首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of [3H]oxytocin binding sites among various subcellular fractions of rat myometrium paralleled the distribution of 5'-nucleotidase, a plasma membrane marker enzyme, but not of NADPH-cytochrome c reductase or succinate-cytochrome c reductase, which are endoplasmic reticulum and mitochondrial marker enzymes respectively. [3H]Oxytocin binding to the most enriched plasma membrane fraction showed the degree of selectivity with respect to hormone analogues that is expected for the oxytocin receptor. The binding of oxytocin to this fraction showed an apparent Kd of 1.98 X 10(-9) M and a capacity of 1.28 pmol mg-1. It is concluded that the oxytocin receptor is located on the plasma membrane of the smooth muscle cells of the rat uterus.  相似文献   

2.
Upon differential centrifugation of guinea pig intestine mucosal cells homogenate, fatty acyl-CoA:NADPH oxidoreductase (long chain alcohol forming) was found to be enriched in the light mitochondrial (L) fraction (sedimenting between 66,000 x g min and 500,000 x g min) which contained mainly mitochondria, lysosomes, and peroxisomes. Peroxisomes (marker enzymes: catalase and dihydroxyacetone phosphate acyltransferase) present in the L fraction were separated from other organelles in a Nycodenz density gradient centrifugation employing a vertical rotor. By comparing the distribution of acyl-CoA reductase with different marker enzymes in the gradient, it was concluded that this reductase is primarily localized in the microperoxisomes (microbodies). The topography of the membrane-bound enzyme in the isolated organelles was studied by checking its lability toward trypsin in the absence and presence of the detergent Triton X-100. The results suggested that acyl-CoA reductase is localized on the outer surface (cytosolic side) of microperoxisomal membrane.  相似文献   

3.
Preparations enriched with plasmalemmal, outer mitochondrial, or Golgi complex membranes from rat liver were subfractionated by isopycnic centrifugation, without or after treatment with digitonin, to establish the subcellular distribution of a variety of enzymes. The typical plasmalemmal enzymes 5'-nucleotidase, alkaline phosphodiesterase I, and alkaline phosphatase were markedly shifted by digitonin toward higher densities in all three preparations. Three glycosyltransferases, highly purified in the Golgi fraction, were moderately shifted by digitonin in both this Golgi complex preparation and the microsomal fraction. The outer mitochondrial membrane marker, monoamine oxidase, was not affected by digitonin in the outer mitochondrial membrane marker, monoamine oxidase, was not affected by digitonin in the out mitochondrial membrane preparation, in agreement wit its behavior in microsomes. With the exception of NADH cytochrome c reductase (which was concentrated in the outer mitochondrial membrane preparation), typical microsomal enzymes (glucose-6-phosphatase, esterase, and NADPH cytochrome c reductase) displayed low specific activities in the three preparations; except for part of the glucose-6-phosphatase activity in the plasma membrane preparation, their density distributions were insensitive to digitonin, as they were in microsomes. The influence of digitonin on equilibrium densities was correlated with its morphological effects. Digitonin induced pseudofenestrations in plasma membranes. In Golgi and outer mitochondrial membrane preparations, a few similarly altered membranes were detected in subfractions enriched with 5'-nucleotidase and alkaline phosphodiesterase I. The alterations of Golgi membranes were less obvious and seemingly restricted to some elements in the Golgi preparation. No morphological modification was detected in digitonin-treated outer mitochondrial membranes. These results indicate that each enzyme is associated with the same membrane entity in all membrane preparations and support the view that there is little overlap in the enzymatic equipment of the various types of cytomembranes.  相似文献   

