首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step of steroidogenesis, delivery of cholesterol to the inner mitochondrial membrane. However, the mechanism whereby cholesterol translocation is accomplished has not been resolved. Recombinant StAR proteins lacking the first N-terminal 62 amino acids comprising the mitochondrial-targeting sequence were used to determine if StAR binds cholesterol and alters mitochondrial membrane cholesterol domains to enhance sterol transfer. First, a fluorescent NBD-cholesterol binding assay revealed 2 sterol binding sites (K(d) values near 32 nm), whereas the inactive A218V N-62 StAR mutant had only a single binding site with 8-fold lower affinity. Second, NBD-cholesterol spectral shifts and fluorescence resonance energy transfer from StAR Trp residues to NBD-cholesterol showed (i) close molecular interaction between these molecules (R(2/3) = 33 A) and (ii) sensitized NBD-cholesterol emission from only one of the two sterol binding sites. Third, circular dichroism showed that cholesterol binding induced a change in StAR secondary structure. Fourth, a fluorescent sterol transfer assay that did not require separation of donor and acceptor mitochondrial membranes demonstrated that StAR enhanced mitochondrial sterol transfer as much as 100-fold and induced/increased the formation of rapidly transferable cholesterol domains in isolated mitochondrial membranes. StAR was 67-fold more effective in transferring cholesterol from mitochondria of steroidogenic MA-10 cells than from human fibroblast mitochondria. In contrast, sterol carrier protein-2 (SCP-2) was only 2.2-fold more effective in mediating sterol transfer from steroidogenic cell mitochondria. Taken together these data showed that StAR is a cholesterol-binding protein, preferentially enhances sterol transfer from steroidogenic cell mitochondria, and interacts with mitochondrial membranes to alter their sterol domain structure and dynamics.  相似文献   

2.
ERK1/2 is known to be involved in hormone-stimulated steroid synthesis, but its exact roles and the underlying mechanisms remain elusive. Both ERK1/2 phosphorylation and steroidogenesis may be triggered by cAMP/cAMP-dependent protein kinase (PKA)-dependent and-independent mechanisms; however, ERK1/2 activation by cAMP results in a maximal steroidogenic rate, whereas canonical activation by epidermal growth factor (EGF) does not. We demonstrate herein by Western blot analysis and confocal studies that temporal mitochondrial ERK1/2 activation is obligatory for PKA-mediated steroidogenesis in the Leydig-transformed MA-10 cell line. PKA activity leads to the phosphorylation of a constitutive mitochondrial MEK1/2 pool with a lower effect in cytosolic MEKs, while EGF allows predominant cytosolic MEK activation and nuclear pERK1/2 localization. These results would explain why PKA favors a more durable ERK1/2 activation in mitochondria than does EGF. By means of ex vivo experiments, we showed that mitochondrial maximal steroidogenesis occurred as a result of the mutual action of steroidogenic acute regulatory (StAR) protein -a key regulatory component in steroid biosynthesis-, active ERK1/2 and PKA. Our results indicate that there is an interaction between mitochondrial StAR and ERK1/2, involving a D domain with sequential basic-hydrophobic motifs similar to ERK substrates. As a result of this binding and only in the presence of cholesterol, ERK1/2 phosphorylates StAR at Ser(232). Directed mutagenesis of Ser(232) to a non-phosphorylable amino acid such as Ala (StAR S232A) inhibited in vitro StAR phosphorylation by active ERK1/2. Transient transfection of MA-10 cells with StAR S232A markedly reduced the yield of progesterone production. In summary, here we show that StAR is a novel substrate of ERK1/2, and that mitochondrial ERK1/2 is part of a multimeric protein kinase complex that regulates cholesterol transport. The role of MAPKs in mitochondrial function is underlined.  相似文献   

