首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The hypophysiotrophic hormone corticotropin releasing factor (CRF) stimulates the anterior pituitary corticotroph to export stress hormones such as adrenocorticotrophic hormone (ACTH). In rat anterior pituitary cells, CRF-induced elevation of cyclic AMP was profoundly potentiated (by an order of magnitude) by stimulators of protein kinase C. This effect occurred within minutes, was concentration dependent, and exhibited the appropriate pharmacological specificity to attribute the effects to protein kinase C. Phorbol myristate acetate (PMA), phorbol dibutyrate (PDB) and teleocidin were active with appropriate EC50's, while 4-alpha-PMA was inactive. PMA and PDB were also ACTH secretagogues in their own right. We suggest that protein kinase C can modulate CRF receptor coupling to the adenylate cyclase holoenzyme in anterior pituitary cells.  相似文献   

2.
The stimulatory effect of maximal concentrations of synthetic human pancreatic growth hormone (GH)-releasing factor (GRF)(1-40)NH on cyclic AMP accumulation in rat anterior pituitary cells in culture is 4.5-fold increased following a 48-h preincubation with the potent glucocorticoid dexamethasone while the sensitivity of GRF action is increased by approximately 4-fold. Dexamethasone pretreatment, on the other hand, has no effect on basal cyclic AMP levels but approximately doubles both basal and GRF-induced GH release. The present data suggest that the potent stimulatory effect of glucocorticoids on GH secretion is exerted on the adenylate cyclase system at a step preceding cyclic AMP formation.  相似文献   

3.
G J Law  K P Ray  M Wallis 《FEBS letters》1984,166(1):189-193
A synthetic form of human pancreatic growth hormone releasing factor (GRF-44-NH2) was shown to be a potent stimulator of growth hormone (GH) secretion and cellular cyclic AMP levels in cultured sheep pituitary cells. A small dose-dependent stimulation of prolactin secretion was also observed. Somatostatin (0.5 microM) completely blocked the maximal GRF (1 nM)-stimulated secretion without a significant effect on cyclic AMP levels. Dopamine (0.1 microM) inhibited the GRF-elevated GH secretion by 50% and lowered cyclic AMP levels by 30%. Dopamine (0.1 microM) inhibition of basal prolactin secretion was not affected by GRF (1 nM). The data support the hypothesis that cyclic AMP is involved in the action of GRF but suggest that somatostatin can inhibit GRF-induced secretion of GH independently of cyclic AMP.  相似文献   

4.
Tumor promoters, such as phorbol esters and teleocidin, amplified the ability of growth hormone releasing factor to increase pituitary cyclic AMP levels. This effect of tumor promoters was concentration-dependent, could be observed in 5 minutes, and was over by 4 hours. Inactive tumor promoters (i.e., 4-alpha-didecanoate) had no effect on this system, whereas a synthetic diacylglycerol (i.e., 1-oleoly-2-acetyl glycerol), mimicked the action of tumor promoters. Due to the known stimulation of protein kinase C by both tumor promoters and diacylglycerols, we suggest that this calcium and phospholipid dependent protein kinase C can enhance the ability of the growth hormone releasing factor receptor to activate the cyclic AMP generating system.  相似文献   

5.
The possible role of protein kinase C (PKC) in the cyclic AMP-dependent mechanism of action of corticotropin-releasing factor (CRF) on proopiomelanocortin cells of anterior and intermediate pituitary glands was examined after pretreatment of cells in culture with the PKC inhibitor retinal or the phorbol ester PMA, which depletes cell stores of the kinase. We found that these drugs not only abolished ACTH response to PMA and vasopressin, which both activate PKC, but unexpectably also dampened by 80-90% the stimulatory effect of CRF. Cell treatment with retinal failed to prevent CRF-induced accumulation of cyclic AMP. Retinal and PMA pretreatments of intermediate pituitary cells likewise inhibited alpha-MSH secretion stimulated by CRF. These data provide evidence to suggest that the mechanism of action of CRF on pituitary cells involves both cyclic AMP and PKC messenger systems.  相似文献   

