首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mutagenic effects of hydrogen peroxide (H(2)O(2)), a source of reactive oxygen species (ROS) have been determined in human lymphocytes. T-lymphocytes mutated at the autosomal HLA-A locus on chromosome 6 have been clonally isolated (N = 2097 clones) and the molecular basis of each clonal mutation characterised as due to intragenic, deletion or mitotic recombination mutation. H(2)O(2) caused a dose dependent increase in mutation frequency. There was no significant increase in the frequency of intragenic mutations. Mitotic recombination (MR) was responsible for 87% of the increase in mutation frequency induced by H(2)O(2) and gene deletion was responsible for 13%. MR results in loss of heterozygosity (LOH) distal to the recombination site. It is known that LOH is important in the initiation and progression of cancer. These results suggest that the biologically important consequence of some ROS may be LOH as a by-product of recombination repair. They also suggest that if our observations apply to ROS generally, then many of the mutations which accumulate with ageing or which are observed in cancer may be due to factors other than ROS.  相似文献   

2.
The loss of the H(2)O(2) scavenger protein encoded by Prdx1 in mice leads to an elevation of reactive oxygen species (ROS) and tumorigenesis of different tissues. Loss of heterozygosity (LOH) mutations could initiate tumorigenesis through loss of tumor suppressor gene function in heterozygous somatic cells. A connection between the severity of ROS and the frequency of LOH mutations in vivo has not been established. Therefore, in this study, we characterized in vivo LOH in ear fibroblasts and splenic T cells of 3-4 month old Prdx1 deficient mice. We found that the loss of Prdx1 significantly elevates ROS amounts in T cells and fibroblasts. The basal amounts of ROS were higher in fibroblasts than in T cells, probably due to a less robust Prdx1 peroxidase activity in the former. Using Aprt as a LOH reporter, we observed an elevation in LOH mutation frequency in fibroblasts, but not in T cells, of Prdx1(-/-) mice compared to Prdx1(+/+) mice. The majority of the LOH mutations in both cell types were derived from mitotic recombination (MR) events. Interestingly, Mlh1, which is known to suppress MR between divergent sequences, was found to be significantly down-regulated in fibroblasts of Prdx1(-/-) mice. Therefore, the combination of elevated ROS amounts and down-regulation of Mlh1 may have contributed to the elevation of MR in fibroblasts of Prdx1(-/-) mice. We conclude that each tissue may have a distinct mechanism through which Prdx1 deficiency promotes tumorigenesis.  相似文献   

3.
Although the association of germline BRCA2 mutations with pancreatic adenocarcinoma is well established, the role of BRCA1 mutations is less clear. We hypothesized that the loss of heterozygosity at the BRCA1 locus occurs in pancreatic cancers of germline BRCA1 mutation carriers, acting as a “second-hit” event contributing to pancreatic tumorigenesis. Seven germline BRCA1 mutation carriers with pancreatic adenocarcinoma and nine patients with sporadic pancreatic cancer were identified from clinic- and population-based registries. DNA was extracted from paraffin-embedded tumor and nontumor samples. Three polymorphic microsatellite markers for the BRCA1 gene, and an internal control marker on chromosome 16p, were selected to test for the loss of heterozygosity. Tumor DNA demonstrating loss of heterozygosity in BRCA1 mutation carriers was sequenced to identify the retained allele. The loss of heterozygosity rate for the control marker was 20%, an expected baseline frequency. Loss of heterozygosity at the BRCA1 locus was 5/7 (71%) in BRCA1 mutation carriers; tumor DNA was available for sequencing in 4/5 cases, and three demonstrated loss of the wild-type allele. Only 1/9 (11%) sporadic cases demonstrated loss of heterozygosity at the BRCA1 locus. Loss of heterozygosity occurs frequently in pancreatic cancers of germline BRCA1 mutation carriers, with loss of the wild-type allele, and infrequently in sporadic cancer cases. Therefore, BRCA1 germline mutations likely predispose to the development of pancreatic cancer, and individuals with these mutations may be considered for pancreatic cancer-screening programs.  相似文献   