4.
Trypanosoma brucei procyclic trypomastigotes and T. cruzi epimastigotes (both Tulahuen and Y strains) were permeabilized by incubation with increasing amounts of digitonin, causing enzymes to be released from different intracellular compartments. After 10 min incubation with digitonin, the cells were centrifuged and the activity of marker enzymes (aspartate-dependent malic enzyme for cytoplasm, hexokinase for glycosomes and either isocitrate dehydrogenase or citrate synthase for mitochondria) was analyzed in the supernatant. The results were compared with the release of NADH-fumarate reductase in order to determine if this enzyme was preferentially released with a specific intracellular marker. Fumarate reductase was released at lower digitonin concentration than those required to either release isocitrate dehydrogenase or citrate synthase. Similarly, Leishmania donovani promastigotes (S-2 strain) were exposed to a single concentration of digitonin (200 micro M) but in this case we monitored the release of fumarate reductase and hexokinase, while monitoring the mitochondrial membrane potential (using safranine O). Again, substantial fumarate reductase and hexokinase activities were released without loss of mitochondrial membrane potential indicating that part of the enzyme was released while the inner mitochondrial membrane remained intact. These results suggest that, in the three species of trypanosomatids the enzyme fumarate reductase is, at least in part, located outside the mitochondrial matrix.  相似文献   

5.
A detailed procedure for subcellular fractionation of the smooth muscle from pig coronary arteries based on dissection of the proper tissue, homogenization, differential centrifugation and sucrose density gradient centrifugation is described. A number of marker enzymes and Ca2+ uptake in presence or absence of oxalate, ruthenium red and azide were studied. The ATP-dependent oxalate-independent azide- or ruthenium red-insensitive Ca2+ uptake, and the plasma membrane markers K+-activated ouabain-sensitive p-nitrophenylphosphatase, 5'-nucleotidase and Mg2+-ATPase showed maximum enrichment in the F2 fraction (15-28% sucrose) which was also contaminated with the endoplasmic reticulum marker NADPH: cytochrome c reductase, and to a small extent with the inner mitochondrial marker cytochrome c reductase, and also showed a small degree of oxalate stimulation of the Ca2+ uptake. F3 fraction (28-40% sucrose) was maximally enriched in the ATP- and oxalate-dependent azide-insensitive Ca2+ uptake and the endoplasmic reticulum marker NADPH: cytochrome c reductase but was heavily contaminated with the plasma membrane and the inner mitochondrial markers. The mitochondrial fraction was enriched in cytochrome c oxidase and azide- or ruthenium red-sensitive ATP-dependent Ca2+ uptake but was heavily contaminated with other membranes. Electron microscopy showed that F2 contained predominantly smooth surface vesicles and F3 contained smooth surface vesicles, rough endoplasmic reticulum and mitochondria. The ATP-dependent azide-insensitive oxalate-independent and oxalate-stimulated Ca2+ uptake comigrated with the plasma membrane and the endoplasmic reticulum markers, respectively, and were preferentially inhibited by digitonin and phosphatidylserine, respectively. This study establishes a basis for studies on receptor distribution and further Ca2+ uptake studies to understand the physiology of coronary artery vasodilation.  相似文献   

6.
The intracellular localization of carotenoids in the fungus Neurospora crassa was examined after completion of photoinduced biosynthesis of these pigments. Differential centrifugation of cell homogenates yielded subcellular fractions which were characterized by activities of several marker enzymes for cell constituents and in part purified by subsequent sucrose density gradient centrifugation. Most (ca 58%) of the carotenoids were found to be localized in lipid globules, but substantial amounts are also associated with two membrane fractions that were rich in membranes of the endoplasmic reticulum as indicated by high activities of NADPH- and NADH—cytochrome c reductase. These results, along with the coincidence in the distribution of both carotenoids and activities of specific marker enzymes in the sucrose density gradients, led to the conclusion that apart from lipid globules, carotenoids are also localized in membranes of the endoplasmic reticulum.  相似文献   

