首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aromatic amino acid transport in Yersinia pestis.   总被引:2,自引:2,他引:0       下载免费PDF全文
The uptake and concentration of aromatic amino acids by Yersinia pestis TJW was investigated using endogenously metabolizing cells. Transport activity did not depend on either protein synthesis or exogenously added energy sources such as glucose. Aromatic amino acids remained as the free, unaltered amino acid in the pool fraction. Phenylalanine and tryptophan transport obeyed Michaelis-Menten-like kinetics with apparent Km values of 6 x 10(-7) to 7.5 x 10(-7) and 2 x 10(-6) M, respectively. Tyrosine transport showed biphasic concentration-dependent kinetics that indicated a diffusion-like process above external tyrosine concentrations of 2 x 10(-6) M. Transport of each aromatic amino acid showed different pH and temperature optima. The pH (7.5 TO8) and temperature (27 C) optima for phenylalanine transport were similar to those for growth. Transport of each aromatic amino acid was characterized by Q10 values of approximately 2. Cross inhibition and exchange experiments between the aromatic amino acids and selected aromatic amino acid analogues revealed the existence of three transport systems: (i) tryptophan specific, (ii) phenylalanine specific with limited transport activity for tyrosine and tryptophan, and (iii) general aromatic system with some specificity for tyrosine. Analogue studies also showed that the minimal stereo and structural features for phenylalanine recognition were: (i) the L isomer, (ii) intact alpha amino and carboxy group, and (iii) unsubstituted aromatic ring. Aromatic amino acid transport was differentially inhibited by various sulfhydryl blocking reagents and energy inhibitors. Phenylalanine and tyrosine transport was inhibited by 2,4-dinitrophenol, potassium cyanide, and sodium azide. Phenylalanine transport showed greater sensitivity to inhibition by sulfhydryl blocking reagents, particularly N-ethylmaleimide, than did tyrosine transport. Tryptophan transport was not inhibited by either sulfhydryl reagents or sodium azide. The results on the selective inhibition of aromatic amino acid transport provide additional evidence for multiple transport systems . These results further suggest both specific mechanisms for carrier-mediated active transport and coupling to metabolic energy.  相似文献   

2.
There is an overlap of carrier-mediated L-amino acid transport and apparent simple diffusion when measured in intestinal brush border membrane vesicles. Using L-threonine and L-glutamine as representative amino acids, this study was undertaken to estimate apparent simple diffusion of L-amino acids and to establish the effective dosage of HgCl2 for completely blocking carrier-mediated L-amino acid transport in porcine jejunal enterocyte brush border membrane vesicles. Jejunal mucosa was scraped from three pigs weighing 26 kg. Enterocyte brush border membrane vesicles, with an average enrichment of 24-fold in sucrase specific activity, were prepared by Mg2+-precipitation and differential centrifugation. In vitro uptake was measured by the fast filtration manual procedure. HgCl2 blocked the carrier-mediated initial transport of L-threonine and L-glutamine under Na+-gradient condition in a dose-dependent manner. At the minimal concentration of 0.165 micromol HgCl2 mg(-1) protein, carrier-mediated L-threonine and L-glutamine transport was completely inhibited. The apparent L-threonine and L-glutamine diffusion was estimated to be 8.6+/-0.7 and 12.4+/-1.0% of the total uptake at the substrate concentrations of 5 microM (L-threonine) and 50 microM (L-glutamine). Therefore, the treatment of porcine brush border membrane vesicles with a minimum of 0.165 micromol HgCl2 mg(-1) protein completely blocks carrier-mediated L-amino acid transport and enables the direct estimation of apparent L-amino acid diffusion in enterocyte brush border membrane vesicles.  相似文献   

