首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The envelope protein (Env) of murine leukemia viruses (MLVs) is composed of a surface subunit (SU) and a transmembrane subunit (TM), which mediates membrane fusion, resulting in infection. SU contains a discrete N-terminal receptor binding domain (RBD) that is connected to the remainder of Env by a short, proline-rich segment. Previous studies suggest that after receptor binding, the RBD interacts directly with the remainder of Env to trigger fusion (A. L. Barnett, R. A. Davey, and J. M. Cunningham, Proc. Natl. Acad. Sci. USA 98:4113-4118, 2001). To investigate the role of the RBD in activating fusion, we compared infection by several MLVs that are defective unless rescued in trans by the addition of soluble RBD to the culture medium. Infection by MLV lacking a critical histidine residue near the N terminus of the viral RBD is dependent on the expression of receptors for both the RBD in the viral Env and the soluble RBD supplied in trans. However, infection by MLVs in which the RBD has been deleted or replaced by the ligand erythropoietin are dependent only on expression of the receptor for the soluble RBD. We were able to expand the host range of xenotropic MLV to nonpermissive murine fibroblasts only if the RBD was deleted from the xenotropic viral envelope and the soluble RBD from ecotropic Friend MLV was supplied to the culture medium. These findings indicate that receptor binding transforms the RBD from an inhibitor to an activator of the viral fusion mechanism and that viruses lacking the critical histidine residue at the N terminus of the RBD are impaired at the activation step.  相似文献   

2.
The chronicity of Pseudomonas aeruginosa infections in cystic fibrosis (CF) patients is characterized by overproduction of the exopolysaccharide alginate, in which biofilm bacteria are embedded. Alginate apparently contributes to the antibiotic resistance of bacteria in this form by acting as a diffusion barrier to positively charged antimicrobial agents. We have been investigating cationic antimicrobial peptides (CAPs) (prototypic sequence: KKAAAXAAAAAXAAWAAXAAAKKKK-NH(2), where X is any of the 20 commonly occurring amino acids) that were originally designed as transmembrane mimetic peptides. Peptides of this group above a specific hydrophobicity threshold insert spontaneously into membranes and have antibacterial activity at micromolar concentrations. While investigating the molecular basis of biofilm resistance to peptides, we found that the anionic alginate polysaccharide induces conformational changes in the most hydrophobic of these peptides typically associated with insertion of such peptides into membrane environments [Chan et al., J. Biol. Chem. (2004) vol. 279, pp. 38749-38754]. Through a combination of experiments measuring release of the fluorescent dye calcein from phospholipid vesicles, peptide interactions with vesicles in the presence and absence of alginate, and affinity of peptides for alginate as a function of net peptide core hydrophobicity, we show here that alginate offers a microenvironment that provides a protective mechanism for the encased bacteria by both binding and promoting the self-association of the CAPs. The overall results indicate that hydrophilic alginate polymers contain a significant hydrophobic compartment, and behave as an 'auxiliary membrane' for bacteria, thus identifying a unique protective role for biofilm exopolysaccharide matrices.  相似文献   

3.
The interaction of 125I-asialoerythropoietin (asialoepo) with receptors has been characterized both by binding assay and affinity cross-linking. Purified spleen cells from mice infected with the anemia strain of Friend virus (FVA cells) have receptors for 125I-asialoepo with two classes of affinity constant: one with Kd = 0.02-0.03 nM and 300-400 per cell, the other with lower affinity (Kd = 0.9-1.2 nM) and 1,000-1,200 per cell. The Kd value for the high affinity site is one-third of that for the binding of native 125I-erythropoietin (125I-epo) to the same FVA cells (Kd = 0.08-0.1 nM). Using 125I-asialoepo or 125I-epo affinity cross-linking methods, we find two components with apparent molecular weights of 88 kDa and 105 kDa in FVA cells, and in the transformed mouse cell lines, 201, IW32, and NN10, in agreement with earlier studies using 125I-epo. These results indicate that 125I-asialoepo binds to the same receptors as 125I-epo, but with greater affinity for the high affinity site. Since 201 cells contain only a single class of lower affinity receptors for erythropoietin (epo), finding the same two components as found for FVA cells by cross-linking experiment indicates that the two components do not represent the two classes of receptor.  相似文献   