4.
Tumorigenesis of colorectal cancer in patients with hereditary non-polyposis colorectal cancer (HNPCC) has been postulated to follow a different pathway from that of sporadic colorectal tumors. A characteristic of HNPCC-associated tumors is the replication error phenotype. We studied tumorigenesis in 8 fresh-frozen and 67 paraffin-embedded colorectal tumors derived from 29 families with HNPCC or a familial aggregation of colorectal cancer. By using intragenic markers, inactivation of the wild-type allele of hMLH1 was shown to occur through loss of heterozygosity and not through a somatic point mutation. Microsatellite instability is very common and occurs early in almost all colorectal tumors from HNPCC patients. Transforming growth factor β type II receptor (TβRII) mutations occur in these tumors at a high frequency. Of colorectal cancers from families with HNPCC, 63% have frameshift mutations in TβRII, compared with 10% of sporadic colorectal cancers. APC and K-RAS mutations appear to be as frequent in the HNPCC tumors as in the sporadic counterpart. Received: 3 March 1997 / Accepted: 23 June 1997  相似文献   

5.
Von Hippel-Lindau (VHL) disease is a dominantly inherited disorder predisposing to retinal and CNS hemangioblastomas, renal cell carcinoma (RCC), pheochromocytoma, and pancreatic tumors. Interfamilial differences in predisposition to pheochromocytoma reflect allelic heterogeneity such that there is a strong association between missense mutations and risk of pheochromocytoma. We investigated the mechanism of tumorigenesis in VHL disease tumors to determine whether there were differences between tumor types or classes of germ-line mutations. Fifty-three tumors (30 RCCs, 15 hemangioblastomas, 5 pheochromocytomas, and 3 pancreatic tumors) from 33 patients (27 kindreds) with VHL disease were analyzed. Overall, 51% of 45 informative tumors showed loss of heterozygosity (LOH) at the VHL locus. In 11 cases it was possible to distinguish between loss of the wild-type and mutant alleles, and in each case the wild-type allele was lost. LOH was detected in all tumor types and occurred in the presence of both germ-line missense mutations and other types of germline mutation associated with a low risk of pheochromocytoma. Intragenic somatic mutations were detected in three tumors (all hemangioblastomas) and in two of these could be shown to occur in the wild-type allele. This provides the first example of homozygous inactivation of the VHL by small intragenic mutations in this type of tumor. Hypermethylation of the VHL gene was detected in 33% (6/18) of tumors without LOH, including 2 RCCs and 4 hemangioblastomas. Although hypermethylation of the VHL gene has been reported previously in nonfamilial RCC and although methylation of tumor-suppressor genes has been implicated in the pathogenesis of other sporadic cancers, this is the first report of somatic methylation in a familial cancer syndrome.  相似文献   