6.
The stimulations of ureagenesis and cyclic AMP accumulation induced by glucagon were inhibited by 10 nM vasopressin or 100 nM phorbol 12-myristate 13-acetate (PMA). The maximal accumulation of cyclic AMP induced by glucagon was clearly diminished by these agents without change in the EC50 for the peptide hormone suggesting a non-competitive type of inhibition. H-7 blocked the inhibition of glucagon-stimulated ureagenesis induced by PMA and vasopressin and diminished their effect on the accumulation of cyclic AMP induced by glucagon. It is concluded that activation of protein kinase C inhibits the stimulation of ureagenesis and the accumulation of cyclic AMP induced by glucagon in liver cells from hypothyroid rats; H-7 inhibits the effects of protein kinase C activation.  相似文献   

7.
Abstract: In this study, the effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on cyclic nucleotide accumulation and melatonin (MT) production in dispersed rat pinealocytes were measured. Treatment with PACAP (10−7 M ) increased MT production 2.5-fold. PACAP (10−7 M ) also increased cyclic AMP accumulation four- to fivefold; this effect was potentiated two- to three-fold by α1-adrenergic activation. This potentiation appears to involve protein kinase C (PKC) because α1-adrenergic activation is known to translocate PKC and the PACAP-stimulated cyclic AMP accumulation was potentiated ninefold by a PKC activator, 4β-phorbol 12-myristate 13-acetate (PMA). Phenylephrine and PMA also potentiated the PACAP-stimulated MT accumulation. These results indicate that cyclic AMP is one second messenger of PACAP in the pineal gland and that the effects of PACAP on cyclic AMP and MT production can be potentiated by an α1-adrenergic → PKC mechanism. In addition to these findings, it was observed that PACAP treatment with or without phenylephrine or PMA did not alter cyclic GMP accumulation. This indicates that PACAP is the first ligand identified that increases cyclic AMP accumulation in the pineal gland without increasing cyclic GMP accumulation. That PACAP fails to activate the vasoactive intestinal peptide/cyclic GMP pathway suggests that the vasoactive intestinal peptide receptors present in the pineal may be distinct from the type II PACAP receptors.  相似文献   

8.
J Simard  G Lefèvre  F Labrie 《Peptides》1987,8(2):199-205
We have investigated the effect of prior exposure to somatostatin (SRIF) alone or in combination with growth hormone-releasing factor (GRF) on the subsequent cyclic AMP and GH responses to GRF in rat anterior pituitary cells in primary culture. The maximal 4.5-fold stimulation of GH release induced by a 3-hr incubation with GRF is reduced by 60% following a prior 3-hr exposure to 30 nM GRF. A 3-hr preincubation with GRF in the presence of 30 nM SRIF doubles spontaneous GH release while the maximal amount of GH released during a subsequent 3-hr exposure to GRF is similar to that measured in cells pretreated with control medium, thus completely preventing the loss of GH responsiveness induced by prior exposure to GRF. The prevention by SRIF of the desensitizing action of GRF on GH release is not observed on the cyclic AMP response which remains almost completely inhibited in GRF-pretreated cells. Similar protective effects are obtained when SRIF is incubated with prostaglandin E2 (PGE2), thus completely preventing the desensitizing action of PGE2 on GH release. Prior treatment with pertussis toxin completely prevents the protective action of SRIF on GH responsiveness. Pretreatment with GRF + SRIF increases by 85 and 60% the maximal amount of GH release induced by cholera toxin and 8-bromoadenosine 3',5'-monophosphate, respectively. The post-SRIF rebound effect on GH release occurs mainly during the first 30 min following withdrawal of the tetradecapeptide. The present data demonstrate that simultaneous preincubation with SRIF and GRF prevents the marked inhibition of GH release during subsequent exposure to GRF.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
M Sato  J Takahara  M Niimi  R Tagawa  S Irino 《Life sciences》1991,48(17):1639-1644
The present study was undertaken to investigate the direct actions of rat galanin (R-GAL) on growth hormone (GH) release from the rat anterior pituitary in vitro. R-GAL modestly but significantly stimulated GH release without an increase in intra- and extracellular cyclic AMP levels in monolayer cultures of rat anterior pituitary cells. This stimulatory effect of R-GAL was dose-dependent but not additive with that of GH-releasing factor (GRF). R-GAL-stimulated GH release was less sensitive to the inhibitory effect of somatostatin than was GRF-stimulated GH release. In perfusions of rat anterior pituitary fragments, R-GAL induced a gradual and sustained increase of GH release. Incremental GH release derived in part from preformed stored GH. These data confirm that R-GAL acts at the pituitary level to stimulate GH release by a mechanism distinct from that of GRF.  相似文献   