4.
A new model is presented on the basis of our experimental data and the “tropomyosin-blocking theory” of muscle relaxation to explain the regulation of certain characteristics of muscle contraction, namely that the relation of contraction to pCa is co-operative while calcium-binding is essentially non-cooperative. Our experiments show that end-to-end interactions between adjacent tropomyosin molecules in the groove of the actin helix are essential for the co-operative regulation. The blocking theory says that the tropomyosin molecule in relaxed muscle sterically blocks the myosin attachment site on actin, whereas in contracting muscle it moves to a position away from the attachment site. In this model a concerted movement of tropomyosin molecules, brought about by their end-to-end interactions, is considered to be the essential mechanism of co-operative regulation, and it is assumed that the positional changes of tropomyosin occur primarily when the four calcium binding sites of troponin on the tropomyosin are saturated with calcium. Theoretical analysis of the model, based upon the two-state allosteric model, leads to a Michaelis-Menten equation for the Ca-binding function together with a co-operative equation for the state function, proportional to the contraction or ATPase activity. These two functions fit well the experimental data. With cardiac muscle the slope of the contraction versus pCa curve is slightly less steep than that obtained with skeletal muscle. This difference can be explained by the difference in the number of Ca-binding sites of troponins.  相似文献   

5.
Nuclease mechanism of the avian retrovirus pp32 endonuclease.   总被引:14,自引:9,他引:5       下载免费PDF全文
In vivo, the inferred circular retrovirus DNA precursor to the provirus contains two long terminal repeats (LTRs) in tandem. We studied the site-specific nicking of supercoiled DNA that contains tandem copies of avian retrovirus LTR DNA in vitro by using purified avian myeloblastosis virus pp32 endonuclease, Mg2+, and viral DNA substrates containing different LTR circle junction sequences. The results confirmed our previous observation that the pp32 protein generates two nicks, one in either viral DNA strand, each 2 nucleotides from the circle junction site. The specificity of nicking by pp32 was unchanged over an eight-fold range of protein concentration and with different avian retrovirus LTR circle junction substrates. These data are consistent with models which propose a role for the endonuclease in removal of two nucleotides from the LTR termini on integration of viral DNA in vivo.  相似文献   

6.
7.
A Kamb  J S Finer-Moore  R M Stroud 《Biochemistry》1992,31(51):12876-12884
We have solved crystal structures of two complexes with Escherichia coli thymidylate synthase (TS) bound either to the cofactor analog N10-propargyl-5,8-dideazafolate (CB3717) or to a tighter binding polygutamyl derivative of CB3717. These structures suggest that cofactor binding alone is sufficient to induce the conformational change in TS; dUMP binding is not required. Because polyglutamyl folates are the primary cofactor form in vivo, and because they can bind more tightly than dUMP to TS, these structures may represent a key intermediate along the TS reaction pathway. These structures further suggest that the dUMP binding site is accessible in the TS-cofactor analog binary complexes. Conformational flexibility of the binary complex may permit dUMP to enter the active site of TS while the cofactor is bound. Alternatively, dUMP may enter the active site from the opposite side that the cofactor appears to enter; that is, through a portal flanked by arginines that also coordinate the phosphate group in the active site. Entry of dUMP through this portal may allow dUMP to bind to a TS-cofactor binary complex in which the complex has completed its conformational transition to the catalytically competent structure.  相似文献   

8.
Taguchi F 《Uirusu》2006,56(2):165-171
Coronaviruses infect many species of animals, including humans. Among them, murine coronavirus, mouse hepatitis virus (MHV) has been well studied as a model of human diseases, such as hepatitis and demyelinating disease. An agent causing severe acute respiratory disease (SARS), SARS coronavirus (SARS-CoV), is a newcomer in this genus, however, it is now one of the most studied coronaviruses due to its medical impact. The receptors of those two viruses have been identified and their cell entry mechanism has been actively investigated. Recently, SARS-CoV cell entry mechanism is shown to be different from that of other enveloped viruses, including MHV. In this review, cell entry mechanism of those two viruses is described, stressing on the difference and similarity found between those two viruses.  相似文献   