3.
The time course, kinetic, specificity and sodium-dependence of L-leucine and L-phenylalanine uptake by rabbit isolated oxyntic glands were studied in order to identify the systems involved in the transport of branched-chain and aromatic neutral amino acids through the basolateral cell membrane. The uptake was measured directly in the disrupted cells after incubation of the glands with the 3H-labelled amino acid both in a sodium-containing and a sodium-free medium. The uptake of L-leucine was largely carrier-mediated whilst L-phenylalanine was taken up by either carrier-mediated and nonsaturable processes. Both amino acids were taken up by a Na(+)-independent process. The kinetic parameters of L-leucine and L-phenylalanine carrier-mediated influx were, respectively: Kt = 2.71 mM and Jmax = 1390 nmol mg-1 s-1, Kt = 1.03 mM and Jmax = 176 nmol mg-1 s-1. From cross-inhibition studies it can be inferred that L-leucine is primarily transported by a Na(+)-independent system which shows specificity for bulky side chains dipolar amino acids. The system displays similar affinities for L-phenylalanine (Ki = 2.81 mM) and L-isoleucine (Ki = 2.62 mM). Similar results were obtained from self-inhibition experiments: the Ki of the carrier-mediated uptake of L-leucine and L-phenylalanine were 2.12 and 2.40 mM (from a Hanes plot) or 3.2 and 0.8 mM (from a Dixon plot), respectively. It is concluded that a sodium-independent transport system, like Christensen's 'L' type, is shared by branched-chain and aromatic dipolar amino acids, which only shows slight differences in their affinities for the carrier.  相似文献   

4.
The characteristics of the intestinal transport system for choline were investigated using isolated brush-border membrane vesicles from rat small intestine. In spite of the diminutive lipid solubility, the uptake of choline by membrane vesicles reflected smooth permeation into intravesicular space rather than the binding to the membrane surface. Physiological conditions, present in the intact intestine, such as an inward-directed Na+ or H+ gradient and inside negative membrane potentials, didn't directly involve in choline transport across the brush-border membrane. Moreover, an outward-directed H+ gradient had no significant effect on the time course of choline transport. However, in the absence of a driving-force, the initial uptake of choline exhibited a saturable manner. A kinetic analysis of the initial uptake rate gave an apparent Km of 159 microM. Furthermore, unlabeled choline caused both cis-inhibition and trans-stimulation for labeled choline transport, suggesting the existence of a carrier-mediated transport system for choline, classified as so-called 'facilitated diffusion'. Since tetramethylammonium, acetylcholine, and N1-methylnicotinamide caused both cis-inhibition and trans-stimulation, they appear to be accepted as the substrate of choline carrier. On the other hand, quaternary ammonium compounds (QACs) such as those which possessed hydrophobic parts in their molecules exhibited only cis-inhibition. They also inhibited Na(+)-dependent D-glucose transport, indicating that they influenced various carrier-mediated transport systems non-specifically due to interaction with the membrane. These findings strongly suggest that the choline transport system on the brush-border membrane of rat intestine recognizes only small molecular QACs as its substrate.  相似文献   

5.
This study describes evidence for the existence of a H+/glycine symport system in rabbit renal brush-border membrane vesicles. An inward proton gradient stimulates glycine transport across the brush-border membrane, and this H+-driven glycine uptake is attenuated by the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone. It is a positive rheogenic process, i.e. the H+-dependent glycine uptake is further enhanced by an intravesicular negative potential. Glycine uptake is stimulated to a lesser degree by an inward Na+ gradient. H+-dependent glycine uptake is inhibited by sarcosine (69%), an analog amino acid, imino acids (proline 81%, hydroxy proline 67%), and beta-alanine (31%), but not by neutral (L-leucine) or basic (L-lysine) amino acids. The results demonstrate that H+ glycine co-transport system in rabbit renal brush-border membrane vesicles is a carrier-mediated electrogenic process and that transport is shared by imino acids and partially by beta-alanine.  相似文献   

