首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The gram-negative bacterium Xanthomonas campestris pv. vesicatoria is the causal agent of spot disease in tomato and pepper. X. campestris pv. vesicatoria pathogenicity depends on a type III secretion system delivering effector proteins into the host cells. We hypothesized that some X. campestris pv. vesicatoria effectors target conserved eukaryotic cellular processes and examined phenotypes induced by their expression in yeast. Out of 21 effectors tested, 14 inhibited yeast growth in normal or stress conditions. Viability assay revealed that XopB and XopF2 attenuated cell proliferation, while AvrRxo1, XopX, and XopE1 were cytotoxic. Inspection of morphological features and DNA content of yeast cells indicated that cytotoxicity caused by XopX and AvrRxo1 was associated with cell-cycle arrest at G0/1. Interestingly, XopB, XopE1, XopF2, XopX, and AvrRxo1 that inhibited growth in yeast also caused phenotypes, such as chlorosis and cell death, when expressed in either host or nonhost plants. Finally, the ability of several effectors to cause phenotypes in yeast and plants was dependent on their putative catalytic residues or localization motifs. This study supports the use of yeast as a heterologous system for functional analysis of X. campestris pv. vesicatoria type III effectors, and sets the stage for identification of their eukaryotic molecular targets and modes of action.  相似文献   

2.
Type III secretion systems (TTSSs) are specialized protein transport systems in gram-negative bacteria which target effector proteins into the host cell. The TTSS of the plant pathogen Xanthomonas campestris pv. vesicatoria, encoded by the hrp (hypersensitive reaction and pathogenicity) gene cluster, is essential for the interaction with the plant. One of the secreted proteins is HrpF, which is required for pathogenicity but dispensable for type III secretion of effector proteins in vitro, suggesting a role in translocation. In this study, complementation analyses of an hrpF null mutant strain using various deletion derivatives revealed the functional importance of the C-terminal hydrophobic protein region. Deletion of the N terminus abolished type III secretion of HrpF. Employing the type III effector AvrBs3 as a reporter, we show that the N terminus of HrpF contains a signal for secretion but not a functional translocation signal. Experiments with lipid bilayers revealed a lipid-binding activity of HrpF as well as HrpF-dependent pore formation. These data indicate that HrpF presumably plays a role at the bacterial-plant interface as part of a bacterial translocon which mediates effector protein delivery across the host cell membrane.  相似文献   

3.
4.
5.
Summary Mutants of a tomato strain ofXanthomonas campestris pv.vesicatoria (XCV), causal agent of bacterial spot of tomato and pepper, were produced using the transposon Tn5 carried in the suicide plasmid pGS9. One prototrophic mutant, M461, was isolated which caused no visible reaction on tomato or pepper, but maintained the wild-type ability to induce a hypersensitive reaction (HR) on tobacco. This mutant showed similar growth characteristics to the wild-type in culture, but growth in planta was reduced. A genomic library of wild-type XCV was constructed in the broad host range cosmid vector pLAFR3. Clone p6AD4 restored pathogenicity to M461 on tomato and the ability to induce a HR on pepper. This clone contained ca. 22 kb of XCV DNA. The insertion in M461 was in a site corresponding to a 1.1 kbEcoRI fragment of p6AD4.  相似文献   

6.
The ability of glycinecin A, a bacteriocin derived from Xanthomonas campestris pv. glycines 8ra, to kill closely related bacteria has been demonstrated previously by our group (S. G. Heu et al., Appl. Environ. Microbiol. 67:4105-4110, 2001). In the present study, we aimed at determining the glycinecin A-induced cause of death. Treatment with glycinecin A caused slow dissipation of membrane potential and rapid depletion of the pH gradient. Glycinecin A treatment also induced leakage of potassium ions from X. campestris pv. vesicatoria YK93-4 cells and killed sensitive bacterial cells in a dose-dependent manner. Sensitive cells were killed within 2 h of incubation, most likely due to the potassium ion efflux caused by glycinecin A. These results suggest that the bactericidal mechanism of action of glycinecin A is correlated with the permeability of membranes to hydroxyl and potassium ions, leading to the lethal activity of the bacteriocin on the target bacteria.  相似文献   

