首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A denitrifying bacterium was isolated from a river sediment after enrichment on 3-chlorobenzoate under anoxic, denitrifying conditions. The bacterium, designated strain 3CB-1, degraded 3-chlorobenzoate, 3-bromobenzoate, and 3-iodobenzoate with stoichiometric release of halide under conditions supporting anaerobic growth by denitrification. The 3-halobenzoates and 3-hydroxybenzoate were used as growth substrates with nitrate as the terminal electron acceptor. The doubling time when growing on 3-halobenzoates ranged from 18 to 25 h. On agar plates with 1 mM 3-chlorobenzoate as the sole carbon source and 30 mM nitrate as the electron acceptor, strain 3CB-1 formed small colonies (1–2 mm in diameter) in 2 to 3 weeks. Anaerobic degradation of both 3-chlorobenzoate and 3-hydroxybenzoate was dependent on nitrate as an electron acceptor and resulted in nitrate reduction corresponding to the stoichiometric values for complete oxidation of the substrate to CO2. 3-Chlorobenzoate was not degraded in the presence of oxygen. 3-Bromobenzoate and 3-iodobenzoate were also degraded under denitrifying conditions with stoichiometric release of halide, but 3-fluorobenzoate was not utilized by the bacterium. Utilization of 3-chlorobenzoate was inducible, while synthesis of enzymes for 3-hydroxybenzoate degradation was constitutively low, but inducible. Degradation was specific to the position of the halogen substituent, and strain 3CB-1 did not utilize 2- or 4-chlorobenzoate. Received: 6 November 1998 / Accepted: 19 January 1999  相似文献   

2.
Alcaligenes denitrificans NTB-1, previously isolated on 4-chlorobenzoate, also utilized 4-bromo-, 4-iodo-, and 2,4-dichlorobenzoate but not 4-fluorobenzoate as a sole carbon and energy source. During growth, stoichiometric amounts of halide were released. Experiments with whole cells and cell extracts revealed that 4-bromo- and 4-iodobenzoate were metabolized like 4-chlorobenzoate, involving an initial hydrolytic dehalogenation yielding 4-hydroxybenzoate, which in turn was hydroxylated to 3,4-dihydroxybenzoate. The initial step in the metabolism of 2,4-dichlorobenzoate was catalyzed by a novel type of reaction for aerobic organisms, involving inducible reductive dechlorination to 4-chlorobenzoate. Under conditions of low and controlled oxygen concentrations, A. denitrificans NTB-1 converted all 4-halobenzoates and 2,4-dichlorobenzoate almost quantitatively to 4-hydroxybenzoate.  相似文献   

3.
Alcaligenes denitrificans NTB-1, previously isolated on 4-chlorobenzoate, also utilized 4-bromo-, 4-iodo-, and 2,4-dichlorobenzoate but not 4-fluorobenzoate as a sole carbon and energy source. During growth, stoichiometric amounts of halide were released. Experiments with whole cells and cell extracts revealed that 4-bromo- and 4-iodobenzoate were metabolized like 4-chlorobenzoate, involving an initial hydrolytic dehalogenation yielding 4-hydroxybenzoate, which in turn was hydroxylated to 3,4-dihydroxybenzoate. The initial step in the metabolism of 2,4-dichlorobenzoate was catalyzed by a novel type of reaction for aerobic organisms, involving inducible reductive dechlorination to 4-chlorobenzoate. Under conditions of low and controlled oxygen concentrations, A. denitrificans NTB-1 converted all 4-halobenzoates and 2,4-dichlorobenzoate almost quantitatively to 4-hydroxybenzoate.  相似文献   