7.
The influence of the mode of preparation upon some of the characteristics of white adipose tissue plasma membranes and microsomes has been reported. Plasma membrane fractions prepared from mitochondrial pellet were shown to have higher specific activities of (Mg2+ + Na+ + K+)-ATPase than plasma membranes originating in crude microsomes. Isolation of fat cells by collagenase treatment was found to result in a decrease in specific activity of the plasma membrane enzymes; in plasma membranes prepared from isolated fat cells, the specific activity values obtained for (Mg2+ + Na+ +k+)-ATPase and 5'-nucleotidase were only 42% and 6.3% respectively of those obtained in plasma membranes prepared from whole adipose tissue. Purification of whole adipose tissue crude microsomes by hypotonic treatment caused extensive solubilization of the endoplasmic reticulum marker enzymes, NADH oxidase and NADPH cytochrome c reductase. The lability of endoplasmic reticulum marker enzymes, however, was found to be greatly diminished in the preparations from isolated fat cells. The possibility that NADH oxidase and NADPH cytochrome c reductase activities found in the plasma membranes are microsomal enzymes adsorbed by the plasma membranes is discussed. The peptide patterns as well as the NADH oxidase and NADPH cytochrome c reductase activity patterns of plasma membranes and purified microsomes were compared by means of sodium dodecyl sulfate or Triton X-100 polyacrylamide gel electrophoresis.  相似文献   

8.
The specific activity and subcellular distribution of marker enzymes for the main subcellular components were analysed in homogenates of synchronized hepatoma cells (Morris 7288c), obtained by selective detachment at mitosis combined with a metaphase block with Colcemid. Markers for lysosomes, mitochondrial outer membrane, plasma membrane and cytosol are synthesized throughout the cycle at the same rate as the bulk of cellular protein. Larger variations are observed for a Golgi marker; after a decrease around mitosis, the specific activity of galactosyltransferase increases steadily from middle G(1)-phase on, and at the end of G(2)-phase it is nearly twice that observed at the beginning of G(1)-phase. Our results show that synthesis of cytochrome oxidase may occur preferentially in G(2)-phase. Large modifications of the density distribution of lysosomes are observed during the cell cycle; the median equilibrium density of lysosomal markers decreases in G(1)-phase, and some increase in soluble activity occurs at the same time. Reverse changes occur progressively during S- and G(2)-phases. At mitosis, Golgi galactosyltransferase shows a more dispersed distribution, and modifications in the density distribution of endoplasmic-reticulum NADPH-cytochrome c reductase are observed. The latter can be most easily explained by a detachment of ribosomes from endoplasmic-reticulum membranes. No significant modifications occur in mitochondrial and plasma-membrane markers.  相似文献   

9.
The procedure for immunochemical adsorption of vesicles with specific antigen on their outer surfaces was improved. When microsomal vesicles were mixed with Staphylococcus aureus cells coated with the antibody against NADPH-cytochrome c reductase, more than 90% of the enzyme activity was adsorbed on the cell, whereas, only about 10% of the activity was adsorbed on cells coated with the same amount of anti-ovalbumin antibody. NADH-cytochrome c reductase and aldehyde dehydrogenase activities were adsorbed on the cell to the same extent as was NADPH-cytochrome c reductase activity. Under this condition, there was no adsorption of the activities of the marker enzymes of lysosomes and Golgi apparatus, whereas large amounts of the activities of the plasma membrane enzymes were adsorbed. The specific activity of NADPH-cytochrome c reductase in the adsorbed vesicles from the microsomal fractions increased considerably. In contrast, marker enzymes of the Golgi or of the plasma membranes could be enriched in unadsorbed vesicles from the Golgi fractions.  相似文献   

10.
The purpose of the study was to consider quantitatively the relationships between the surface area of the endoplasmic reticulum (ER) and constituent marker enzyme activities, as they occur in fractions collected from rat liver homogenates. The ER surface area was estimated in five membrane-containing fractions by use of a combined cytochemical-stereological technique (5), while, at the same time, ER marker enzymes were assayed biochemically. Fraction/homogenate recoveries for the ER enzymes averaged 100%, total membrane surface area 98%, and ER surface area 96%. Relative specific activities, which compare the relative amounts of ER marker enzyme activities to the relative ER surface area in the membrane-containing fractions, indicate variable distributions for glucose-6-phosphatase and NADPH cytochrome c reductase, but not for esterase.  相似文献   