6.
Wang Y  Heddle JA 《Mutation research》2004,554(1-2):131-137
Bloom Syndrome (BS) is characterized by both cancer and genomic instability, including chromosomal aberrations, sister chromosome exchanges, and mutations. Since BS heterozygotes are much more frequent than homozygotes, the issue of the sensitivity of heterozygotes to cancer is an important one. This and many other questions concerning the effects of BLM (the gene responsible for the BS) are more easily studied in mice than in humans. To gain insight into genomic instability associated with loss of function of BLM, which codes for a DNA helicase, we compared frequencies of micronuclei, somatic mutations, and loss of heterozygosity (LOH) in Blmtm3Brd homozygous, heterozygous, and wild-type mice carrying a cII transgenic reporter gene. It should be noted that the Blmtm3Brd is inserted into the endogenous locus with a partial duplication of the gene, so some function of the locus may be retained. The cII reporter gene was introduced from the Big Blue mouse by crossing them with Blmtm3Brd mice. All measurements were made on F2 mice from this cross. The reticulocytes of Blmtm3Brd homozygous mice had more micronuclei than heterozygous or wild-type mice (4.5, 2.7, and 2.5 per thousand, respectively; P < 0.01) but heterozygotes did not differ significantly from wild-type. Unlike spontaneous chromosome damage, spontaneous mutant frequencies did not differ significantly among homozygous, heterozygous, and wild-type mice (3.2 x 10(-5), 3.1 x 10(-5), and 3.1 x 10(-5), respectively; P > 0.05). Mutation measurements were also made on mice that had been treated with ethyl-nitrosourea (ENU) because Bloom Syndrome cells are sensitive to ethylating agents. The ENU-induced mutation frequency in Blmtm3Brd homozygous, heterozygous, and wild mice were 54 x 10(-5), 35 x 10(-5), and 25 x 10(-5) mutants/plaques, respectively. ENU induced more mutations in Blmtm3Brd homozygous mice than in wild-type mice (P < 0.01), but not significantly more in heterozygous mice (P = 0.06). Spontaneous LOH did not differ significantly among the genotypes, but ENU treatment induced much more LOH in Blmtm3Brd homozygous mice, as measured by means of the Dlb-1 test of Vomiero-Highton and Heddle. Hence, these Blmtm3Brd mice resemble Bloom Syndrome except that they have normal frequencies of spontaneous mutation. The fact that these mice have elevated rates of both cancer and chromosomal aberrations (as shown by more micronuclei and LOH) but normal rates of spontaneous mutation, shows the greater importance of chromosomal events than mutations in the origin of their cancers.  相似文献   

7.
Poon A  Chao L 《Genetics》2005,170(3):989-999
A compensatory mutation occurs when the fitness loss caused by one mutation is remedied by its epistatic interaction with a second mutation at a different site in the genome. This poorly understood biological phenomenon has important implications, not only for the evolutionary consequences of mutation, but also for the genetic complexity of adaptation. We have carried out the first direct experimental measurement of the average rate of compensatory mutation. An arbitrary selection of 21 missense substitutions with deleterious effects on fitness was introduced by site-directed mutagenesis into the bacteriophage phiX174. For each deleterious mutation, we evolved 8-16 replicate populations to determine the frequency at which a compensatory mutation, instead of the back mutation, was acquired to recover fitness. The overall frequency of compensatory mutation was approximately 70%. Deleterious mutations that were more severe were significantly more likely to be compensated for. Furthermore, experimental reversion of deleterious mutations revealed that compensatory mutations have deleterious effects in a wild-type background. A large diversity of intragenic compensatory mutations was identified from sequencing fitness-recovering genotypes. Subsequent analyses of intragenic mutation diversity revealed a significant degree of clustering around the deleterious mutation in the linear sequence and also within folded protein structures. Moreover, a likelihood analysis of mutation diversity predicts that, on average, a deleterious mutation can be compensated by about nine different intragenic compensatory mutations. We estimate that about half of all compensatory mutations are located extragenically in this organism.  相似文献   