4.
When Acinetobacter sp. strain 4-CB1 was grown on 4-chlorobenzoate (4-CB), it cometabolized 3,4-dichlorobenzoate (3,4-DCB) to 3-chloro-4-hydroxybenzoate (3-C-4-OHB), which could be used as a growth substrate. No cometabolism of 3,4-DCB was observed when Acinetobacter sp. strain 4-CB1 was grown on benzoate. 4-Carboxyl-1,2-benzoquinone was formed as an intermediate from 3,4-DCB and 3-C-4-OHB in aerobic and anaerobic resting-cell incubations and was the major transient intermediate found when cells were grown on 3-C-4-OHB. The first dechlorination step of 3,4-DCB was catalyzed by the 4-CB dehalogenase, while a soluble dehalogenase was responsible for dechlorination of 3-C-4-OHB. Both enzymes were inducible by the respective chlorinated substrates, as indicated by oxygen uptake experiments. The dehalogenase activity on 3-C-4-OHB, observed in crude cell extracts, was 109 and 44 nmol of 3-C-4-OHB min-1 mg of protein-1 under anaerobic and aerobic conditions, respectively. 3-Chloro-4-hydroxybenzoate served as a pseudosubstrate for the 4-hydroxybenzoate monooxygenase by effecting oxygen and NADH consumption without being hydroxylated. Contrary to 4-CB metabolism, the results suggest that 3-C-4-OHB was not metabolized via the protocatechuate pathway. Despite the ability of resting cells grown on 4-CB or 3-C-4-OHB to carry out all of the necessary steps for dehalogenation and catabolism of 3,4-DCB, it appeared that 3,4-DCB was unable to induce the necessary 4-CB dehalogenase for the initial p-dehalogenation step.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
When Acinetobacter sp. strain 4-CB1 was grown on 4-chlorobenzoate (4-CB), it cometabolized 3,4-dichlorobenzoate (3,4-DCB) to 3-chloro-4-hydroxybenzoate (3-C-4-OHB), which could be used as a growth substrate. No cometabolism of 3,4-DCB was observed when Acinetobacter sp. strain 4-CB1 was grown on benzoate. 4-Carboxyl-1,2-benzoquinone was formed as an intermediate from 3,4-DCB and 3-C-4-OHB in aerobic and anaerobic resting-cell incubations and was the major transient intermediate found when cells were grown on 3-C-4-OHB. The first dechlorination step of 3,4-DCB was catalyzed by the 4-CB dehalogenase, while a soluble dehalogenase was responsible for dechlorination of 3-C-4-OHB. Both enzymes were inducible by the respective chlorinated substrates, as indicated by oxygen uptake experiments. The dehalogenase activity on 3-C-4-OHB, observed in crude cell extracts, was 109 and 44 nmol of 3-C-4-OHB min-1 mg of protein-1 under anaerobic and aerobic conditions, respectively. 3-Chloro-4-hydroxybenzoate served as a pseudosubstrate for the 4-hydroxybenzoate monooxygenase by effecting oxygen and NADH consumption without being hydroxylated. Contrary to 4-CB metabolism, the results suggest that 3-C-4-OHB was not metabolized via the protocatechuate pathway. Despite the ability of resting cells grown on 4-CB or 3-C-4-OHB to carry out all of the necessary steps for dehalogenation and catabolism of 3,4-DCB, it appeared that 3,4-DCB was unable to induce the necessary 4-CB dehalogenase for the initial p-dehalogenation step.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The degradation of 4-chlorobenzoate (4-CBA) by Pseudomonas sp. strain CBS3 is thought to proceed first by the dehalogenation of 4-CBA to 4-hydroxybenzoate (4-HBA), which is then metabolized following the protocatechuate branch of the beta-ketoadipate pathway. The cloning of the 4-CBA dehalogenation system was carried out by constructing a gene bank of Pseudomonas sp. strain CBS3 in Pseudomonas putida. Hybrid plasmid pPSA843 contains a 9.5-kilobase-pair fragment derived from the chromosome of Pseudomonas sp. strain CBS3. This plasmid confers on P. putida the ability to dehalogenate 4-CBA and grow on 4-CBA as the only source of carbon. However, pPSA843 did not complement mutants of P. putida unable to grow on 4-HBA (POB-), showing that the genes involved in the metabolism of 4-HBA were not cloned. Subcloning of Pseudomonas sp. strain CBS3 genes revealed that most of the insert is required for the dehalogenation of 4-CBA, suggesting that more than one gene product is involved in this dehalogenation.  相似文献   