3.
Steroid hormones are essential for carbohydrate metabolism, stress management, and reproduction and are synthesized from cholesterol in mitochondria of adrenal glands and gonads/ovaries. In acute stress or hormonal stimulation, steroidogenic acute regulatory protein (StAR) transports substrate cholesterol into the mitochondria for steroidogenesis by an unknown mechanism. Here, we report for the first time that StAR interacts with voltage-dependent anion channel 2 (VDAC2) at the mitochondria-associated endoplasmic reticulum membrane (MAM) prior to its translocation to the mitochondrial matrix. In the MAM, StAR interacts with mitochondrial proteins Tom22 and VDAC2. However, Tom22 knockdown by siRNA had no effect on pregnenolone synthesis. In the absence of VDAC2, StAR was expressed but not processed into the mitochondria as a mature 30-kDa protein. VDAC2 interacted with StAR via its C-terminal 20 amino acids and N-terminal amino acids 221–229, regulating the mitochondrial processing of StAR into the mature protein. In the absence of VDAC2, StAR could not enter the mitochondria or interact with MAM-associated proteins, and therefore steroidogenesis was inhibited. Furthermore, the N terminus was not essential for StAR activity, and the N-terminal deletion mutant continued to interact with VDAC2. The endoplasmic reticulum-targeting prolactin signal sequence did not affect StAR association with the MAM and thus its mitochondrial targeting. Therefore, VDAC2 controls StAR processing and activity, and MAM is thus a central location for initiating mitochondrial steroidogenesis.  相似文献   

4.
5.
Hormone-sensitive lipase (HSL) is responsible for the neutral cholesteryl ester hydrolase activity in steroidogenic tissues. Through its action, HSL is involved in regulating intracellular cholesterol metabolism and making unesterified cholesterol available for steroid hormone production. Steroidogenic acute regulatory protein (StAR) facilitates the movement of cholesterol from the outer mitochondrial membrane to the inner mitochondrial membrane and is a critical regulatory step in steroidogenesis. In the current studies we demonstrate a direct interaction of HSL with StAR using in vitro glutathione S-transferase pull-down experiments. The 37-kDa StAR is coimmunoprecipitated with HSL from adrenals of animals treated with ACTH. Deletional mutations show that HSL interacts with the N-terminal as well as a central region of StAR. Coexpression of HSL and StAR in Chinese hamster ovary cells results in higher cholesteryl ester hydrolytic activity of HSL. Transient overexpression of HSL in Y1 adrenocortical cells increases mitochondrial cholesterol content under conditions in which StAR is induced. It is proposed that the interaction of HSL with StAR in cytosol increases the hydrolytic activity of HSL and that together HSL and StAR facilitate cholesterol movement from lipid droplets to mitochondria for steroidogenesis.  相似文献   

6.
The steroidogenic acute regulatory (StAR) protein, which mediates cholesterol delivery to the inner mitochondrial membrane and the P450scc enzyme, has been shown to require a mitochondrial electrochemical gradient for its activity in vitro. To characterize the role of this gradient in cholesterol transfer, investigations were conducted in whole cells, utilizing the protonophore carbonyl cyanide m-chlorophenylhydrazone (m-CCCP) and the potassium ionophore valinomycin. These reagents, respectively, dissipate the mitochondrial electrochemical gradient and inner mitochondrial membrane potential. Both MA-10 Leydig tumor cell steroidogenesis and mitochondrial import of StAR were inhibited by m-CCCP or valinomycin at concentrations which had only minimal effects on P450scc activity. m-CCCP also inhibited import and processing of both StAR and the truncated StAR mutants, N-19 and C-28, in transfected COS-1 cells. Steroidogenesis induced by StAR and N-47, an active N-terminally truncated StAR mutant, was reduced in transfected COS-1 cells when treated with m-CCCP. This study shows that StAR action requires a membrane potential, which may reflect a functional requirement for import of StAR into the mitochondria, or more likely, an unidentified factor which is sensitive to ionophore treatment. Furthermore, the ability of N-47 to stimulate steroidogenesis in nonsteroidogenic HepG2 liver tumor cells, suggests that the mechanism by which StAR acts may be common to many cell types.  相似文献   

7.
The steroidogenic acute regulatory protein (StAR) is responsible for acute control of cholesterol transport across the mitochondrial membrane, however the mechanism of StAR-associated cholesterol transport is unknown and may involve the peripheral-type benzodiazepine receptor (PBR)/endozepine system. Several molecules of PBR may associate to form a channel through which cholesterol passes to the inner mitochondrial membrane, and endozepine is the natural ligand for PBR. Bioluminescence resonance energy transfer (BRET) was used to test StAR/PBR/endozepine interactions, PBR aggregation, and the effect of second messengers on interactions. There was no evidence of StAR/PBR, StAR/endozepine, or PBR/endozepine interactions. The StAR and PBR fusion proteins were trafficking to the mitochondria as expected, but the endozepine fusion protein was not localized to the mitochondria indicating that it was not biologically active. Data were obtained indicating that PBR forms aggregates in the mitochondrial membrane. Energy transfer between PBR fusion proteins was dose and time dependent, but there was no effect induced by PK11195 ligand binding or pharmacologic activation of PKA or PKC second messenger pathways. It appears that PBR aggregates in the mitochondrial membrane, however there was no evidence that PBR aggregation is regulated in the acute control of steroidogenesis, or that PBR and StAR interact.  相似文献   