11.
The distribution of nitrite reductase (EC 1.7.7.1) and sulfite reductase (EC 1.8.7.1) between mesophyll ceils and bundle sheath cells of maize ( Zea mays L. cv. Seneca 60) leaves was examined. This examination was complicated by the fact that both of these enzymes can reduce both NO-2 and SO2-3 In crude extracts from whole leaves, nitrite reductase activity was 6 to 10 times higher than sulfite reductase activity. Heat treatment (10 min at 55°C) caused a 55% decrease in salfite reductase activity in extracts from bundle sheath cells and mesophyll cells, whereas the loss in nitrite reductase activity was 58 and 82% in bundle sheath cells and mesophyll cell extracts, respectively. This result was explained, together with results from the literature, by the hypothesis that sulfite reductase is present in both bundle sheath cells and mesophyll cells, and that nitrite reductase is restricted to the mesophyll cells. This hypothesis was tested i) by comparing the distribution of nitrite reductase activity and sulfite reductase activity between bundle sheath and mesophyll cells with the presence of the marker enzymes ribulose-l, 5-bisphosphate carboxylase (EC 4.1.1.39) and phosphoe-nolpyruvate carboxylase (EC 4.1.1.32), ii) by examining the effect of cultivation of maize plants in the dark without a nitrogen source on nitrite reductase activity and sulfite reductase activity in the two types of cells, and iii) by studying the action of S2-on the two enzyme activities in extracts from bundle sheath and mesophyll cells. The results from these experiments are consistent with the above hypothesis.  相似文献   

12.
Although the preparation of rat liver Golgi apparatus isolated by our method contains appreciable activities of NADH- and NADPH-cytochrome c reductases and glucose-6-phosphatase, these enzymes as well as thiamine pyrophosphatase of the extensively fragmented Golgi fraction are partitioned in aqueous polymer two-phase systems quite differently from those associated with microsomes. Similarly, the partition patterns of acid phosphatase and 5'-nucleotidase of the Golgi fragments differ from those of homogenized lysosomes and plasma membrane, respectively. It is concluded that most, if not all, of these marker enzymes in the Golgi fraction cannot be ascribed to contamination by the non-Golgi organelles. In sucrose density gradient centrifugation the NADH- and NADPH-cytochrome c reductase activities of the Golgi fraction behave identically with galactosyltransferase but differently from the reductase activities of microsomes, again indicating that the reductases are inherently associated with the Golgi apparatus. NADPH-cytochrome c reductase of the Golgi preparation is immunologically identical with that of microsomes. The marker enzymes mentioned above and galactosyltransferase behave differently from one another when the Golgi fragments are subjected to partitioning in aqueous polymer two-phase systems, suggesting that these enzymes are not uniformly distributed in the Golgi apparatus structure.  相似文献   

13.
The activities of membrane marker enzymes in normal (3T3) and simian virus transformed mouse cells (SV3T3) are affected not only by densities of cultures but also by the sera types used in the growth media. We have assayed the levels of 5'nucleotidase, monoamine oxidase and rotenone insensitive NADH ferricyanide reductase in these cells grown to sparse and confluent cultures in medium supplemented with 10% newborn calf serum (n.c.s.) or in medium supplemented with 10% foetal bovine serum (f.b.s.). It was found that in 3T3 cells grown in 10% f.b.s. the transition from sparse to confluent cultures was associated with a reduction in the activities of the marker enzymes while in those grown in 10% n.c.s., the activities of these enzymes increased. In the SV3T3 cells, the activities of all the enzymes except for monoamine oxidase decreased from sparse to confluent culture densities in cells grown in 10% n.c.s. whereas in those grown in 10% f.b.s. there were no significant change in the activities of the enzymes over the same culture densities. The results suggest that the marker enzymes are affected by sera types and culture densities.  相似文献   