7.
Thermodynamic data that the reductive dechlorination of 3-chlorobenzoate is exergonic have led to the hypothesis that this reaction yields biologically useful energy. This hypothesis was tested with strain DCB-1, a dehalogenating bacterium. The organism was grown under strictly anaerobic conditions in vitamin-amended mineral medium with formate plus acetate as electron donor and 3-chlorobenzoate as electron acceptor. The cell yield increased stoichiometrically to the amount of 3-chlorobenzoate dechlorinated. No growth was observed in the absence of 3-chlorobenzoate, or when 3-chlorobenzoate was replaced by benzoate. To obtain further evidence on that energy is derived from dechlorination, 3-chlorobenzoate was added to starved cells. This amendment resulted in an increase in the ATP level of the cells at 10 nmol per mg protein versus 3 nmol per mg protein in non-amended controls. These data indicate that the reductive dehalogenation of chlorinated aromatic compounds can be coupled to a novel type of chemotrophy.  相似文献   

8.
The fcb gene cluster involved in the hydrolytic dehalogenation of 4-chlorobenzoate is organized in the order fcbB-fcbA-fcbT1-fcbT2-fcbT3-fcbC in Comamonas sp. strain DJ-12. The genes are operonic and inducible with 4-chloro-, 4-iodo-, and 4-bromobenzoate. The fcbT1, fcbT2, and fcbT3 genes encode a transporter in the secondary TRAP (tripartite ATP-independent periplasmic) family. An fcbT1T2T3 knockout mutant shows a much slower growth rate on 4-chlorobenzoate compared to the wild type. 4-Chlorobenzoate is transported into the wild-type strain five times faster than into the fcbT1T2T3 knockout mutant. Transport of 4-chlorobenzoate shows significant inhibition by 4-bromo-, 4-iodo-, and 4-fluorobenzoate and mild inhibition by 3-chlorobenzoate, 2-chlorobenzoate, 4-hydroxybenzoate, 3-hydroxybenzoate, and benzoate. Uptake of 4-chlorobenzoate is significantly inhibited by ionophores which collapse the proton motive force.  相似文献   

9.
The strains of Arthrobacter globiformis KZT1, Corynebacterium sepedonicum KZ4 and Pseudomonas cepacia KZ2 capable of early dehalogenation and complete oxidation of 4-chloro-, 2,4-dichloro-and 2-chlorobenzoic acids, respectively, have been analyzed for the origin of the genetic control of degradation. The occurrence and molecular sizes of plasmids in all the strains have been established. Plasmid pBS1501 was shown to control 4-chlorobenzoate dehalogenation in the case of KZT1 strain. The same possibility is proposed for plasmid pBS1502 for dehalogenation of 2,4DCBA by KZ4 strain. The chromosome localization of the genes controlling oxidation of 4-hydroxybenzoate in strain KZT1 is shown. Localization of the whole set of genes responsible for 2CBA degradation in the strain KZ2 chromosome is suggested.  相似文献   

10.
4-Chlorobenzoate degradation in cell extracts of Acinetobacter sp. strain 4-CB1 occurs by initial synthesis of 4-chlorobenzoyl coenzyme A (4-chlorobenzoyl CoA) from 4-chlorobenzoate, CoA, and ATP. 4-Chlorobenzoyl CoA is dehalogenated to 4-hydroxybenzoyl CoA. Following the dehalogenation reaction, 4-hydroxybenzoyl CoA is hydrolyzed to 4-hydroxybenzoate and CoA. Possible roles for the CoA moiety in the dehalogenation reaction are discussed.  相似文献   

11.
An Arthrobacter sp. has been shown to dehalogenate 4-chlorobenzoate yielding 4-hydroxybenzoate. Experiments with 18O indicate that, in the presence of cell-free extracts, the hydroxyl group which is substituted onto the aromatic nucleus during dehalogenation is derived from water and not from molecular oxygen. Dehalogenation therefore is not catalysed by a mixed-function oxidase; instead a novel aromatic hydroxylase is implicated in the reaction.  相似文献   