10.
Prostaglandins (PGs) were found to lead to a marked stimulation of cyclic AMP accumulation in rat anterior pituitary gland in vitro in the following decreasing order of potency: PG E-1 E-2 GREATER THAN A-1 A-I GREATER THAN F-1ALPHA F-2ALPHA. The effect of PGs is potentiated by theophylline. The stimulatory effect of PGs on cyclic AMP accumulation is already detected 2min after the addition of 1-x 10-7 to 1-x 10-6 M PG E-2 and its maximal effect is reached after approximated 30 min of incubation, with a progressive decrease toward basal cyclic AMP levels at later time intervals. Increased intracellular cyclic AMP concentrations are accompanied by an increased release of the nucleotide into incubation medium. Complete removal of Ca-e+ from the incubation medium by addition of EGTA was found to increase the stimulatory effect of PG E-2 ON CYCLIC AMP accumulation. The action of PGs on hormonal release and cyclic AMP accumulation support the hypothesis of a role of PGs in the mechanism of anterior pituitary hormone (particularly growth hormone) release.  相似文献   

11.
Exposure to the phorbol ester, phorbol 12-myristate, 13-acetate (PMA, 100nM) for 10 minutes enhanced cyclic AMP accumulation in human neutrophils under basal conditions and in response to the beta-adrenergic receptor agonist isoproterenol (ISO), 1 microM) and the adenylate cyclase activator forskolin (FSK, 10mM). Potentiation of responses to ISO by PMA was dose-dependent between 0.1 and 100nM PMA. The diacylglycerol analogue, 1-oleoyl-2-acetylglycerol (OAG) (50 microM) also elevated beta-receptor responses, but 4 beta-phorbol (100nM), lacking the capacity to activate PMA, was ineffective. Short-term exposure (12 seconds) to the peptide n-formylmethionine leucyl-phenylalanine (FMLP, 1 microM) also elevated neutrophil cyclic AMP accumulation. All potentiating effects of PMA on cyclic AMP production were inhibited by the protein kinase inhibitor 1-(5-isoquinolinylsulphonyl)-2-methylpiperazine (H7). Elevation of cyclic AMP by FMLP was insensitive to H7. PMA had no apparent effect on beta-receptor agonist-affinity, distribution between cell-surface and internalised compartments, or the capacity of ISO to induce beta-receptor internalisation. Responses to FSK or ISO in terms of fold-stimulation of basal cyclic AMP accumulation in the presence of PMA were not elevated by PMA. These findings indicate that PMA exerts a potentiating effect on neutrophil adenylate cyclase responses through protein kinase C activation. FMLP elevation of neutrophil cyclic AMP in the absence of other stimuli, appears however, to be insensitive to protein kinase inhibition.  相似文献   

12.
Human pancreas tumor growth hormone-releasing factor (hpGRF) induced more cellular cyclic adenosine 3':5'-monophosphate (AMP) accumulation and growth hormone release from male than female rat anterior pituitaries in vitro. This was reflected in a change in maximal levels achieved (efficacy) rather than potency, and was not an exclusive effect of hpGRF peptide; prostaglandin E2 also exhibited these effects. These data suggest that the origin of the larger spontaneous peak growth hormone levels in male rats may be within the anterior pituitary gland.  相似文献   