14.
Isopycnic centrifugation experiments using sucrose density gradients showed that in digitonin-treated microsomes the distribution of the plasma membrane (PM) marker 5'-nucleotidase was shifted to higher densities. The treatment also caused similar but less pronounced changes in the distribution of protein, the putative endoplasmic reticulum (ER) marker NADPH-dependent cytochrome c reductase, and the inner mitochondrial marker cytochrome c oxidase. Similar experiments using more purified membrane fractions showed that the digitonin treatment led to a comparable increase in the densities of the fractions N1 and N2 previously described as subfractions of plasma membrane and to considerably less increase in the density of the fraction N3B which is enriched in the endoplasmic reticulum and the inner mitochondrial markers. Digitonin inhibited the ATP-dependent Ca uptake by the N1 fraction in a concentration-dependent manner (I50 = 0.3 mg/mL). Digitonin (0.5 mg/mL) inhibited the ATP-dependent azide-insensitive Ca uptake by all the fractions. The results support the hypothesis that (a) N1 and N2 are subfractions of plasma membrane, and (b) ATP-dependent azide-insensitive Ca uptake in rat myometrium is a property of plasma membranes.  相似文献   

15.
Basolateral plasma membranes of rat small intestinal epithelium were purified by density gradient centrifugation followed by zonal electrophoresis on density gradients. Crude basolateral membranes were obtained by centrifugation in which the marker enzyme, (Na+ + K+)-ATPase, was enriched 10-fold with respect to the initial homogenate. The major contaminant was a membrane fraction derived from smooth endoplasmic reticulum, rich in NADPH-cytochrome c reductase activity. The crude basolateral membrane preparation could be resolved into the two major components by subjecting it to zonal electrophoresis on density gradients. The result was that (Na+ + K+)-ATPase was purified 22-fold with respect to the initial homogenate. Purification with respect to mitochondria and brush border membranes was 35- and 42-fold, respectively. Resolution of (Na+ + K+)-ATPase from NADPH-cytochrome c reductase by electrophoresis was best with membrane material from adult rats between 180 and 250 g. No resolution between the two marker enzymes occurred with material from young rats of 125 to 140 g. These results demonstrate that zonal electrophoresis on density gradients, a simple and inexpensive technique, has a similar potential to free-flow electrophoresis.  相似文献   

16.
Evidence supporting the existence of two distinct carbonyl (metyrapone) reducing enzymes which differ in subcellular localization and immunological homology has been provided. A soluble enzyme, designated as carbonyl reductase (EC 1.1.1.184) is located in the cytosol. The distribution of the second, membrane associated, MPON-reductase shows an excellent linear correlation to NADPH-cytochrome c reductase and, on the other hand, is reciprocal to the RNA/protein ratio of submicrosomal preparations. This indicates that the membrane associated MPON-reductase is exclusively located in the smooth endoplasmic reticulum. Using antibodies against the purified membrane associated enzyme the extent of immunological crossreaction corresponds well to the specific activities of MPON-reductase in the granular fractions, thus further confirming the localization of this enzyme within this organelle. The absence of antigenic crossreaction to cytosolic MPON-reductase indicates differences also in terms of the immunological relationship between the two enzymes.  相似文献   