6.
Abstract: The relationship between the transport of thyroid hormones and that of amino acids was examined by measuring the uptake of amino acids that are characteristic substrates of systems L, A, and N, and the effect of 3,3',5-triiodo-L-thyronine (T3) on this uptake, in cultured astrocytes. Tryptophan and leucine uptakes were rapid, Na+-independent, and efficiently inhibited by T3 (half-inhibition at ∼ 2 μ M ). Two Na+-independent L-like systems (L1 and L2), common to leucine and aromatic amino acids, were characterized kinetically. System L2 had a low affinity for leucine and tryptophan ( K m= 0.3–0.9 m M ). The high-affinity system L1 ( K m∼ 10 μ M for both amino acids) was competitively inhibited by T3 with a K i of 2–3 μ M (close to the T3 transport K m). Several T3 analogues inhibited system L1 and the T3 transport system similarly. Glutamine uptake and α-(methylamino)isobutyric acid uptake were, respectively, two and 200 times lower than tryptophan and leucine uptakes. T3 had little effect on the uptakes of glutamine and α-(methylamino)isobutyric acid. The results indicate that the T3 transport system and system L1 are related.  相似文献   

7.
Uptake of guanidine, an endogenous organic cation, into brush-border membrane vesicles isolated from human term placentas was investigated. Initial uptake rates were manyfold greater in the presence of an outward-directed H+ gradient ([pH]o greater than [pH]i) than in the absence of a H+ gradient ([pH]o = [pH]i). Guanidine was transiently accumulated inside the vesicles against a concentration gradient in the presence of the H+ gradient. The H+ gradient-dependent stimulation of guanidine uptake was not due to a H+-diffusion potential because an ionophore (valinomycin or carbonylcyanide p-trifluoromethoxyphenylhydrazone)-induced inside-negative membrane potential failed to stimulate the uptake. In addition, uphill transport of guanidine could be demonstrated even in voltage-clamped membrane vesicles. The H+ gradient-dependent uptake of guanidine was inhibited by many exogenous as well as endogenous organic cations (cis-inhibition) but not by cationic amino acids. The presence of unlabeled guanidine inside the vesicles stimulated the uptake of labeled guanidine (trans-stimulation). These data provide evidence for the presence of an organic cation-proton antiporter in human placental brush-border membranes. Kinetic analysis of guanidine uptake demonstrated that the uptake occurred via two saturable, carrier-mediated transport systems, one being a high affinity, low capacity type and the other a low affinity, high capacity type. Studies on the effects of various cations on the organic cation-proton antiporter and the Na+-H+ exchanger revealed that these two transport systems are distinct.  相似文献   

8.
The activities of several selected Na(+)-dependent amino acid transporters were identified in human liver plasma membrane vesicles by testing for Na(+)-dependent uptake of several naturally occurring neutral amino acids or their analogs. Alanine, 2-(methylamino)isobutyric acid, and 2-aminoisobutyric acid were shown to be almost exclusively transported by the same carrier, system A. Kinetic analysis of 2-(methylamino)isobutyric acid uptake by the human hepatic system A transporter revealed an apparent Km of 0.15 mM and a Vmax of 540 pmol.mg-1 protein.min-1. Human hepatic system A accepts a broad range of neutral amino acids including cysteine, glutamine, and histidine, which have been shown in other species to be transported mainly by disparate carriers. Inhibition analysis of Na(+)-dependent cysteine transport revealed that the portion of uptake not mediated by system A included at least two saturable carriers, system ASC and one other that has yet to be characterized. Most of the glutamine and histidine uptake was Na(+)-dependent, and the component not mediated by system A constituted system N. The largest portion of glycine transport was mediated through system A and the remainder by system ASC with no evidence for system Gly activity. Our examination of Na(+)-dependent amino acid transport documents the presence of several transport systems analogous to those described previously but with some notable differences in their functional activity. Most importantly, the results demonstrate that liver plasma membrane vesicles are a valuable resource for transport analysis of human tissue.  相似文献   