12.
We isolated a strain of Rhodopseudomonas palustris (RCB100) by selective enrichment in light on 3-chlorobenzoate to investigate the steps that it uses to accomplish anaerobic dechlorination. Analyses of metabolite pools as well as enzyme assays suggest that R. palustris grows on 3-chlorobenzoate by (i) converting it to 3-chlorobenzoyl coenzyme A (3-chlorobenzoyl-CoA), (ii) reductively dehalogenating 3-chlorobenzoyl-CoA to benzoyl-CoA, and (iii) degrading benzoyl-CoA to acetyl-CoA and carbon dioxide. R. palustris uses 3-chlorobenzoate only as a carbon source and thus incorporates the acetyl-CoA that is produced into cell material. The reductive dechlorination route used by R. palustris for 3-chlorobenzoate degradation differs from those previously described in that a CoA thioester, rather than an unmodified aromatic acid, is the substrate for complete dehalogenation.  相似文献   

13.
Alcaligenes denitrificans NTB-1 converts 4-chlorobenzoate to 4-hydroxybenzoate by means of a hydrolytic dehalogenation. In the presence of oxygen the product is further metabolized by the cells. Although it has been shown that the dehalogenation does not require oxygen, no bioproduction of 4-hydroxybenzoate was achieved by whole cells when oxygen was absent. An energy-dependent active transport may explain this anomaly. Little activity was lost after immobilization of whole cells in carrageenan. Diffusion of oxygen within the carrageenan beads rapidly limited the rate of decolorization. This effect was magnified with increasing bead diameters and cell loadings. External transport of oxygen, on the other hand, did not decrease the reaction rate, except at extremely low oxygen concentrations. Maximal dehalogenation activity was observed at 35°C and at pH 8.0 and this was independent of whether free or immobilized cells were used. 4-Hydroxybenzoate significantly inhibited the rate of decolorization, while the chloride formed and the substrate 4-chlorobenzoate did not show inhibitory effects on decolorization. The yield of this bioconversion was mainly dependent on the oxygen concentration. In the case of free cells, 4-hydroxybenzoate was produced only at very low oxygen concentrations, while immobilized cells still produced 4-hydroybenzoate at air saturation as a result of oxygen diffusion limitation.  相似文献   

14.
Corynebacterium sepedonicum KZ-4, described earlier as a strain capable of growth on 2,4-dichlorobenzoate (G.M. Zaitsev and Y.N. Karasevich, Mikrobiologiya 54:356-369, 1985), is known to metabolize this substrate via 4-hydroxybenzoate and protocatechuate, and evidence consistent with an initial reductive dechlorination step to form 4-chlorobenzoate was found in another coryneform bacterium, strain NTB-1 (W.J.J. van den Tweel, J.B. Kok, and J.A.M. de Bont, Appl. Environ. Microbiol. 53:810-815, 1987). 2-Chloro-4-fluorobenzoate was found to be converted stoichiometrically to 4-fluorobenzoate by resting cells of strain KZ-4, compatible with a reductive process. Experiments with cell extracts demonstrated that Mg - ATP and coenzyme A (CoA) were required to stimulate reductive dehalogenation, consistent with the intermediacy of 2-chloro-4-fluoro-benzoyl-CoA and 2,4-dichlorobenzoyl-CoA thioesters. 2,4-Dichlorobenzoyl-CoA was shown to be converted to 4-chlorobenzoyl-CoA in a novel NADPH-dependent reaction in extracts of both KZ-4 and NTB-1. In addition to the ligase and reductive dehalogenase activities, hydrolytic 4-chlorobenzoyl-CoA dehalogenase and thioesterase activities, 4-hydroxybenzoate 3-monooxygenase, and protocatechuate 3,4-dioxygenase activities were demonstrated to be present in the soluble fraction of KZ-4 extracts following ultracentrifugation. We propose that the pathway for 2,4-dichlorobenzoate catabolism in strains KZ-4 and NTB-1 involves formation of 2,4-dichlorobenzoyl-CoA, NADPH-dependent ortho dehalogenation yielding 4-chlorobenzoyl-CoA, hydrolytic removal of chlorine from the para position to generate 4-hydroxybenzoyl-CoA, hydrolysis to form 4-hydroxybenzoate, oxidation to yield protocatechuate, and oxidative ring cleavage.  相似文献   