8.
9.
10.
The activation of the rate-limiting step in steroid biosynthesis, that is the transport of cholesterol into the mitochondria, is dependent on PKA-mediated events triggered by hormones like ACTH and LH. Two of such events are the protein tyrosine dephosphorylation mediated by protein tyrosine phosphatases (PTPs) and the release of arachidonic acid (AA) mediated by two enzymes, ACS4 (acyl-CoA synthetase 4) and Acot2 (mitochondrial thioesterase). ACTH and LH regulate the activity of PTPs and Acot2 and promote the induction of ACS4. Here we analyzed the involvement of PTPs on the expression of ACS4. We found that two PTP inhibitors, acting through different mechanisms, are both able to abrogate the hormonal effect on ACS4 induction. PTP inhibitors also reduce the effect of cAMP on steroidogenesis and on the level of StAR protein, which facilitates the access of cholesterol into the mitochondria. Moreover, our results indicate that exogenous AA is able to overcome the inhibition produced by PTP inhibitors on StAR protein level and steroidogenesis. Then, here we describe a link between PTP activity and AA release, since ACS4 induction is under the control of PTP activity, being a key event for AA release, StAR induction and steroidogenesis.  相似文献   

11.
Cholesterol is a vital component of cellular membranes, and is the substrate for biosynthesis of steroids, oxysterols and bile acids. The mechanisms directing the intracellular trafficking of this nearly insoluble molecule have received increased attention through the discovery of the steroidogenic acute regulatory protein (StAR) and similar proteins containing StAR-related lipid transfer (START) domains. StAR can transfer cholesterol between synthetic liposomes in vitro, an activity which appears to correspond to the trans-cytoplasmic transport of cholesterol to mitochondria. However, trans-cytoplasmic cholesterol transport in vivo appears to involve the recently-described protein StarD4, which is expressed in most cells. Steroidogenic cells must also move large amounts of cholesterol from the outer mitochondrial membrane to the first steroidogenic enzyme, which lies on the matrix side of the inner membrane; this action requires StAR. Congenital lipoid adrenal hyperplasia, a rare and severe disorder of human steroidogenesis, results from mutations in StAR, providing a StAR knockout of nature that has provided key insights into its activity. Cell biology experiments show that StAR moves large amounts of cholesterol from the outer to inner mitochondrial membrane, but acts exclusively on the outer membrane. Biophysical data show that only the carboxyl-terminal alpha-helix of StAR interacts with the outer membrane. Spectroscopic data and molecular dynamics simulations show that StAR's interactions with protonated phospholipid head groups on the outer mitochondrial membrane induce a conformational change (molten globule transition) needed for StAR's activity. StAR appears to act in concert with the peripheral benzodiazepine receptor, but the precise itinerary of a cholesterol molecule entering the mitochondrion remains unclear.  相似文献   

12.
13.
The steroidogenic acute regulatory protein (StAR) simulates steroid biosynthesis by increasing the flow of cholesterol from the outer mitochondrial membrane (OMM) to the inner membrane. StAR acts exclusively on the OMM, and only StAR's carboxyl-terminal alpha-helix (C-helix) interacts with membranes. Biophysical studies have shown that StAR becomes a molten globule at acidic pH, but a physiologic role for this structural transition has been controversial. Molecular modeling shows that the C-helix, which forms the floor of the sterol-binding pocket, is stabilized by hydrogen bonding to adjacent loops. Molecular dynamics simulations show that protonation of the C-helix and adjacent loops facilitates opening and closing the sterol-binding pocket. Two disulfide mutants, S100C/S261C (SS) and D106C/A268C (DA), designed to limit the mobility of the C-helix but not disrupt overall conformation, were prepared in bacteria, and their correct folding and positioning of the disulfide bonds was confirmed. The SS mutant lost half, and the DA mutant lost all cholesterol binding capacity and steroidogenic activity with isolated mitochondria in vitro, but full binding and activity was restored to each mutant by disrupting the disulfide bonds with dithiothreitol. These data strongly support the model that StAR activity requires a pH-dependent molten globule transition on the OMM.  相似文献   