9.
Amino acids enter rabbit jejunal brush border membrane vesicles via three major transport systems: (1) simple passive diffusion; (2) Na-independent carriers; and (3) Na-dependent carriers. The passive permeability sequence of amino acids is very similar to that observed in other studies involving natural and artificial membranes. Based on uptake kinetics and cross-inhibition profiles, at least two Na-independent and three Na-dependent carrier-mediated pathways exist. One Na-independent pathway, similar to the classical L system, favors neutral amino acids, while the other pathway favors dibasic amino acids such as lysine. One Na-dependent pathway primarily serves neutral L-amino acids including 2-amino-2-norbornanecarboxylic acid hemihydrate (BCH), but not beta-alanine or alpha-methylaminoisobutyric acid (MeAIB). Another Na-dependent route favors phenylalanine and methionine, while the third pathway is selective for imino acids and MeAIB. Li is unable to substitute for Na in these systems. Cross-inhibition profiles indicated that none of the Na-dependent systems conform to classical A or ACS paradigms. Other notable features of jejunal brush border vesicles include (1) no beta-alanine carrier, and (2) no major proline/glycine interactions.  相似文献   

10.
Amino acid transport was studied in membrane vesicles of the thermophilic anaerobic bacterium Clostridium fervidus. Neutral, acidic, and basic as well as aromatic amino acids were transported at 40 degrees C upon the imposition of an artificial membrane potential (delta psi) and a chemical gradient of sodium ions (delta microNa+). The presence of sodium ions was essential for the uptake of amino acids, and imposition of a chemical gradient of sodium ions alone was sufficient to drive amino acid uptake, indicating that amino acids are symported with sodium ions instead of with protons. Lithium ions, but no other cations tested, could replace sodium ions in serine transport. The transient character of artificial membrane potentials, especially at higher temperatures, severely limits their applicability for more detailed studies of a specific transport system. To obtain a constant proton motive force, the thermostable and thermoactive primary proton pump cytochrome c oxidase from Bacillus stearothermophilus was incorporated into membrane vesicles of C. fervidus. Serine transport could be driven by a membrane potential generated by the proton pump. Interconversion of the pH gradient into a sodium gradient by the ionophore monensin stimulated serine uptake. The serine carrier had a high affinity for serine (Kt = 10 microM) and a low affinity for sodium ions (apparent Kt = 2.5 mM). The mechanistic Na+-serine stoichiometry was determined to be 1:1 from the steady-state levels of the proton motive force, sodium gradient, and serine uptake. A 1:1 stoichiometry was also found for Na+-glutamate transport, and uptake of glutamate appeared to be an electroneutral process.  相似文献   

11.
Transport of Aromatic Amino Acids by Pseudomonas aeruginosa   总被引:9,自引:5,他引:4       下载免费PDF全文
Kinetic studies of the transport of aromatic amino acids by Pseudomonas aeruginosa revealed the existence of two high-affinity transport systems which recognized the three aromatic amino acids. From competition data and studies on the exchange of preformed aromatic amino acid pools, the first transport system was found to be functional with phenylalanine, tyrosine, and tryptophan (in order of decreasing activity), whereas the second system was active with tryptophan, phenylalanine, and tyrosine. The two systems also transported a number of aromatic amino acid analogues but not other amino acids. Mutants defective in each of the two and in both transport systems were isolated and described. When the amino acids were added at low external concentrations to cells growing logarithmically in glucose minimal medium, the tryptophan pool very quickly became saturated. Under identical conditions, phenylalanine and tyrosine each accumulated in the intracellular pool of P. aeruginosa at a concentration which was 10 times greater than that of tryptophan.  相似文献   