7.
The ability of glycinecin A, a bacteriocin derived from Xanthomonas campestris pv. glycines 8ra, to kill closely related bacteria has been demonstrated previously by our group. In the present study, we aimed at determining the glycinecin A-induced cause of death. Treatment with glycinecin A caused slow dissipation of membrane potential and rapid depletion of the pH gradient. Glycinecin A treatment also induced leakage of potassium ions from X. campestris pv. vesicatoria YK93-4 cells and killed sensitive bacterial cells in a dose-dependent manner. Sensitive cells were killed within 2 h of incubation, most likely due to the potassium ion efflux caused by glycinecin A. These results suggest that the bactericidal mechanism of action of glycinecin A is correlated with the permeability of membranes to hydroxyl and potassium ions, leading to the lethal activity of the bacteriocin on the target bacteria.  相似文献   

8.
9.
We characterized the copper resistance genes in strain XvP26 of Xanthomonas campestris pv. vesicatoria, which was originally isolated from a pepper plant in Taiwan. The copper resistance genes were localized to a 7,652-bp region which, based on pulsed-field gel electrophoresis and Southern hybridization, was determined to be located on the chromosome. These genes hybridized only weakly, as determined by Southern analysis, to other copper resistance genes in Xanthomonas and Pseudomonas strains. We identified five open reading frames (ORFs) whose products exhibited high levels of amino acid sequence identity to the products of previously reported copper genes. Mutations in ORF1, ORF3, and ORF4 removed copper resistance, whereas mutations in ORF5 resulted in an intermediate copper resistance phenotype and insertions in ORF2 had no effect on resistance conferred to a copper-sensitive recipient in transconjugant tests. Based on sequence analysis, ORF1 was determined to have high levels of identity with the CopR (66%) and PcoR (63%) genes in Pseudomonas syringae pv. tomato and Escherichia coli, respectively. ORF2 and ORF5 had high levels of identity with the PcoS gene in E. coli and the gene encoding a putative copper-containing oxidoreductase signal peptide protein in Sinorhizobium meliloti, respectively. ORF3 and ORF4 exhibited 23% identity to the gene encoding a cation efflux system membrane protein, CzcC, and 62% identity to the gene encoding a putative copper-containing oxidoreductase protein, respectively. The latter two ORFs were determined to be induced following exposure to low concentrations of copper, while addition of Co, Cd, or Zn resulted in no significant induction. PCR analysis of 51 pepper and 34 tomato copper-resistant X. campestris pv. vesicatoria strains collected from several regions in Taiwan between 1987 and 2000 and nine copper-resistant strains from the United States and South America showed that successful amplification of DNA was obtained only for strain XvP26. The organization of this set of copper resistance genes appears to be uncommon, and the set appears to occur rarely in X. campestris pv. vesicatoria.  相似文献   

10.
We characterized the copper resistance genes in strain XvP26 of Xanthomonas campestris pv. vesicatoria, which was originally isolated from a pepper plant in Taiwan. The copper resistance genes were localized to a 7,652-bp region which, based on pulsed-field gel electrophoresis and Southern hybridization, was determined to be located on the chromosome. These genes hybridized only weakly, as determined by Southern analysis, to other copper resistance genes in Xanthomonas and Pseudomonas strains. We identified five open reading frames (ORFs) whose products exhibited high levels of amino acid sequence identity to the products of previously reported copper genes. Mutations in ORF1, ORF3, and ORF4 removed copper resistance, whereas mutations in ORF5 resulted in an intermediate copper resistance phenotype and insertions in ORF2 had no effect on resistance conferred to a copper-sensitive recipient in transconjugant tests. Based on sequence analysis, ORF1 was determined to have high levels of identity with the CopR (66%) and PcoR (63%) genes in Pseudomonas syringae pv. tomato and Escherichia coli, respectively. ORF2 and ORF5 had high levels of identity with the PcoS gene in E. coli and the gene encoding a putative copper-containing oxidoreductase signal peptide protein in Sinorhizobium meliloti, respectively. ORF3 and ORF4 exhibited 23% identity to the gene encoding a cation efflux system membrane protein, CzcC, and 62% identity to the gene encoding a putative copper-containing oxidoreductase protein, respectively. The latter two ORFs were determined to be induced following exposure to low concentrations of copper, while addition of Co, Cd, or Zn resulted in no significant induction. PCR analysis of 51 pepper and 34 tomato copper-resistant X. campestris pv. vesicatoria strains collected from several regions in Taiwan between 1987 and 2000 and nine copper-resistant strains from the United States and South America showed that successful amplification of DNA was obtained only for strain XvP26. The organization of this set of copper resistance genes appears to be uncommon, and the set appears to occur rarely in X. campestris pv. vesicatoria.  相似文献   