8.
In most patients with isolated unilateral retinoblastoma, tumor development is initiated by somatic inactivation of both alleles of the RB1 gene. However, some of these patients can transmit retinoblastoma predisposition to their offspring. To determine the frequency and nature of constitutional RB1-gene mutations in patients with isolated unilateral retinoblastoma, we analyzed DNA from peripheral blood and from tumor tissue. The analysis of tumors from 54 (71%) of 76 informative patients showed loss of constitutional heterozygosity (LOH) at intragenic loci. Three of 13 uninformative patients had constitutional deletions. For 39 randomly selected tumors, SSCP, hetero-duplex analysis, sequencing, and Southern blot analysis were used to identify mutations. Mutations were detected in 21 (91%) of 23 tumors with LOH. In 6 (38%) of 16 tumors without LOH, one mutation was detected, and in 9 (56%) of the tumors without LOH, both mutations were found. Thus, a total of 45 mutations were identified in tumors of 36 patients. Thirty-nine of the mutations-including 34 small mutations, 2 large structural alterations, and hypermethylation in 3 tumors-were not detected in the corresponding peripheral blood DNA. In 6 (17%) of the 36 patients, a mutation was detected in constitutional DNA, and 1 of these mutations is known to be associated with reduced expressivity. The presence of a constitutional mutation was not associated with an early age at treatment. In 1 patient, somatic mosaicism was demonstrated by molecular analysis of DNA and RNA from peripheral blood. In 2 patients without a detectable mutation in peripheral blood, mosaicism was suggested because 1 of the patients showed multifocal tumors and the other later developed bilateral retinoblastoma. In conclusion, our results emphasize that the manifestation and transmissibility of retinoblastoma depend on the nature of the first mutation, its time in development, and the number and types of cells that are affected.  相似文献   

9.
Loss of heterozygosity atBRCA1/2 loci in breast and ovarian tumors is a suggested risk factor for germlineBRCA1/2 mutation status. We evaluated the presence of losses of selected microsatellite markers localized on chromosomes 17 and 13q in hereditary and sporadic ovarian tumors. 151 consecutive primary ovarian tumors (including 21 withBRCA1/2 mutations and 130 without the mutations) were screened for loss of heterozygosity at loci on chromosomes 17 and 13q. Losses of heterozygosity of at least one microsatellite marker localized on chromosomes 17 and 13q were revealed in 123 (81.5%) and 104 (68.9%) tumors, respectively. Losses of all informative markers on chromosomes 17 and 13 occurred in 30 (19.9%) and 31 (20.5%) tumors, respectively. There was no difference in the frequency of losses atBRCA1 intragenic markers (D17S855 and D17S1323) between BRCA1-positive and BRCA1-negative patients. The frequency of losses on chromosome 17 was higher in high-grade than in low-grade carcinomas. Loss of heterozygosity on chromosomes 17 and 13q is a frequent phenomenon in both hereditary and sporadic ovarian cancers. The frequency of losses atBRCA1 intragenic markers in the ovarian tumor tissue is not strongly related to the presence ofBRCA1 germline mutations.  相似文献   

10.
Mismatch repair (MMR) is critical for preserving genomic integrity. Failure of this system can accelerate somatic mutation and increase the risk of developing cancer. MSH6, in complex with MSH2, is the MMR protein that mediates DNA repair through the recognition of 1- and 2-bp mismatches. To evaluate the effects of MSH6 deficiency on genomic stability we compared the frequency of in vivo loss of heterozygosity (LOH) between MSH6-proficient and deficient, 129S2xC57BL/6 F1 hybrid mice that were heterozygous for our reporter gene Aprt. We recovered mutant cells that had functionally lost APRT protein activity and categorized the spectrum of mutations responsible for the LOH events. We also measured the mutant frequency at the X-linked gene, Hprt, as a second reporter for point mutation. In Msh6-/-Aprt+/- mice, mutation frequency at Aprt was elevated in both T cells and fibroblasts by 2.5-fold and 5.7-fold, respectively, over Msh6+/+Aprt+/- littermate controls. While a modest increase in mitotic recombination (MR) was observed in MSH6-deficient fibroblasts compared to wild type controls, point mutation was the predominant mechanism leading to APRT deficiency in both cell types. Base substitution, consisting of multiple types of transitions, accounted for all of the point mutations identified within the Aprt coding region. We also assessed the role of MSH6 in preventing mutations caused by a common environmental mutagen, ionizing radiation (IR). In Msh6-/-Aprt+/- mice, 4Gy of X-irradiation induced a significant increase in point mutations at both Aprt and Hprt in T cells, but not in fibroblasts. These findings indicate that MutS alpha reduces spontaneous and IR-induced mutation in a cell type-dependant manner.  相似文献   