12.
Selectively permeable membrane vesicles isolated from Simian virus 40-transformed mouse fibroblasts catalyzed Na+ gradient-coupled active transport of several neutral amino acids dissociated from intracellular metabolism. Na+-stimulated alanine transport activity accompanied plasma membrane material during centrifugation in discontinuous dextran 110 gradients. Carrier-mediated transport into the vesicle was demonstrated. When Na+ was equilibrated across the membrane, countertransport stimulation of L-[3H]alanine uptake occurred in the presence of accumulated unlabeled L-alanine, 2-aminoisobutyric acid, or L-methionine. Competitive interactions among neutral amino acids, pH profiles, and apparent Km values for Na+ gradient-stimulated transport into vesicles were similar to those previously described for amino acid uptake in Ehrlich ascites cells, which suggests that the transport activity assayed in vesicles is a component of the corresponding cellular uptake process. Both the initial rate and quasi-steady state of uptake were stimulated as a function of a Na+ gradient (external Na+ greater than internal Na+) applied artificially across the membrane and were independent of endogenous (Na+ + K+)-ATPase activity. Stimulation by Na+ was decreased when the Na+ gradient was dissipated by monensin, gramicidin D or Na+ preincubation. Na+ decreased the apparent Km for alanine, 2-aminoisobutyric acid, and glutamine transport. Na+ gradient-stimulated amino acid transport was electrogenic, stimulated by conditions expected to generate an interior-negative membrane potential, such as the presence of the permeant anions NO3- and SCN-. Na+-stimulated L-alanine transport was also stimulated by an electrogenic potassium diffusion potential (K+ internal greater than K+ external) catalyzed by valinomycin; this stimulation was blocked by nigericin. These observations provide support for a mechanism of active neutral amino acid transport via the "A system" of the plasma membrane in which both a Na+ gradient and membrane potential contribute to the total driving force.  相似文献   

13.
The Na(+)-dependent uptake system for bile acids in the ileum from rabbit small intestine was characterized using brush-border membrane vesicles. The uptake of [3H]taurocholate into vesicles prepared from the terminal ileum showed an overshoot uptake in the presence of an inwardly-directed Na(+)-gradient ([Na+]out > [Na+]in), in contrast to vesicles prepared from the jejunum. The Na(+)-dependent [3H]taurocholate uptake was cis-inhibited by natural bile acid derivatives, whereas cholephilic organic compounds, such as phalloidin, bromosulphophthalein, bilirubin, indocyanine green or DIDS - all interfering with hepatic bile-acid uptake - did not show a significant inhibitory effect. Photoaffinity labeling of ileal membrane vesicles with 3,3-azo- and 7,7-azo-derivatives of taurocholate resulted in specific labeling of a membrane polypeptide with apparent molecular mass 90 kDa. Bile-acid derivatives inhibiting [3H]taurocholate uptake by ileal vesicles also inhibited labeling of the 90 kDa polypeptide, whereas compounds with no inhibitory effect on ileal bile-acid transport failed to show a significant effect on the labeling of the 90 kDa polypeptide. The involvement of functional amino-acid side-chains in Na(+)-dependent taurocholate uptake was investigated by chemical modification of ileal brush-border membrane vesicles with a variety of group-specific agents. It was found that (vicinal) thiol groups and amino groups are involved in active ileal bile-acid uptake, whereas carboxyl- and hydroxyl-containing amino acids, as well as tyrosine, histidine or arginine are not essential for Na(+)-dependent bile-acid transport activity. The irreversible inhibition of [3H]taurocholate transport by DTNB or NBD-chloride could be partially reversed by thiols like 2-mercaptoethanol or DTT. Furthermore, increasing concentrations of taurocholate during chemical modification with NBD-chloride were able to protect the ileal bile-acid transporter from inactivation. These findings suggest that a membrane polypeptide of apparent M(r) 90,000 is a component of the active Na(+)-dependent bile-acid reabsorption system in the terminal ileum from rabbit small intestine. Vicinal thiol groups and amino groups of the transport system are involved in Na(+)-dependent transport activity, whereas other functional amino acids are not essential for transport activity.  相似文献   