11.
Wu LT  Tseng YH 《Plasmid》2000,44(2):163-172
The gram-negative plant pathogen Xanthomonas campestris pv. vesicatoria strain Xv2 harbors an indigenous, cryptic plasmid pXV2 of 14.6 kb. This plasmid can only be maintained in Xanthomonas and is incapable of self-transmission. However, incompatibility testing classified it in IncW, a group containing the smallest number of naturally occurring, broad-host-range, conjugative plasmids. A pXV2 derivative containing only a 5.5-kb PstI fragment is stably maintained. Deletion of a 3.0-kb region from the PstI fragment causes a loss of plasmid stability. Nucleotide sequencing of the 2. 1-kb region essential for autonomous replication revealed a repA gene and a downstream noncoding region containing four iterons, two 17- and two 19-nt direct repeats, and an AT-rich region lying between the two sets of iterons. The sequence of the deduced RepA and the iterons shows homology to the RepA (39% identity) and the iterons, respectively, of the IncW plasmid pSa. Maxicell expression of the repA gene produced a protein of 35 kDa, a size similar to that deduced from the nucleotide sequence. Trans-complementation test confirmed that the repA gene and the iterons are indeed the essential elements for pXV2 replication.  相似文献   

12.
13.
Taking Xanthomonas campestris pv. vesicatoria (Doidge) Dye, a pathogen with a wide geographical distribution, as a representative, pyrosequencing is shown for the first time to provide characteristic information of plant pathogenic bacteria strain‐specific sequences. Pyrosequencing‐based plant pathogen detection and typing technology is demonstrated to be rapid, highly specific and more sensitive than conventional technologies. The specificity of such assays has been validated by conventional DNA sequencing and metabolic fingerprinting. It is a starting point for the application and development of pyrosequencing in plant inspection and quarantine which underlie agricultural communication.  相似文献   

14.
Tn5 insertion mutants of Xanthomonas campestris pv. vesicatoria were inoculated into tomato and screened for reduced virulence. One mutant exhibited reduced aggressiveness and attenuated growth in planta. Southern blot analyses indicated that the mutant carried a single Tn5 insertion not associated with previously cloned pathogenicity-related genes of X. campestris pv. vesicatoria. The wild-type phenotype of this mutant was restored by one recombinant plasmid (pOPG361) selected from a genomic library of X. campestris pv. vesicatoria 91-118. Tn3-gus insertion mutagenesis and sequence analyses of a subclone of pOPG361 identified a 1,929-bp open reading frame (ORF) essential for complementation of the mutants. The predicted protein encoded by this ORF was highly homologous to the previously reported pathogenicity-related HrpM protein of Pseudomonas syringae pv. syringae and OpgH of Erwinia chrysanthemi. Based on homology, the new locus was designated opgHXcv. Manipulation of the osmotic potential in the intercellular spaces of tomato leaves by addition of mannitol at low concentrations (25 to 50 mM) compensates for the opgHXcv mutation.  相似文献   

15.
A gene cloned from Xanthomonas campestris pv. vesicatoria race 2, avrBs1, specified avirulence on pepper cultivars containing the resistance gene Bs1. A series of exonuclease III deletions were made on a 3.2-kbp DNA fragment that determined full avirulence activity, observed as hypersensitive response (HR) induction. The deletion products were subcloned into the broad host range cloning vector pLAFR3, conjugated into a virulent X. c. pv. vesicatoria race 1 strain, 82-8, and scored for their ability to induce a HR on a pepper cultivar (ECW10R) containing the resistance gene Bs1. A span of approximately 1.8 kbp of DNA was necessary for full induction of the HR. The nucleotide sequence revealed two open reading frames (ORFs) capable of encoding proteins of 12.3 and 49.8 kD, designated ORF1 and ORF2, respectively. Deletions into ORF1 altered the HR-inducing activity to give an intermediate phenotype. Deletions into ORF2 completely destroyed activity. When the ORF2 coding region was driven by the lacZ promoter on plasmid pLAFR3 (placD), full avirulence activity was restored, indicating that ORF2 alone can induce the HR. Antisera raised to a beta-galactosidase-ORF2 fusion protein reacted with a 50-kD protein in X. c. pv. vesicatoria race 1 (placD) transconjugants. The deduced amino acid sequence of ORF2 had approximately 47% overall homology to the carboxyl terminus of the avirulence gene, avrA, isolated from Pseudomonas syringae pv. glycinea race 6, and 86% homology over a region of 49 amino acids. P. s. pv. glycinea, however, did not induce an HR on ECW10R plants.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The hrp (hypersensitive response and pathogenicity) gene cluster of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria encodes a type III secretion (TTS) system, which injects bacterial effector proteins into the plant cell. Here, we characterized hpaB (hpa, hrp-associated), which encodes a pathogenicity factor with typical features of a TTS chaperone. We show that HpaB is important for the efficient secretion of at least five effector proteins but is dispensable for the secretion of non-effectors such as XopA and the TTS translocon protein HrpF. GST pull-down assays revealed that HpaB interacts with two unrelated effector proteins, AvrBs1 and AvrBs3, but not with XopA. The HpaB-binding site is located within the first 50 amino acids of AvrBs3. This region also contains the targeting signal for HpaB-dependent secretion, which is missing in HrpF and XopA. Intriguingly, the N-termini of HrpF and XopA target the AvrBs3Delta2 reporter for translocation in a DeltahpaB mutant but not in the wild-type strain. This indicates that HpaB plays an essential role in the exit control of the TTS system. Our data suggest that HpaB promotes the secretion of a large set of effector proteins and prevents the delivery of non-effectors into the plant cell.  相似文献   

