. Homodimers have previously been detected within the ER and at the cell surface, but their mechanism of formation and role in disease remain undefined. Here we demonstrate, in the rat C58 thymoma cell line and in human HeLa cells transfected with HLA-B27, that homodimer formation involves not only cysteine at position 67 but also the conserved structural cysteine at position 164. We also show that homodimer formation can be induced in the non-disease-associated HLA class I allele HLA-A2 by slowing its assembly rate by incubation of cells at 26 degrees C, suggesting that homodimer formation in the endoplasmic reticulum may occur as a result of the slower folding kinetics of HLA-B27. Finally, we report an association between unfolded HLA-B27 molecules and immunoglobulin-binding protein at the cell surface.  相似文献   

19.
A broadly used pan-HLA class I-reactive monoclonal antibody W6/32 is believed to recognize a conformational epitope dependent on association between heavy chains and beta2-microglobulin (beta2m). However, in the present study we report that W6/32 does recognize at least some free HLA class I heavy chains under the partially denaturating conditions of nonreducing Western blotting, namely nearly all HLA-B allelic products. Furthermore, we confirm and largely extend our previous observation that complexes of beta2m with heavy chains of a few HLA class I allelic forms (most notably HLA-B27) exhibit unusual resistance to dissociation by SDS, which is reminiscent of MHC class II molecules. In addition, our data indicate the existence of covalent (disulfide-linked) heterodimers of certain HLA class I heavy chains (namely Cw1 and Cw4) and beta2m.  相似文献   

20.
We sought to identify an altered peptide ligand (APL) based on the endogenously expressed synovial auto-epitope of human cartilage glycoprotein-39 (HC gp-39) for modulation of cognate, HLA-DR4-restricted T cells. For this purpose we employed a panel of well-characterized T cell hybridomas generated from HC gp-39-immunized HLA-DR4 transgenic mice. The hybridomas all respond to the HC gp-39(263-275) epitope when bound to HLA-DR4(B1*0401) but differ in their fine specificities. First, the major histocompatibility complex (MHC) and T-cell receptor (TCR) contact residues were identified by analysis of single site substituted analogue peptides for HLA-DR4 binding and cognate T cell recognition using both T hybridomas and polyclonal T cells from peptide-immunized HLA-DR4 transgenic mice. Analysis of single site substituted APL by cognate T cells led to identification of Phe265 as the dominant MHC anchor. The amino acids Ala268, Ser269, Glu271 and Thr272 constituted the major TCR contact residues, as substitution at these positions did not affect HLA-DR4(B1*0401) binding but abrogated T cell responses. A structural model for visualisation of TCR recognition was derived. Second, a set of non-classical APLs, modified at the MHC key anchor position but with unaltered TCR contacts, was developed. When these APLs were analysed, a partial TCR agonist was identified and found to modulate the HC gp-39(263-275)-specific, pro-inflammatory response in HLA-DR4 transgenic mice. We identified a non-classical APL by modification of the p1 MHC anchor in a synovial auto-epitope. This APL may qualify for rheumatoid arthritis immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号