14.
Formation of aromatic amino acid pools in Escherichia coli K-12   总被引:34,自引:27,他引:7       下载免费PDF全文
Phenylalanine, tyrosine, and tryptophan were taken up into cells of Escherichia coli K-12 by a general aromatic transport system. Apparent Michaelis constants for the three amino acids were 4.7 x 10(-7), 5.7 x 10(-7), and 4.0 x 10(-7)m, respectively. High concentrations (> 0.1 mm) of histidine, leucine, methionine, alanine, cysteine, and aspartic acid also had an affinity for this system. Mutants lacking the general aromatic transport system were resistant to p-fluorophenylalanine, beta-2-thienylalanine, and 5-methyltryptophan. They mapped at a locus, aroP, between leu and pan on the chromosome, being 30% cotransducible with leu and 43% cotransducible with pan. Phenylalanine, tyrosine, and tryptophan were also transported by three specific transport systems. The apparent Michaelis constants of these systems were 2.0 x 10(-6), 2.2 x 10(-6), and 3.0 x 10(-6)m, respectively. An external energy source, such as glucose, was not required for activity of either general or specific aromatic transport systems. Azide and 2,4-dinitrophenol, however, inhibited all aromatic transport, indicating that energy production is necessary. Between 80 and 90% of the trichloroacetic acid-soluble pool formed from a particular exogenous aromatic amino acid was generated by the general aromatic transport system. This contribution was abolished when uptake was inhibited by competition by the other aromatic amino acids or by mutation in aroP. Incorporation of the former amino acid into protein was not affected by the reduction in its pool size, indicating that the general aromatic transport system is not essential for the supply of external aromatic amino acids to protein synthesis.  相似文献   

15.
A cDNA was isolated from rat small intestine by expression cloning which encodes a novel Na+-independent transporter for aromatic amino acids. When expressed in Xenopus oocytes, the encoded protein designated as TAT1 (T-type amino acid transporter 1) exhibited Na+-independent and low-affinity transport of aromatic amino acids such as tryptophan, tyrosine, and phenylalanine (Km values: approximately 5 mm), consistent with the properties of classical amino acid transport system T. TAT1 accepted some variations of aromatic side chains because it interacted with amino acid-related compounds such as l-DOPA and 3-O-methyl-DOPA. Because TAT1 accepted N-methyl- and N-acetyl-derivatives of aromatic amino acids but did not accept their methylesters, it is proposed that TAT1 recognizes amino acid substrates as anions. Consistent with this, TAT1 exhibited sequence similarity (approximately 30% identity at the amino acid level) to H+/monocarboxylate transporters. Distinct from H+/monocarboxylate transporters, however, TAT1 was not coupled with the H+ transport but it mediated an electroneutral facilitated diffusion. TAT1 mRNA was strongly expressed in intestine, placenta, and liver. In rat small intestine TAT1 immunoreactivity was detected in the basolateral membrane of the epithelial cells suggesting its role in the transepithelial transport of aromatic amino acids. The identification of the amino acid transporter with distinct structural and functional characteristics will not only facilitate the expansion of amino acid transporter families but also provide new insights into the mechanisms of substrate recognition of organic solute transporters.  相似文献   

16.
Membrane vesicles were isolated from alkalophilic Bacillus No. 8-1, and the active transport of amino acids was studied. The transport of amino acids was dependent upon substrate oxidation and the presence of Na+. Concentrative uptake of amino acids was stimulated by the addition of an artificial electron donor system, ascorbate-phenazine methosulfate (PMS), and to a lesser extent by NADH, while succinate, L-lactate, and alpha-glycerol-phosphate did not stimulate the uptake. N,N,N',N'-Tetramethyl-p-phenylenediamine (TMPD) and cytochrome c were able to replace PMS, and reduced forms of these compounds were also very efficient electron donors. Amino acid transport was dependent on electron transfer, and inhibition of NADH oxidation by cyanide, 2-heptyl-4-hydroxyquinoline-N-oxide (HOQNO), and sodium azide directly prohibited serine transport. The pH optima for serine transport lay between pH 8 and 9 for all energy sources. Sodium ion stimulated serine transport in the presence of NADH, NADH plus cytochrome c or succinate plus PMS, but had no stimulatory effect on the corresponding dehydrogenase activities. Sodium ion was also required for accumulation of serine in response to an artificial membrane potential where the respiratory chain was not operative. These results indicated that the stimulatory effect of Na+ on amino acid uptake was on the transport process itself.  相似文献   