13.
Phorbol esters alter cyclic AMP levels in a number of tissues, including the anterior pituitary. We report that membrane preparations from GH3 cells exposed to phorbol esters exhibit decreased vasoactive intestinal peptide (VIP)-stimulated and enhanced forskolin-stimulated adenylate cyclase activity. The responsiveness of adenylate cyclase activity to NaF, guanylyl-imidodiphosphate, and Mn2+ was also reduced by phorbol ester treatment. The ability of somatostatin to inhibit forskolin-stimulated adenylate cyclase activity was reduced while phorbol ester exposure had no apparent effect on somatostatin inhibition of VIP-stimulated adenylate cyclase activity. We suggest that protein kinase C alters at least two distinct components of the adenylate cyclase system. One modification disrupts hormone receptor-Gs interaction (lowering VIP efficacy) and the second perturbation augments the activity of the adenylate cyclase catalytic subunit.  相似文献   

14.
The secretion of ACTH by corticotrophs in the anterior lobe of the rat pituitary gland is under the stimulatory influence of at least three receptors, namely that for peptidic CRF (corticotropin-releasing factor), vasopressin and alpha 1-adrenergic agents. CRF is a potent stimulator of cyclic AMP accumulation as well as adenylate cyclase activity in the rat adenohypophysis, thus suggesting an important role of cyclic AMP as mediator of CRF action on ACTH secretion. Vasopressin causes a 2-fold increase of the stimulatory effect of CRF on ACTH release in rat anterior pituitary cells in culture. The potentiating effects of vasopressin on CRF-induced ACTH release are accompanied by parallel changes of intracellular cyclic AMP levels. Vasopressin, while having no effect on basal cyclic AMP levels, causes a 2-fold increase in CRF-induced cyclic AMP accumulation without affecting the ED50 value of CRF action. ACTH secretion is also stimulated by a typical alpha 1-adrenergic receptor. Epinephrine causes a marked stimulation of ACTH release which is additive to that of CRF. Epinephrine, in analogy with vasopressin, although having no effect alone on basal cyclic AMP levels, causes a marked potentiation of CRF-induced cyclic AMP accumulation. Glucocorticoids cause a near-complete inhibition of epinephrine-induced ACTH secretion within 4 h with the following order of ED50 values: triamcinolone acetonide (0.2 nM) greater than dexamethasone (1.0 nM) much greater than cortisol (11 nM) greater than corticosterone (22 nM). Similar effects are observed for CRF- and vasopressin-induced ACTH release. Although the activity of the pituitary-adrenocortical axis in the rat is highly dependent upon sex steroids, 17 beta-estradiol, 5 alpha-dihydrotestosterone and the pure progestin R5020 have no detectable effect on basal or epinephrine-induced ACTH release, thus illustrating the high degree of specificity of glucocorticoids in their feedback control of ACTH secretion. Moreover, glucocorticoids have no effect on CRF-induced cyclic AMP accumulation, thus indicating that their inhibitory effect is exerted at a step following cyclic AMP accumulation.  相似文献   

15.
R S Boyd  M Wallis 《FEBS letters》1989,251(1-2):99-103
Tetradecanoyl phorbol acetate (TPA) stimulates growth hormone (GH) and prolactin secretion from ovine anterior pituitary cells. Pretreatment of the cells with TPA abolishes this effect, presumably due to down-regulation of protein kinase C. Such pretreatment did not alter effects of thyrotropin-releasing hormone or dopamine on prolactin secretion, suggesting no involvement of protein kinase C. Pretreatment with TPA attenuated actions of GH-releasing hormone on GH release (but not actions on cyclic AMP levels), possibly due to depletion of cellular stores of GH. Such pretreatment also attenuated inhibition of GH release by somatostatin, possibly due to phosphorylation of receptors or associated proteins by protein kinase C.  相似文献   