9.
10.
The RNA replication complex of Semliki Forest virus is bound to cytoplasmic membranes via the mRNA-capping enzyme Nsp1. Here we have studied the structure and liposome interactions of a synthetic peptide (245)GSTLYTESRKLLRSWHLPSV(264) corresponding to the membrane binding domain of Nsp1. The peptide interacted with liposomes only if negatively charged lipids were present that induced a structural change in the peptide from a random coil to a partially alpha-helical conformation. NMR structure shows that the alpha-helix is amphipathic, the hydrophobic surface consisting of several leucines, a valine, and a tryptophan moiety (Trp-259). Fluorescence studies revealed that this tryptophan intercalates in the bilayer to the depth of the ninth and tenth carbons of lipid acyl chains. Mutation W259A altered the mode of bilayer association of the peptide and abolished its ability to compete for membrane association of intact Nsp1, demonstrating its crucial role in the membrane association and function of Nsp1.  相似文献   

11.
Squirrel monkey retrovirus (SMRV) was isolated by cocultivation of squirrel monkey lung cells with canine cells. 3H-labeled 60-70S SMRV RNA, isolated from virus grown in canine cells, hybridized to the same extent and to the same Cot1/2 value to the DNA of all tissues of all squirrel monkeys tested; Cot1/2 values show that SMRV proviral sequences are present in the low repetitive range. No SMRV proviral sequences were detected in tissues from a variety of other New World monkeys, Old World monkeys, or apes. Murine, feline, bovine, and canine cells also contain no detectable SMRV proviral sequences. Competitive molecular hybridization studies revealed no detectable sequence homology between the 60-70S RNAs of SMRV and Mason-Pfizer virus (MPV). The virion-associated DNA polymerase of SMRV is similar to that of MPV in that it has a molecular weight of approximately 80,000 and prefers magnesium as a divalent cation using oligo(dG)-poly(rC) as primer-template. The virion-associated DNA polymerase of SMRV can be clearly distinguished from those of MPV and the mouse mammary tumor viruses, however, by its preference for manganese as a divalent cation in the presence of high salt.  相似文献   

12.
Polyglutamine (polyQ) extension in the coding sequence of mutant huntingtin causes neuronal degeneration associated with the formation of insoluble polyQ aggregates in Huntington's disease. We constructed an array of CAG/CAA triplet repeats, coding for a range of 25-300 glutamine residues, which was used to generate expression constructs with minimal flanking sequence. Normal-length (25 glutamine residues) polyQ did not aggregate when transfected alone. Remarkably, when co-transfected with extended (100-300 glutamine residues) polyQ tracts, normal-length polyQ-containing peptides were trapped in insoluble detergent-resistant aggregates. Aggregates formed in the cytoplasm but were visible in the nucleus only when a strong nuclear localization signal was present. Intermolecular interactions between polyQ tracts mediated the localization of heterogeneous aggregates into the nucleolus by nucleolin protein. Our results suggest that extended polyQ can interact with cellular polyQ-containing proteins, transport them to ectopic cellular locations, and form heterogeneous polyQ aggregates. We provide evidence for a recruitment mechanism for pathogenesis in the polyQ neurodegenerative disorders. In susceptible cells, extended polyQ tracts in huntingtin might interact with and sequester or deplete certain endogenous polyQ-containing cellular proteins.  相似文献   

13.
14.
15.
16.
The skeletal muscle calcium release channel, ryanodine receptor, is activated by calcium-free calmodulin and inhibited by calcium-bound calmodulin. Previous biochemical studies from our laboratory have shown that calcium-free calmodulin and calcium bound calmodulin protect sites at amino acids 3630 and 3637 from trypsin cleavage (Moore, C. P., Rodney, G., Zhang, J. Z., Santacruz-Toloza, L., Strasburg, G., and Hamilton, S. L. (1999) Biochemistry 38, 8532-8537). We now demonstrate that both calcium-free calmodulin and calcium-bound calmodulin bind with nanomolar affinity to a synthetic peptide matching amino acids 3614-3643 of the ryanodine receptor. Deletion of the last nine amino acids (3635-3643) destroys the ability of the peptide to bind calcium-free calmodulin, but not calcium-bound calmodulin. We propose a novel mechanism for calmodulin's interaction with a target protein. Our data suggest that the binding sites for calcium-free calmodulin and calcium-bound calmodulin are overlapping and, when calcium binds to calmodulin, the calmodulin molecule shifts to a more N-terminal location on the ryanodine receptor converting it from an activator to an inhibitor of the channel. This region of the ryanodine receptor has previously been identified as a site of intersubunit contact, suggesting the possibility that calmodulin regulates ryanodine receptor activity by regulating subunit-subunit interactions.  相似文献   

