首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As shown in hybridization experiments, the genome of Pseudomonas aeruginosa cells contains a htpR-like gene which controls the expression of heat shock genes in cells of Escherichia coli. By means of specially constructed plasmids, the synthesis of htpR antisense RNA has been found to disturb cell division and proteolytic processes in P. aeruginosa, suggesting the functional relationship of htpR genes in E. coli and Pseudomonas bacteria.  相似文献   

2.
Heat shock response of Pseudomonas aeruginosa.   总被引:6,自引:4,他引:2       下载免费PDF全文
The general properties of the heat shock response in Pseudomonas aeruginosa were characterized. The transfer of cells from 30 to 45 degrees C repressed the synthesis of many cellular proteins and led to the enhanced production of 17 proteins. With antibodies raised against the Escherichia coli proteins, two polypeptides of P. aeruginosa with apparent molecular weights of 76,000 and 61,000 (76K and 61K proteins) were shown to be analogous to the DnaK and GroEL heat shock proteins of E. coli due to their immunologic cross-reactivity. The major sigma factor (sigma 87) of P. aeruginosa was shown to be a heat shock protein that was immunologically related to the sigma 70 of E. coli by using polyclonal antisera. A hybridoma was produced, and the monoclonal antibody MP-S-1 was specific for the sigma 87 and did not cross-react with sigma 70 of E. coli. A smaller 40K protein was immunoprecipitated with RNA polymerase antisera from cells that had been heat shocked. The 40K protein was also associated with RNA polymerase which had been purified from heat-shocked cells and may be the heat shock sigma factor of P. aeruginosa. Exposure to ethanol resulted in the production of seven new proteins, three of which appeared to be heat shock proteins.  相似文献   

3.
4.
5.
Overexpression of the Escherichia coli sn-glycerol-3-phosphate (glycerol-P) acyltransferase, an integral membrane protein, causes formation of ordered arrays of the enzyme in vitro. The formation of these tubular structures did not occur in an E. coli strain bearing a mutation in the htpR gene, the regulatory gene for the heat shock response. The htpR165 mutation was shown by genetic analysis to be the lesion responsible for blockage of tubule formation. Similar amounts of glycerol-P acyltransferase were produced in isogenic htpR+ and htpR165 strains, ruling out an effect of htpR165 on expression of glycerol-P acyltransferase. Further, phospholipid metabolism was not altered in either strain after induction of glycerol-P acyltransferase synthesis. Increased glycerol-P acyltransferase synthesis caused a partial induction of the heat shock response which was dependent upon a wild type htpR gene. The heat shock proteins induced were identified as the groEL and dnaK gene products on two-dimensional gels. These two proteins have been implicated in the assembly of bacteriophage coats. These heat shock proteins appear essential for tubule formation.  相似文献   

6.
7.
The mechanisms of induction of heat shock protein synthesis in E. coli have been studied. For this purpose plasmids in which htpR gene expression is controlled by the PR-promoter of bacteriophage lambda and by the Trp-promoter have been constructed. An effective induction of heat shock proteins requires both an increased content of htpR protein and additional cofactors formed in the cell under heat shock conditions.  相似文献   

8.
In Escherichia coli, the ability to elicit a heat shock response depends on the htpR gene product. Previous work has shown that the HtpR protein serves as a sigma factor (sigma 32) for RNA polymerase that specifically recognizes heat shock promoters (A.D. Grossman, J.W. Erickson, and C.A. Gross Cell 38:383-390, 1984). In the present study we showed that sigma 32 synthesized in vitro could stimulate the expression of heat shock genes. The in vitro-synthesized sigma 32 was found to be associated with RNA polymerase. In vivo-synthesized sigma 32 was also associated with RNA polymerase, and this polymerase (E sigma 32) could be isolated free of the standard polymerase (E sigma 70). E sigma 32 was more active than E sigma 70 with heat shock genes; however, non-heat-shock genes were not transcribed by E sigma 32. The in vitro expression of the htpR gene required E sigma 70 but did not require E sigma 32.  相似文献   

9.
The half lives of mRNA for Escherichia coli chloramphenicol-acetyltransferase, Bacillus amyloliquefaciens alpha-amylase and human leucocyte interferon were measured in E. coli cells by molecular RNA.DNA hybridization. The effect of mutation in pnp gene, coding polynucleotide phosphorylase, on the stability of these mRNA was studied. The half life of interferon mRNA increases from 25 to 90 s in the pnp mutant, resulting in an increase of interferon accumulation. The stability of interferon in E. coli cells depends on the htpR gene, controlling the heat shock response. The yields of leucocyte interferons alpha-2, alpha I-1 and fibroblast interferon beta increase ten times in htpR mutants. Thus, by using pnp and htpR mutants it is possible to enhance considerably the eukaryotic gene expression in bacterial cells.  相似文献   