15.
A facultative alkalophile capable of utilizing 4-chlorobenzoate (4-CBA), strain SB8, was isolated from soil with an alkaline medium (pH 10.0) containing the haloaromatic compound as the carbon source. The strain, identified as an Arthrobacter sp., showed rather extensive 4-CBA-degrading ability. 4-CBA utilization by the strain was possible in the alkaline medium containing up to 10 g of the compound per liter. The 4-CBA-dechlorinating activity of resting cells was almost completely uninhibited by substrate concentrations up to 150 mM. The bacterium dehalogenated 4-CBA in the initial stage of the degradation and metabolized the compound via 4-hydroxybenzoate and protocatechuate. O2 was needed for 4-CBA dechlorination by resting cells but not by cell extracts. O2 was inhibitory to the 4-CBA dechlorination activity of cell extracts. These facts suggest dechlorination of 4-CBA by halide hydrolysis and an energy requirement for the transport of 4-CBA into cells.  相似文献   

16.
Acinetobacter sp. strain 4CB1 was isolated from a polychlorobiphenyl-contaminated soil sample by using 4-chlorobenzoate as a sole source of carbon and energy. Resting cells of Acinetobacter sp. strain 4CB1 hydrolytically dehalogenated 4-chlorobenzoate under aerobic and anaerobic conditions, but 4-hydroxybenzoate accumulated only under anaerobic conditions. Cell extracts of Acinetobacter sp. strain 4CB1 oxidized 4-hydroxybenzoate by an NADH-dependent monooxygenase to form protocatechuate, which was subsequently oxidized by both ortho- and meta-protocatechuate dioxygenase reactions. When grown on biphenyl, Acinetobacter sp. strain P6 cometabolized 4,4'-dichlorobiphenyl primarily to 4-chlorobenzoate; however, when this strain was grown in a coculture with Acinetobacter sp. strain 4CB1, 4-chlorobenzoate did not accumulate but was converted to inorganic chloride. When resting cells of Acinetobacter sp. strain 4CB1 were incubated anaerobically with 3,4-dichlorobenzoate, they accumulated 4-carboxy-1,2-benzoquinone as a final product. Since 3,4-dichlorobenzoate is a product that is formed from the cometabolism of 3,4-dichloro-substituted tetrachlorobiphenyls by Acinetobacter sp. strain P6, the coculture has a potential application for dehalogenation and mineralization of specific polychlorobiphenyl congeners.  相似文献   

17.
Anaerobic degradation of alkylbenzenes with side chains longer than that of toluene was studied in freshwater mud samples in the presence of nitrate. Two new denitrifying strains, EbN1 and PbN1, were isolated on ethylbenzene and n-propylbenzene, respectively. For comparison, two further denitrifying strains, ToN1 and mXyN1, were isolated from the same mud with toluene and m-xylene, respectively. Sequencing of 16SrDNA revealed a close relationship of the new isolates to Thauera selenatis. The strains exhibited different specific capacities for degradation of alkylbenzenes. In addition to ethylbenzene, strain EbN1 utilized toluence, but not propylbenzene. In contrast, propylbenzene-degrading strain PbN1 did not grow on toluene, but was able to utilize ethylbenzene. Strain ToN1 used toluene as the only hydrocarbon substrate, whereas strain mXyN1 utilized both toluene and m-xylene. Measurement of the degradation balance demonstrated complete oxidation of ethylbenzene to CO2 by strain EbN1. Further characteristic substrates of strains EbN1 and PbN1 were 1-phenylethanol and acetophenone. In contrast to the other isolates, strain mXyN1 did not grow on benzyl alcohol. Benzyl alcohol (also m-methylbenzyl alcohol) was even a specific inhibitor of toluene and m-xylene utilization by strain mXyN1. None of the strains was able to grow on any of the alkylbenzenes with oxygen as electron acceptor. However, polar aromatic compounds such as benzoate were utilized under both oxic and anoxic conditions. All four isolates grew anaerobically on crude oil. Gas chromatographic analysis of crude oil after growth of strain ToN1 revealed specific depletion of toluene.  相似文献   