11.
Exposure to tobacco carcinogens is the major cause of human lung cancer, but even heavy smokers have only about a 10% life-time risk of developing lung cancer. Currently used screening processes, based largely on age and exposure status, have proven to be of limited clinical utility in predicting cancer risk. More precise methods of assessing an individual's risk of developing lung cancer are needed. Because of their sensitivity to DNA damage, microsatellites are potentially useful for the assessment of somatic mutational load in normal cells. We assessed mutational load using hypermutable microsatellites in buccal cells obtained from lung carcinoma cases and controls to test if such a measure could be used to estimate lung cancer risk. There was no significant association between smoking status and mutation frequency with any of the markers tested. No significant association between case status and mutation frequency was observed. Age was significantly related to mutation frequency in the microsatellite marker D7S1482. These observations indicate that somatic mutational load, as measured using mutation frequency of microsatellites in buccal cells, increases with increasing age but that subjects who develop lung cancer have a similar mutational load as those who remain cancer free. This finding suggests that mutation frequency of microsatellite mutations in buccal cells may not be a promising biomarker for lung cancer risk.  相似文献   

12.
Neurofibromatosis type 1 (NF1), a common autosomal dominant disorder caused by mutations of the NF1 gene, is characterized by multiple neurofibromas, pigmentation anomalies, and a variety of other possible complications, including an increased risk of malignant neoplasias. Tumorigenesis in NF1 is believed to follow the two-hit hypothesis postulated for tumor-suppressor genes. Loss of heterozygosity (LOH) has been shown to occur in NF1-associated malignancies and in benign neurofibromas, but only few of the latter yielded a positive result. Here we describe a systematic approach of searching for somatic inactivation of the NF1 gene in neurofibromas. In the course of these studies, two new intragenic polymorphisms of the NF1 gene, a tetranucleotide repeat and a 21-bp duplication, could be identified. Three tumor-specific point mutations and two LOH events were detected among seven neurofibromas from four different NF1 patients. Our results suggest that small subtle mutations occur with similar frequency to that of LOH in benign neurofibromas and that somatic inactivation of the NF1 gene is a general event in these tumors. The spectrum of somatic mutations occurring in various tumors from individual NF1 patients may contribute to the understanding of variable expressivity of the NF1 phenotype.  相似文献   

13.
Fischer A  Greenman C  Mustonen V 《Genetics》2011,188(2):383-393
A key goal in cancer research is to find the genomic alterations that underlie malignant cells. Genomics has proved successful in identifying somatic variants at a large scale. However, it has become evident that a typical cancer exhibits a heterogenous mutation pattern across samples. Cases where the same alteration is observed repeatedly seem to be the exception rather than the norm. Thus, pinpointing the key alterations (driver mutations) from a background of variations with no direct causal link to cancer (passenger mutations) is difficult. Here we analyze somatic missense mutations from cancer samples and their healthy tissue counterparts (germline mutations) from the viewpoint of germline fitness. We calibrate a scoring system from protein domain alignments to score mutations and their target loci. We show first that this score predicts to a good degree the rate of polymorphism of the observed germline variation. The scoring is then applied to somatic mutations. We show that candidate cancer genes prone to copy number loss harbor mutations with germline fitness effects that are significantly more deleterious than expected by chance. This suggests that missense mutations play a driving role in tumor suppressor genes. Furthermore, these mutations fall preferably onto loci in sequence neighborhoods that are high scoring in terms of germline fitness. In contrast, for somatic mutations in candidate onco genes we do not observe a statistically significant effect. These results help to inform how to exploit germline fitness predictions in discovering new genes and mutations responsible for cancer.  相似文献   