17.
L-Glutamate and L-aspartate transport into osmotically active intestinal brush border membrane vesicles is specifically increased by Na+ gradient (extravesicular greater than intravesicular) which in addition energizes the transient accumulation (overshoot) of the two amino acids against their concentration gradients. The "overshoot" is observed at minimal external Na+ concentration of 100 mM for L-glutamate and 60 mM for L-aspartate; saturation with respect to [Na+] was observed at a concentration near 100 mM for both amino acids. Increasing amino acid concentration, saturation of the uptake rate was observed for L-glutamate and L-aspartate in the concentration range between 1 and 2 mM. Experiments showing mutual inhibition and transtimulation of the two amino acids indicate that the same Na+ -dependent transport system is shared by the two acidic amino acids. The imposition of diffusion potentials across the membrane vesicles artificially induced by addition of valinomycin in the presence of a K+ gradient supports the conclusion that the cotransport Na+/dicarboxylic amino acid in rat brush border membrane vesicles is electroneutral.  相似文献   

18.
Solubilized Ehrlich cell plasma membrane proteins were incorporated into lipid vesicles in the presence of added phospholipid, using Sephadex G-50 chromatography combined with a freeze-thaw step. Liposomes formed in K+ exhibited high levels of Na+-dependent, alpha-aminoisobutyric acid uptake which was electrogenic and inhibited by other amino acids. The transport activity reconstituted was similar to that observed in native plasma membrane vesicles. In addition to transport by system A, leucine exchange activity (system L), Na+-dependent serine exchange activity (system ASC), and stereospecific glucose transport activity were also reconstituted. The latter was inhibited by D-glucose, D-galactose, cytochalasin B, and mercuric chloride. The medium used for reconstitution was critical for the recovery of Na+-dependent amino acid transport. The use of Na+ in the reconstitution procedure led to formation of liposomes which displayed little Na+-dependent and gradient-stimulated amino acid uptake. In contrast, all transport activities studied were efficiently reconstituted in K+ medium.  相似文献   

19.
In previous studies it was shown that hepatocellular uptake of fatty acids is mediated by a specific fatty acid binding membrane protein. To determine now directly the driving forces for their entry into hepatocytes, the uptake of a representative long chain fatty acid, [3H]oleate, by basolateral rat liver plasma membrane vesicles was examined. Influx of oleate was stimulated by increasing the Na+ concentration of the medium. In the presence of an inwardly directed Na+ gradient (NaSCN, NaNO3, NaCl) oleate was accumulated during the initial uptake phase (20 s) at a concentration of 1.4-1.9-fold that at equilibrium (overshoot). This activation of influx was not observed after replacement of Na+ by Li+, K+, or choline+. Na+-dependent oleate uptake was significantly stimulated by creation of a negative intravesicular potential, either by altering the accompanying anions or by valinomycin-induced K+ diffusion potentials, suggesting an electrogenic transport mechanism. Na+-dependent fatty acid uptake was temperature dependent, with maximal overshoots occurring at 37 degrees C, and revealed saturation kinetics with a Km of 83.1 nM and Vmax of 2.9 nmol X min-1 X mg protein-1. These studies demonstrate that the carrier-mediated hepatocellular uptake of fatty acids represents an active potential-sensitive Na+-fatty acid cotransport system.  相似文献   

20.
Free amino acids and short chain peptides are the main digestion products of dietary proteins in the small intestine. Whether there is a direct interference in transport of both groups of degradation products is not known. We used human intestinal Caco-2 cells to investigate whether the absorption of dipeptides by the peptide transporter PEPT1 alters the apical uptake of free cationic and neutral amino acids. Influx of L-[3H]Arg into Caco-2 cells was Na+-independent and mediated mainly by the b(0,+) system recognizing both cationic and neutral amino acids. Preincubation of cells with 10 mM of selected neutral, mono- or dicationic dipeptides increased the influx of L-Arg up to fourfold. Preloading with equivalent concentrations of the corresponding free amino acids also increased L-Arg influx but dipeptides always proved to be more efficient. The observed trans-stimulation was found to be specific for cationic amino acids since transport of L-[3H]Ala remained unaffected. We here demonstrate for the first time a direct interplay in amino acid and peptide transport in intestinal cells that may selectively alter the kinetics of amino acid absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号