18.
Acinetobacter sp. strain 4CB1 was isolated from a polychlorobiphenyl-contaminated soil sample by using 4-chlorobenzoate as a sole source of carbon and energy. Resting cells of Acinetobacter sp. strain 4CB1 hydrolytically dehalogenated 4-chlorobenzoate under aerobic and anaerobic conditions, but 4-hydroxybenzoate accumulated only under anaerobic conditions. Cell extracts of Acinetobacter sp. strain 4CB1 oxidized 4-hydroxybenzoate by an NADH-dependent monooxygenase to form protocatechuate, which was subsequently oxidized by both ortho- and meta-protocatechuate dioxygenase reactions. When grown on biphenyl, Acinetobacter sp. strain P6 cometabolized 4,4'-dichlorobiphenyl primarily to 4-chlorobenzoate; however, when this strain was grown in a coculture with Acinetobacter sp. strain 4CB1, 4-chlorobenzoate did not accumulate but was converted to inorganic chloride. When resting cells of Acinetobacter sp. strain 4CB1 were incubated anaerobically with 3,4-dichlorobenzoate, they accumulated 4-carboxy-1,2-benzoquinone as a final product. Since 3,4-dichlorobenzoate is a product that is formed from the cometabolism of 3,4-dichloro-substituted tetrachlorobiphenyls by Acinetobacter sp. strain P6, the coculture has a potential application for dehalogenation and mineralization of specific polychlorobiphenyl congeners.  相似文献   

19.
To study the anaerobic degradation of the chimera 3-chloro-4-hydroxybenzoate (3-Cl,4-OHB), anaerobic freshwater sediment samples from the vicinity of Athens, Ga., were adapted for the transformation of 4-hydroxybenzoate (4-OHB), 3-chlorobenzoate (3-CB), 2-chlorophenol (2-CP), and 2,4-dichlorophenol (2,4-DCP). In nonadapted samples, both 4-OHB (product of aryl dechlorination) and 2-CP (product of aryl decarboxylation) were observed as intermediates in the transformation of 3-Cl,4-OHB to phenol. The accumulated phenol was subsequently transformed to benzoate, an intermediate in the conversion to methane and CO2. In 4-OHB-adapted samples (i.e., samples adapted for aryl decarboxylation), 2-CP was the first intermediate which was subsequently dechlorinated to phenol. In 3-CB-adapted samples (i.e., samples adapted for meta-chlorobenzoate dehalogenation), 3-Cl,4-OHB was stoichiometrically dechlorinated to 4-OHB. In 2-CP-adapted samples (i.e., samples adapted for ortho-chlorophenol dehalogenation), 4-OHB was the first major intermediate. Furthermore, 3-CB was not dechlorinated in 2-CP-adapted sediment samples, suggesting the possibility that different 3-Cl,4-OHB dechlorinating systems were induced in the 2-CP- and 3-CB-adapted sediments. Adaptation of sediment samples for dechlorination of 2,4-DCP did not lead to adaptation for dechlorination of 3-Cl,4-OHB. However, 3-Cl,4-OHB was dechlorinated to 4-OHB in our stable, sediment-free 2,4-DCP-dechlorinating enrichment, isolated previously from the same environment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We isolated a strain of Rhodopseudomonas palustris (RCB100) by selective enrichment in light on 3-chlorobenzoate to investigate the steps that it uses to accomplish anaerobic dechlorination. Analyses of metabolite pools as well as enzyme assays suggest that R. palustris grows on 3-chlorobenzoate by (i) converting it to 3-chlorobenzoyl coenzyme A (3-chlorobenzoyl–CoA), (ii) reductively dehalogenating 3-chlorobenzoyl–CoA to benzoyl-CoA, and (iii) degrading benzoyl-CoA to acetyl-CoA and carbon dioxide. R. palustris uses 3-chlorobenzoate only as a carbon source and thus incorporates the acetyl-CoA that is produced into cell material. The reductive dechlorination route used by R. palustris for 3-chlorobenzoate degradation differs from those previously described in that a CoA thioester, rather than an unmodified aromatic acid, is the substrate for complete dehalogenation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号