17.
The localization of the membrane-associated thiol oxidase in rat kidney was investigated. Fractionation of the kidney cortex by differential centrifugation demonstrated that the enzyme is found in the plasma membrane. The crude plasma membrane was fractionated by density-gradient centrifugation on Percoll to obtain purified brush-border and basal-lateral membranes. Gamma-Glutamyltransferase, alkaline phosphatase and aminopeptidase M were assayed as brush-border marker enzymes, and (Na+ + K+)-stimulated ATPase was assayed as a basal-lateral-membrane marker enzyme. Thiol oxidase activity and distribution were determined and compared with those of the marker enzymes. Its specific activity was enriched 18-fold in the basal-lateral membrane fraction relative to its activity in the cortical homogenate, and its distribution paralleled that of (Na+ + K+)-stimulated ATPase. This association indicates that thiol oxidase is localized in the same fraction as (Na+ + K+)-stimulated ATPase, i.e. the basal-lateral region of the plasma membrane of the kidney tubular epithelium.  相似文献   

18.
Chanson A  Pilet PE 《Plant physiology》1987,84(4):1431-1436
A maize (Zea mays L. cv LG 11) root homogenate was prepared and centrifuged to sediment the mitochondria. The pellet (6 KP) and the supernatant (6 KS) were collected and fractionated on linear sucrose density gradients. Marker enzymes were used to study the distribution of the different cell membranes in the gradients. The distribution of the ATP- and pyrophosphate-dependent proton pumping activities was similar after 3 hours of centrifugation of the 6 KS or the 6 KP fraction. The pumps were clearly separated from the mitochondrial marker cytochrome c oxidase and the plasmalemma marker UDP-glucose-sterolglucosyl-transferase. The pyrophosphate-dependent proton pump might be associated with the tonoplast, as the ATP-dependent pump, despite the lack of a specific marker for this membrane. However, under all the conditions tested, the two pumps overlapped the Golgi markers latent UDPase and glucan synthase I and the ER marker NADH-cytochrome c reductase. It is therefore not possible to exclude the presence of proton pumping activities on the Golgi or the ER of maize root cells. The two pumps (but especially the pyrophosphate-dependent one) were more active (or more abundant) in the tip than in the basal part of maize roots, indicating that these activities might be important in growth processes.  相似文献   

19.
The iodothyronine-deiodinating enzymes (iodothyronine-5- and 5'-deiodinase) of rat liver were found to be located in the parenchymal cells. Differential centrifugation of rat liver homogenate revealed that the deiodinases resided mainly in the microsomal fraction. The subcellular distribution pattern of these enzymes correlated best with glucose-6-phosphatase, a marker enzyme of the endoplasmic reticulum. Plasma membranes, prepared by discontinuous sucrose gradient centrifugation, were found to contain very little deiodinating activity. Analysis of fractions obtained during the course of plasma membrane isolation showed that the deiodinases correlated positively with glucose-6-phosphatase (r larger than or equal to 0.98) and negatively with the plasma membrane marker 5'-nucleotidase (r ranging between -0.88 and -0.97). It is concluded that the iodothyronine-deiodinating enzymes of rat liver are associated with the endoplasmic reticulum.  相似文献   

20.
An electron microscope cytochemical technique was used to determine the subcellular distribution of marker enzymes in Fusidium sp. 100-3 cells. Nucleoside diphosphatase was found in the nuclear envelope and intracytoplasmic membrane segment. Thiamine pyrophosphatase was found to be associated with the mesosomes. Cytochrome c (oxidase) activity was found only in the mitochondrial cristae. Strong alkaline phosphatase activity was present in the vacuole; in addition, the enzyme activity was discretely dispersed throughout the cytoplasm without any association with any membrane material. The overall characteristics of the cell ultrastructure and subcellular enzyme distribution of Fusidium sp. 100-3 cells compare fairly well with those of a fungal cell. But there are considerable differences from the characteristics of higher eucaryotic cells. Detailed data on the marker enzymes distribution in a variety of fungal cells are not available. Therefore, it is not possible to conclude whether the marker enzyme distribution of Fusidium sp. 100-3 cells is unique or is typical of any fungal organism. Detailed studies of cell ultrastructure of and marker enzyme distribution in minute fungal cells and their comparison to the ultrastructure of and marker enzyme distribution in other fungal organisms may be helpful in understanding the phylogenetic and ontogenic development of subcellular organelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号