14.
In order to study the effect of phosphorylation on the function of the steroidogenic acute regulatory protein (StAR), 10 putative phosphorylation sites were mutated in the hamster StAR. In pcDNA3.1-StAR transfected COS-1 cells, decreases in basal activity were found for the mutants S55A, S185A and S194A. Substitution of S185 by D or E to mimic phosphorylation resulted in decreased activity for all mutants; we concluded that S185 was not a phosphorylation site and we hypothesized that mutations on S185 created StAR conformational changes resulting in a decrease in its binding affinity for cholesterol. In contrast, the mutation S194D resulted in an increase in StAR activity. We have calculated the relative rate of pregnenolone formation (App. Vmax) in transfected COS-1 cells with wild type (WT) and mutant StAR-pcDNA3.1 under control and (Bu)2-cAMP stimulation. The App. Vmax values refer to the rate of cholesterol transported and metabolized by the cytochrome P450scc enzyme present in the inner mitochondrial membrane. The App. Vmax was 1.61 ± 0.28 for control (Ctr) WT StAR and this value was significantly increased to 4.72 ± 0.09 for (Bu)2-cAMP stimulated preparations. App. Vmax of 5.53 (Ctr) and 4.82 ((Bu)2-cAMP) found for S194D StAR preparations were similar to that of the WT StAR stimulated preparations. At equal StAR quantity, an anti-phospho-(S/T) PKA substrate antibody revealed four times more phospho-(S/T) in (Bu)2-cAMP than in control preparations. The intensity of phosphorylated bands was decreased for the S55A, S56A and S194A mutants and it was completely abolished for the S55A/S56A/S194A mutant. StAR activity of control and stimulated preparations were diminished by 73 and 72% for the mutant S194A compared to 77 and 83% for the mutant S55A/S56A/S194A. The remaining activity appears to be independent of phosphorylation at PKA sites and could be due to the intrinsic activity of non-phosphorylated StAR or to an artefact due to the pharmacological quantity of StAR expressed in COS-1. In conclusion we have shown that (Bu)2-cAMP provokes an augmentation of both the quantity and activity of StAR, and that an enhancement in StAR phosphorylation increases its activity. The increased quantity of StAR upon (Bu)2-cAMP stimulation could be due to an augmentation of its mRNA or protein synthesis stability, or both; this is yet to be determined.  相似文献   

15.
Bose HS  Whittal RM  Ran Y  Bose M  Baker BY  Miller WL 《Biochemistry》2008,47(8):2277-2288
The steroidogenic acute regulatory protein (StAR) belongs to a family of 15 StAR-related lipid transfer (START) domain proteins termed StARD1-StARD15. StAR (StARD1) induces adrenal and gonadal steroidogenesis by moving cholesterol from the outer mitochondrial membrane to the inner mitochondrial membrane by an unclear process that involves conformational changes that have been characterized as a molten globule transition. We expressed, purified, and assessed the activity and cholesterol-binding behavior of StARD1 and StARD3-D7, showing that StARD6 had activity equal to StARD1, whereas StARD4, D5, and D7 had little or no activity with adrenal mitochondria in vitro. Partial proteolysis examined by mass spectrometry suggests that StARD6 has a protease-sensitive C-terminus, similar to but smaller than that of StARD1. Experiments using urea denaturation, stopped-flow kinetics and measurements of mitochondrial membrane association suggests that StARD1 and StARD6 both unfold and refold slowly with similar kinetic patterns. Isothermal titration calorimetry suggests that StARD6 interacts with mitochondrial membranes as well as or better than StARD1. Computational modeling of StARD6 suggests that it has a similar fold to StARD1, with a hydrophobic sterol-binding pocket and a unique C-terminal extension. StARD6, which is expressed only in male germ-line cells, thus exhibits biological and biophysical properties that imply a role in steroidogenesis.  相似文献   