17.
The fimA gene of Xanthomonas campestris pv. vesicatoria was identified and characterized. A 20-mer degenerate oligonucleotide complementary to the N-terminal amino acid sequence of the purified 15.5-kDa fimbrillin was used to locate fimA on a 2.6-kb SalI fragment of the X. campestris pv. vesicatoria 3240 genome. The nucleotide sequence of a 1.4-kb fragment containing the fimA region revealed two open reading frames predicting highly homologous proteins FimA and FimB. FimA, which was composed of 136 amino acids and had a calculated molecular weight of 14,302, showed high sequence identity to the type IV fimbrillin precursors. fimB predicted a protein product of 135 amino acids and a molecular weight of 13,854. The open reading frame for fimB contained near the 5' end a palindromic sequence with a terminator loop potential, and the expression level of fimB in vitro and in Xanthomonas was considerably lower than that of fimA. We detected an efficiently transcribed fimA-specific mRNA of 600 bases as well as two weakly expressed, longer mRNA species that reacted with both fimA and fimB. A homolog of fimA but not of fimB was detected by Southern hybridization in strains of X. campestris pv. vesicatoria, campestris, begoniae, translucens, and graminis. A fimA::omega mutant of strain 3240 was not significantly reduced in virulence or adhesiveness to tomato leaves. However, the fimA mutant was dramatically reduced in cell aggregation in laboratory cultures and on infected tomato leaves. The fimA mutant strain also exhibited decreased tolerance to UV light.  相似文献   

18.
Xanthomonas axonopodis pv. manihotis (Xam) causes cassava bacterial blight, the most important bacterial disease of cassava. Xam, like other Xanthomonas species, requires type III effectors (T3Es) for maximal virulence. Xam strain CIO151 possesses 17 predicted T3Es belonging to the Xanthomonas outer protein (Xop) class. This work aimed to characterize nine Xop effectors present in Xam CIO151 for their role in virulence and modulation of plant immunity. Our findings demonstrate the importance of XopZ, XopX, XopAO1 and AvrBs2 for full virulence, as well as a redundant function in virulence between XopN and XopQ in susceptible cassava plants. We tested their role in pathogen‐associated molecular pattern (PAMP)‐triggered immunity (PTI) and effector‐triggered immunity (ETI) using heterologous systems. AvrBs2, XopR and XopAO1 are capable of suppressing PTI. ETI suppression activity was only detected for XopE4 and XopAO1. These results demonstrate the overall importance and diversity in functions of major virulence effectors AvrBs2 and XopAO1 in Xam during cassava infection.  相似文献   

19.
The Gram-negative plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria translocates effector proteins via a specialized type III secretion (TTS) system into the host cell cytosol. The efficient secretion of many effector proteins depends on the global TTS chaperone HpaB. Here, we identified a novel export control protein, HpaC, which significantly contributes to bacterial pathogenicity. Deletion of hpaC leads to a severe reduction in secretion of effector proteins and the putative type III translocon proteins HrpF and XopA. By contrast, secretion of the TTS pilus protein HrpE is not affected. We provide experimental evidence that HpaC differentiates between two classes of effector proteins. Using an in vivo reporter assay, we found that HpaC specifically promotes the translocation of the effector proteins XopJ and XopF1 into the plant cell, whereas AvrBs3 and XopC are efficiently translocated even in the absence of HpaC. Similar findings were obtained for HpaB. Inhibition of protein synthesis suggests that HpaB is involved in the secretion of stored effector proteins. Furthermore, protein-protein interaction studies revealed that HpaB and HpaC form an oligomeric protein complex and that they interact with members of both effector protein classes and the conserved TTS system component HrcV. Taken together, our data indicate that HpaB and HpaC play a central role in recruiting TTS substrates to the secretion apparatus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号