10.
11.
The CapR protein is an ATP hydrolysis-dependent protease as well as a DNA-stimulated ATPase and a nucleic acid-binding protein. The sequences of the 5' end of the capR (lon) gene DNA and N-terminal end of the CapR protein were determined. The sequence of DNA that specifies the N-terminal portion of the CapR protein was identified by comparing the amino acid sequence of the CapR protein with the sequence predicted from the DNA. The DNA and protein sequences established that the mature protein is not processed from a precursor form. No sequence corresponding to an SOS box was found in the 5' sequence of DNA. There were sequences that corresponded to a putative -35 and -10 region for RNA polymerase binding. The capR (lon) gene was recently identified as one of 17 heat shock genes in Escherichia coli that are positively regulated by the product of the htpR gene. A comparison of the 5' DNA region of the capR gene with that of several other heat shock genes revealed possible consensus sequences.  相似文献   

12.
13.
K Ito  S Udaka    H Yamagata 《Journal of bacteriology》1992,174(7):2281-2287
A gene of Bacillus brevis HPD31 analogous to the Escherichia coli lon gene has been cloned and characterized. The cloned gene (B. brevis lon gene) encodes a polypeptide of 779 amino acids with a molecular weight of 87,400 which resembles E. coli protease La, the lon gene product. Fifty-two percent of the amino acid residues of the two polypeptides were identical. The ATP-binding sequences found in E. coli protease La were highly conserved. The promoter of the B. brevis lon gene resembled that recognized by the major RNA polymerase of Bacillus subtilis and did not contain sequences homologous to the E. coli heat shock promoters. The B. brevis lon gene was inactivated by insertion of the neomycin resistance gene. A mutant B. brevis carrying the inactivated lon gene showed diminished ability for the degradation of abnormal polypeptides synthesized in the presence of puromycin.  相似文献   

14.
15.
16.
Double-stranded DNA encoding the human hormone somatomedin-C (SMC) has been synthesized. This synthetic gene has been inserted into a plasmid bearing the strong leftward promoter (PL) of bacteriophage lambda and expressed in E. coli. Codons for the N-terminal region of SMC which maximized the hormone's synthesis were chosen in an SMC-lac z fusion assay. The amounts of SMC accumulated in E. coli were influenced by mutations at two chromosomal loci, lon and htpR.  相似文献   

17.
18.
The lon gene of Escherichia coli encodes the ATP-dependent serine protease La and belongs to the family of sigma 32-dependent heat shock genes. In this paper, we report the cloning and characterization of the lon gene from the gram-positive bacterium Bacillus subtilis. The nucleotide sequence of the lon locus, which is localized upstream of the hemAXCDBL operon, was determined. The lon gene codes for an 87-kDa protein consisting of 774 amino acid residues. A comparison of the deduced amino acid sequence with previously described lon gene products from E. coli, Bacillus brevis, and Myxococcus xanthus revealed strong homologies among all known bacterial Lon proteins. Like the E. coli lon gene, the B. subtilis lon gene is induced by heat shock. Furthermore, the amount of lon-specific mRNA is increased after salt, ethanol, and oxidative stress as well as after treatment with puromycin. The potential promoter region does not show similarities to promoters recognized by sigma 32 of E. coli but contains sequences which resemble promoters recognized by the vegetative RNA polymerase E sigma A of B. subtilis. A second gene designated orfX is suggested to be transcribed together with lon and encodes a protein with 195 amino acid residues and a calculated molecular weight of 22,000.  相似文献   

19.
Production of bacteriophages T2, T4, and T6 at 42.8 to 44 degrees C was increased from 8- to 260-fold by adapting the Escherichia coli host (grown at 30 degrees C) to growth at the high temperature for 8 min before infection; this increase was abolished if the host htpR (rpoH) gene was inactive. Others have shown that the htpR protein increases or activates the synthesis of at least 17 E. coli heat shock proteins upon raising the growth temperature above a certain level. At 43.8 to 44 degrees C in T4-infected, unadapted cells, the rates of RNA, DNA, and protein synthesis were about 100, 70, and 70%, respectively, of those in T4-infected, adapted cells. Production of the major processed capsid protein, gp23, was reduced significantly more than that of most other T4 proteins in unadapted cells relative to adapted cells. Only 4.6% of the T4 DNA made in unadapted cells was resistant to micrococcal nuclease, versus 50% in adapted cells. Thus, defective maturation of T4 heads appears to explain the failure of phage production in unadapted cells. Overproduction of the heat shock protein GroEL from plasmids restored T4 production in unadapted cells to about 50% of that seen in adapted cells. T4-infected, adapted E. coli B at around 44 degrees C exhibited a partial tryptophan deficiency; this correlated with reduced uptake of uracil that is probably caused by partial induction of stringency. Production of bacteriophage T7 at 44 degrees C was increased two- to fourfold by adapting the host to 44 degrees C before infection; evidence against involvement of the htpR (rpoH) gene is presented. This work and recent work with bacteriophage lambda (C. Waghorne and C.R. Fuerst, Virology 141:51-64, 1985) appear to represent the first demonstrations for any virus that expression of the heat shock regulon of a host is necessary for virus production at high temperature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号