14.
Somatic cell mutation frequency in vivo was measured in individuals with high cancer risk who were from ataxia telangiectasia (A-T) families. The assay for somatic mutation measures the frequency of variant erythrocytes which are progeny of erythroid precursor cells with mutations that result in a loss of gene expression at the polymorphic glycophorin A (GPA) locus. Samples from 14 of 15 A-T homozygotes showed high frequencies of GPA gene expression-loss variant cells with normal expression of only one of the two alleles at the GPA locus (i.e., GPA hemizygous variant cells). The mean elevation of the frequency of hemizygous variant cells over those in normal controls and unaffected family members was 7-14-fold. A-T homozygotes also showed an increase in the frequency of cells in which one allele at the GPA locus had lost expression and in which the remaining allele was expressed at a homozygous level (i.e., GPA homozygous variant cells). Family members who are obligate A-T heterozygotes did not appear to have a significantly elevated frequency of GPA hemizygous or homozygous variant cells. These indications of elevated in vivo frequencies of variant erythrocytes in A-T homozygotes support a causal link between susceptibility to somatic mutation and susceptibility to cancer.  相似文献   

15.
Cancer develops when cells no longer follow their normal pattern of controlled growth. In the absence or disregard of such regulation, resulting from changes in their genetic makeup, these errant cells acquire a growth advantage, expanding into pre-cancerous clones. Over the last decade many studies have revealed the relevance of genomic mutation in this process, be it by misreplication, environmental damage or a deficiency in repairing endogenous and exogenous damage. Here we discuss homologous recombination as another mechanism that can result in loss of heterozygosity or genetic rearrangements. Some of these genetic alterations may play a primary role in carcinogenesis, but they are more likely to be involved in secondary and subsequent steps of carcinogenesis by which recessive oncogenic mutations are revealed. Patients whose cells display an increased frequency of recombination also have an elevated frequency of cancer, further supporting the link between recombination and carcinogenesis. In addition, homologous recombination is induced by a wide variety of carcinogens, many of which are classically considered to be efficiently repaired by other repair pathways. Overall, homologous recombination is a process that has been widely overlooked but may be more central to the process of carcinogenesis than previously described.  相似文献   

16.
A theoretical model is developed of the fate of mutations for organisms with such life-history characteristics as indeterminate growth and clonal reproduction. It focuses on how the fate of a particular mutant depends on whether it arises during mitotic cell division (somatic mutation) or during meiotic cell division (meiotic mutation). At gamete production, individuals carrying somatic mutations will produce some proportion of gametes reflecting the original, zygotic genotype and some proportion reflecting genotypes carrying the somatic mutation. Focusing on allele frequencies at gamete production allows the effects of growth and clonal reproduction to be summarized. The relative strengths of somatic and meiotic mutation can be determined, as well as the conditions under which the change in allele frequency due to one is greater than that due to the other. Examples from a published demographic study of clonal corals are used to compare somatic and meiotic mutation. When there is no selection acting on either type of mutation, only a few cell divisions per time unit on average are needed for the change in allele frequency due to somatic mutation to be greater, given empirically based mutation rates. When somatic selection is added, the most dramatic effect is seen with fairly strong negative selection acting against the somatic mutation within individuals. In this case, selection within organisms can effectively counteract the effects of somatic mutation, and the change in allele frequency due to somatic mutations will not be greater than that due to meiotic mutations for reasonable numbers of within-generation cell divisions. The majority of the mutation load, which would have been due to somatic mutation, is purged by selection within the individual organism.  相似文献   

17.
APC is often cited as a prime example of a tumor suppressor gene. Truncating germline and somatic mutations (or, infrequently, allelic loss) occur in tumors in FAP (familial adenomatous polyposis). Most sporadic colorectal cancers also have two APC mutations. Clues from attenuated polyposis, missense germline variants with mild disease and the somatic mutation cluster region (codons 1,250-1,450) indicate, however, that APC mutations might not result in simple loss of protein function. We have found that FAP patients with germline APC mutations within a small region (codons 1,194-1,392 at most) mainly show allelic loss in their colorectal adenomas, in contrast to other FAP patients, whose 'second hits' tend to occur by truncating mutations in the mutation cluster region. Our results indicate that different APC mutations provide cells with different selective advantages, with mutations close to codon 1,300 providing the greatest advantage. Allelic loss is selected strongly in cells with one mutation near codon 1,300. A different germline-somatic APC mutation association exists in FAP desmoids. APC is not, therefore, a classical tumor suppressor. Our findings also indicate a new mechanism for disease severity: if a broader spectrum of mutations is selected in tumors, the somatic mutation rate is effectively higher and more tumors grow.  相似文献   