17.
Pertussis toxin and target eukaryotic cells: binding, entry, and activation.   总被引:20,自引:0,他引:20  
H R Kaslow  D L Burns 《FASEB journal》1992,6(9):2684-2690
Pertussis toxin, a protein virulence factor produced by Bordetella pertussis, is composed of an A protomer and a B oligomer. The A protomer consists of a single polypeptide, termed the S1 subunit, which disrupts transmembrane signaling by ADP-ribosylating eukaryotic G-proteins. The B oligomer, containing five polypeptides, binds to cell receptors (most likely containing carbohydrate) and delivers the S1 subunit. Current knowledge suggests that expression of ADP-ribosyltransferase activity in target eukaryotic cells arises after 1) nucleotides and membrane lipids allosterically promote the release of the S1 subunit; and 2) the single disulfide bond in the S1 subunit is reduced by reductants such as glutathione. This model suggests conditions for the proper use of the toxin as an experimental reagent.  相似文献   

18.
19.
Within dense plant populations, strong light quality gradients cause unbalanced excitation of the two photosystems resulting in reduced photosynthetic efficiency. Plants redirect such imbalances by structural rearrangements of the photosynthetic apparatus via state transitions and photosystem stoichiometry adjustments. However, less is known about the function of photosystem II (PSII) supercomplexes in this context. Here, we show in Arabidopsis thaliana that PSII supercomplex remodeling precedes and facilitates state transitions. Intriguingly, the remodeling occurs in the short term, paralleling state transitions, but is also present in a state transition-deficient mutant, indicating that PSII supercomplex generation is independently regulated and does not require light-harvesting complex phosphorylation and movement. Instead, PSII supercomplex remodeling involves reversible phosphorylation of PSII core subunits (preferentially of CP43) and requires the luminal PSII subunit Psb27 for general formation and structural stabilization. Arabidopsis knockout mutants lacking Psb27 display highly accelerated state transitions, indicating that release of PSII supercomplexes is required for phosphorylation and subsequent movement of the antenna. Downregulation of PSII supercomplex number by physiological light treatments also results in acceleration of state transitions confirming the genetic analyses. Thus, supercomplex remodeling is a prerequisite and an important kinetic determinant of state transitions.  相似文献   

20.
The avian retrovirus pp32 protein possesses DNA endonuclease activity and unique DNA binding properties. An improved purification procedure was developed for pp32, resulting in a severalfold increase in the yield of this virion protein. By use of the nitrocellulose filter binding assay, the protein retains approximately 2-fold more supercoiled (form I) DNA molecules than equivalent linear duplex DNA molecules. Single-stranded DNA is only slightly preferred over double-stranded DNA for pp32 binding. The pp32 DNA binding sites on form I pBR322 DNA which contained an insert of avian retrovirus long terminal repeat (LTR) DNA were determined. A preformed protein-DNA complex was digested with one of several different multicut restriction enzymes and filtered through nitrocellulose filters. Fragments containing viral LTR DNA sequences and plasmid DNA containing promoter sequences for the ampicillin and tetracycline genes, sequences for the "left-end" inverted repeat of transposon 3, and sequences encompassing the carboxyl terminus of the beta-lactamase gene were preferentially retained on the filter by pp32. Partial mapping of pp32 DNA binding sites on LTR DNA was accomplished by generation of deletions in LTR DNA sequences. The pp32 protein preferentially bound viral DNA fragments which contain the viral promoter (TATTTAA) and the adjacent "R" repeat sequences. Computer analysis revealed that three of the four plasmid DNA fragments retained by pp32 contained LTR DNA promoter-like sequences (one mismatch only) which were part of statistically significant and thermodynamically stable hairpin structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号