16.
17.
The steroidogenic acute regulatory protein (StAR) mediates the acute stimulation of steroid synthesis by tropic hormones in steroidogenic cells. StAR interacts with the outer mitochondrial membrane and facilitates the rate-limiting transfer of cholesterol to the inner mitochondrial membrane where cytochrome P-450scc converts this cholesterol into pregnenolone. We tested the ability of N-62 StAR to transfer cholesterol from donor vesicles containing cholesterol but no cytochrome P-450scc to acceptor vesicles containing P-450scc but no cholesterol, using P-450scc activity as a reporter of the cholesterol content of synthetic phospholipid vesicles. N-62 StAR stimulated P-450scc activity in acceptor vesicles 5-10-fold following the addition of donor vesicles. Transfer of cholesterol to acceptor vesicles was rapid and sufficient to maintain a linear rate of pregnenolone synthesis for 10 min. The effect of N-62 StAR in stimulating P-450scc activity was specific for cholesterol transfer and was not due to vesicle fusion or P-450scc exchange between vesicles. Maximum stimulation of P-450scc activity in acceptor vesicles required preincubation of N-62 StAR with phospholipid vesicles prior to adding donor vesicles. The amount of N-62 StAR causing half-maximum stimulation of P-450scc activity in acceptor vesicles was 1.9 microm. Half-maximum stimulation required more than a 10-fold higher concentration of R182L N-62 StAR, a mutant associated with congenital lipoid adrenal hyperplasia. N-62 StAR-mediated transfer of cholesterol between vesicles showed low dependence on the cholesterol concentration in the donor vesicles. Thus StAR can transfer cholesterol between synthetic membranes without other protein components found in mitochondria.  相似文献   

18.
19.
The metabolism of cholesterol by cytochrome P450 side chain cleavage enzyme is hormonally regulated in steroidogenic tissues via intramitochondrial cholesterol transport. The mediating steroidogenic acute regulatory protein (StAR) is synthesized as a 37-kDa (p37) precursor that is phosphorylated by protein kinase A and cleaved within the mitochondria to generate 30-kDa forms (p30, pp30). The effectiveness of modified recombinant StAR forms in COS-1 cells without mitochondrial import has led to a prevailing view that cholesterol transport is mediated by p37 StAR via activity on the outer mitochondrial membrane. The present study of the activation of cholesterol metabolism by bromo-cAMP in adrenal cells in relation to (35)S-StAR turnover indicates that targeting of pp30 to the inner membrane provides the dominant cholesterol transport mechanism. We show that 1) only newly synthesized StAR is functional, 2) phosphorylation and processing of p37 to pp30 occurs rapidly and stoichiometrically, 3) both steps are necessary for optimum transport, and 4) newly synthesized pp30 exhibits very high activity (400 molecules of cholesterol/StAR/min). Segregation of cAMP activation and synthesis of StAR from cholesterol metabolism showed that very low levels of newly synthesized StAR (1 fmol/min/10(6) cells) sustained activated cholesterol metabolism (0.4 pmol/min/10(6) cells, t(1/2) = 70 min) long after complete removal of p37 (t(1/2) = 5 min). This activity was highly sensitive to inhibition of processing by CCCP only until sufficient pp30 was formed. Maximum activation preceded bromo-cAMP-induced StAR expression, indicating other limiting steps in cholesterol metabolism.  相似文献   

20.
The steroidogenic acute regulatory protein (StAR) is essential for the regulated production of steroid hormones, mediating the translocation of intracellular cholesterol to the inner mitochondrial membrane where steroidogenesis begins. Steroidogenic cells lacking StAR have impaired steroidogenesis and progressively accumulate lipid, ultimately causing cytopathic changes and deterioration of steroidogenic capacity. Developmental studies of StAR knockout (KO) mice have correlated gonadal lipid deposits with puberty, suggesting that trophic hormones contribute to this lipid accumulation. To delineate the role of gonadotropins in this process, we examined double mutant mice deficient in both StAR and gonadotropins [StAR KO/hpg (hypogonadal)]. Lipid accumulation was ameliorated considerably in StAR KO/hpg mice but was restored by treatment with exogenous gonadotropins, directly linking trophic hormones with gonadal lipid accumulation. To define the relative roles of exogenous vs. endogenous cholesterol in the lipid accumulation, we also examined mice lacking both StAR and apolipoprotein A-I (StAR KO/Apo A-I KO). Steroidogenic tissues of StAR KO/Apo A-I KO mice had markedly decreased lipid deposits, supporting the predominant role of high-density lipoprotein-derived cholesterol in the lipid accumulation caused by StAR deficiency. Finally, we used electron microscopy to compare mitochondrial ultrastructure in StAR KO and cholesterol side-chain cleavage enzyme (Cyp11a1) KO mice; despite comparable lipid accumulation within adrenocortical cells, the effects of StAR deficiency and Cyp11a1 deficiency on mitochondrial ultrastructure were markedly different. These findings extend our understanding of steroidogenic cell dysfunction in StAR KO mice and highlight key roles of trophic hormones and high-density lipoprotein-derived cholesterol in lipid deposits within StAR-deficient steroidogenic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号