16.
Corticotropin releasing hormone (CRH) stimulation of ACTH release and cyclic AMP-mediated events involved in the control of ACTH release were compared in sham-operated and adrenalectomized rats. CRH-stimulated adenylate cyclase activity was decreased in pituitary homogenates from adrenalectomized animals. CRH-stimulated cyclic AMP accumulation was essentially abolished and CRH-stimulated cyclic AMP-dependent protein kinase (A-kinase) activity was decreased in freshly prepared anterior pituitary cells from adrenalectomized animals. Basal and CRH-stimulated ACTH release was elevated in these cells. Since ACTH release is increased in adrenalectomized rats despite the down regulation of CRH-linked pituitary mechanisms, we speculate that the site of action of disinhibition by corticosterone of ACTH release (or synthesis) following adrenalectomy is distal to the generation of cyclic AMP and/or that non-CRH mediated mechanisms assume a greater role in ACTH regulation following adrenalectomy.  相似文献   

17.
Although relaxin acts at several abdominal sites and mammary tissue associated with pregnancy and parturition, the scope of target tissues and the signals conveying the relaxin message into the cell are poorly defined. We found that human relaxin rapidly elevates the cyclic AMP content of cultured rat anterior pituitary cells. This is a graded response (EC50 0.3 nM relaxin) that can be blocked by anti-relaxin antibodies or the hormones somatostatin and dopamine. Furthermore, other hormones with some sequence homology to relaxin, such as insulin and insulin-like growth factor-I, have no such action. We conclude that the anterior pituitary may be a target tissue for relaxin and that cyclic AMP may act as an intracellular messenger for relaxin in these cells.  相似文献   

18.
Synthetic somatostatin stimulated cyclic GMP accumulation with dose dependency (10 ng/ml – 10 μg/ml in a dose examined) in rat anterior pituitary gland in vitro. The stimulation of cyclic GMP levels in the gland was observed after 2 min incubation with somatostatin. Cyclic AMP production induced by TRH or PGE1 was supressed by this GH release inhibiting factor, while cyclic GMP concentration in the gland was elevated. The present results seem to suggest that inhibitory effect on GH release by somatostatin in anterior pituitary gland is mediated through change in concentration of cyclic AMP and cyclic GMP in the target cells.  相似文献   

19.
The effect of phorbol esters on cyclic AMP production in rat cerebral cortical slices was studied using a prelabelling technique to measure cyclic nucleotide accumulation. Cholera toxin-stimulated cyclic AMP accumulation was enhanced approximately 2-fold by phorbol 12-myristate, 13-acetate (PMA) which alone had no effect on cyclic AMP production. The augmentation by PMA was maximal within the first hour of incubation, decreasing progressively thereafter. Protein kinase C activity was decreased 80-90% during a 3 hr exposure to PMA, as was 3H-phorbol 12,13-dibutyrate binding. Both phosphatidyl serine and arachidonic acid were found to enhance protein kinase C activity in a concentration-dependent manner, an effect that was attenuated by prolonged incubation of the brain tissue with PMA. The results indicate that exposure of brain slices to phorbol esters causes a down-regulation of rat brain protein kinase C, and that this modification corresponds with a decrease in the ability of PMA to augment cyclic AMP production, suggesting a functional relationship between the two systems in rat brain.  相似文献   

20.
In an attempt to study the site and mechanism of action of estrogen in producing positive feedback control, porcine anterior pituitary slices were incubated in vitro in the presence of estradiol benzoate (EB). EB elevated pituitary cyclic AMP concentration within 5 min and augmented pituitary release of luteinizing hormone (LH). The magnitude of increase of cyclic AMP and LH release was related to the doses of EB used. Also, luteinizing hormone releasing hormone (LH-RH) elevated pituitary cyclic AMP concentration and stimulated pituitary release of LH. The magnitude of increase of cyclic AMP and LH release was inversely related to the doses of LH-RH used. EB and LH-RH were additive in increasing cyclic AMP. Progesterone and clomiphene citrate interfered with an increase of pituitary cyclic AMP produced by EB, but did not significantly affect the basal level of pituitary cyclic AMP. Testosterone propionate, human chorionic gonadotropin and hexestrol were without effect on either basal or stimulated level of pituitary cyclic AMP. Since cyclic AMP and dibutyryl cyclic AMP (DBC) stimulated LH release, it is suggested that EB directly stimulates the release of LH by augmenting cyclic AMP synthesis in the anterior pituitary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号