18.
Renal cell carcinoma is the most common variant of the kidney cancer, which accounts approximately 75% patients with this disease. The majority of those tumors are characterized by inactivation of the VHL gene suppressor as a result of mutations, allelic deletions and/or methylation. We have conducted the complex molecular-genetic analysis of 64 samples obtained from patients with the clear cell renal cancer. VHL mutations were detected by single strand conformation polymorphism and subsequent sequencing, loss of heterozygosity was analyzed using two STR-markers, methylation was tested by methylsensitive polymerase chain reaction. All revealed variations were statistically analyzed in respect to the parameters of primary tumors in various groups of patients. Seventeen VHL somatic mutations were detected, 12 from which were described for the first time. Allelic deletions of VHL were found in 31.6%, and methylation--in 7.8% samples of the renal cancer. As a whole, VHL inactivating events were presented in 46.9% cases of disease, in 51.7% -among renal cancer patients with first stage. We have not observed any association of mutations, loss of heterozygosity and methylation with clinical-pathological parameters of disease. Results of this investigation specify for expediency of further studies of molecular genetics aberrations in the VHL gene. Perhaps, it would promote renal cancer molecular markers evaluation, for example, a determination of suppressor genes methylated in renal cancer.  相似文献   

19.
We have investigated the genotypic changes that lead to expression of a recessive allele at a heterozygous autosomal locus in a human cell line. Mutant clones lacking thymidine kinase activity were derived from a B-cell lymphoblastoid line initially heterozygous at the tk locus, and restriction mapping was performed to detect intragenic structural alterations in the tk gene. In addition, informative molecular markers located elsewhere on chromosome 17 were analysed in order to detect large-scale (multilocus) events. We report that among 325 spontaneous and induced mutants, allele loss was more common than intragenic rearrangements or point mutations; in many cases, loss of heterozygosity appears to have extended well beyond the locus under selection. Cytogenetic analysis of a subset of these mutants showed that expression of the recessive TK-deficient phenotype and the associated loss of heterozygosity for chromosome 17 markers was not typically associated with detectable chromosomal changes.  相似文献   

20.
MOTIVATION: Coding-region mutations in human genes are responsible for a diverse spectrum of diseases and phenotypes. Among lesions that have been studied extensively, there are insights into several of the biochemical functions disrupted by disease-causing mutations. Currently, there are more than 60 000 coding-region mutations associated with inherited disease catalogued in the Human Gene Mutation Database (HGMD, August 2007) and more than 70 000 polymorphic amino acid substitutions recorded in dbSNP (dbSNP, build 127). Understanding the mechanism and contribution these variants make to a clinical phenotype is a formidable problem. RESULTS: In this study, we investigate the role of phosphorylation in somatic cancer mutations and inherited diseases. Somatic cancer mutation datasets were shown to have a significant enrichment for mutations that cause gain or loss of phosphorylation when compared to our control datasets (putatively neutral nsSNPs and random amino acid substitutions). Of the somatic cancer mutations, those in kinase genes represent the most enriched set of mutations that disrupt phosphorylation sites, suggesting phosphorylation target site mutation is an active cause of phosphorylation deregulation. Overall, this evidence suggests both gain and loss of a phosphorylation site in a target protein may be important features for predicting cancer-causing mutations and may represent a molecular cause of disease for a number of inherited and somatic mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号