首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PRL-3 is a newly identified protein tyrosine phosphatase associated with tumor metastasis. It is over-expressed in various cancers, such as colorectal cancer, gastric cancer, and ovarian cancer, and is correlated with the progression and survival of cancers. Although PRL-3 plays a causative role in promoting cancer cell invasion and metastasis, the molecular mechanism is unknown. To investigate PRL-3's roles in tumorigenesis and signal transduction pathway, we screened the human placenta brain cDNA library with the bait of PRL-3 in yeast two-hybrid system. Then we identified integrin alpha1 as a PRL-3-interacting protein for the first time, and verified this physical association with pull-down and co-immunoprecipitation assays. Furthermore, we found that PRL-3 could down-regulate the tyrosine-phosphorylation level of integrin beta1 and increased the phosphorylation level of Erk1/2. Our present discovery will provide new clues for elucidating the molecular mechanism of PRL-3 in promoting cancer invasion and metastasis.  相似文献   

2.
PRL-1 is a particularly interesting immediate-early gene because it is induced in mitogen-stimulated cells and regenerating liver but is constitutively expressed in insulin-treated rat H35 hepatoma cells, which otherwise show normal regulation of immediate-early genes. PRL-1 is expressed throughout the course of hepatic regeneration, and its expression is elevated in a number of tumor cell lines. Sequence analysis reveals that PRL-1 encodes a 20-kDa protein with an eight-amino-acid consensus protein tyrosine phosphatase (PTPase) active site. PRL-1 is able to dephosphorylate phosphotyrosine substrates, and mutation of the active-site cysteine residue abolishes this activity. As PRL-1 has no homology to other PTPases outside the active site, it is a new type of PTPase. PRL-1 is located primarily in the cell nucleus. Stably transfected cells which overexpress PRL-1 demonstrate altered cellular growth and morphology and a transformed phenotype. It appears that PRL-1 is important in normal cellular growth control and could contribute to the tumorigenicity of some cancer cells.  相似文献   

3.
Action of protein kinases and phosphatases contributes to myocardial hypertrophy. PRL-3, a protein tyrosine phosphatase, was identified in a cDNA library from an explanted human heart obtained from a patient with idiopathic cardiomyopathy. PRL-3 is expressed in heart and skeletal muscle, exhibiting approximately 76% identity to the ubiquitous tyrosine phosphatase PRL-1, which was reported to increase cell proliferation. PRL-3 was cloned into E. coli and purified using affinity chromatography. PRL-3 activity was determined using the substrate 6,8-difluoro-4-methylumbelliferyl phosphate, and was inhibited by vanadate and analogs. HEK293 cells expressing PRL-3 demonstrated increased growth rates versus nontransfected cells or cells transfected with the catalytically inactive C104S PRL-3 mutant. The tyrosine phosphatase inhibitor, potassium bisperoxo (bipyridine) oxovanadate V, normalizes the growth rate of PRL-3 expressing cells to that of parental HEK293 cells in a concentration-dependent manner. Using FLIPR analysis, parental HEK293 cells mobilize calcium when stimulated with angiotensin-II (AngII). However, calcium mobilization is inhibited in cells expressing wild-type PRL-3 when stimulated with AngII, while cells expressing the inactive mutant of PRL-3 mobilize calcium to the same extent as parental HEK293 cells. Western blots comparing PRL-3 transfected cells to parental HEK293 cells showed dephosphorylation of p130(cas) in response to AngII. These data suggest a role for PRL-3 in the modulation of intracellular calcium transients induced by AngII.  相似文献   

4.
Different Drosophila photoreceptors (R cells) connect to neurons in different optic lobe layers. R1-R6 axons project to the lamina; R7 and R8 axons project to separate layers of the medulla. We show a receptor tyrosine phosphatase, PTP69D, is required for lamina target specificity. In Ptp69D mutants, R1-R6 project through the lamina, terminating in the medulla. Genetic mosaics, transgene rescue, and immunolocalization indicate PTP69D functions in R1-R6 growth cones. PTP69D overexpression in R7 and R8 does not respecify their connections, suggesting PTP69D acts in combination with other factors to determine target specificity. Structure-function analysis indicates the extracellular fibronectin type III domains and intracellular phosphatase activity are required for targeting. We propose PTP69D promotes R1-R6 targeting in response to extracellular signals by dephosphorylating substrate(s) in R1-R6 growth cones.  相似文献   

5.
6.
The deregulated expression of members of the phosphatase of regenerating liver (PRL) family has been implicated in the metastatic progression of multiple human cancers. Importantly, PRL-1 and PRL-3 both possess the capacity to drive key steps in metastatic progression. Yet, little is known about the regulation and oncogenic mechanisms of this emerging class of dual-specificity phosphatases. This prospect article details the involvement of PRLs in the metastatic cascade, the regulatory mechanisms controlling PRL expression, and recent efforts in the characterization of PRL-modulated pathways and substrates using biochemical and high-throughput approaches. Current advances and future prospects in anti-cancer therapy targeting this family are also discussed.  相似文献   

7.
Cell-cell adhesion regulates processes important in embryonal development, normal physiology, and cancer progression. It is regulated by various mechanisms including tyrosine phosphorylation. We have previously shown that the protein tyrosine phosphatase Pez is concentrated at intercellular junctions in confluent, quiescent monolayers but is nuclear in cells lacking cell-cell contacts. We show here with an epithelial cell model that Pez localizes to the adherens junctions in confluent monolayers. A truncation mutant lacking the catalytic domain acts as a dominant negative mutant to upregulate tyrosine phosphorylation at adherens junctions. We identified beta-catenin, a component of adherens junctions, as a substrate of Pez by a "substrate trapping" approach and by in vitro dephosphorylation with recombinant Pez. Consistent with this, ectopic expression of the dominant negative mutant caused an increase in tyrosine phosphorylation of beta-catenin, demonstrating that Pez regulates the level of tyrosine phosphorylation of adherens junction proteins, including beta-catenin. Increased tyrosine phosphorylation of adherens junction proteins has been shown to decrease cell-cell adhesion, promoting cell migration as a result. Accordingly, the dominant negative Pez mutant enhanced cell motility in an in vitro "wound" assay. This suggests that Pez is also a regulator of cell motility, most likely through its action on cell-cell adhesion.  相似文献   

8.
Calpains are ubiquitous calcium-regulated cysteine proteases that have been implicated in cytoskeletal organization, cell proliferation, apoptosis, cell motility, and hemostasis. Gene targeting was used to evaluate the physiological function of mouse calpain-1 and establish that its inactivation results in reduced platelet aggregation and clot retraction potentially by causing dephosphorylation of platelet proteins. Here, we report that calpain-1 null (Capn1-/-) platelets accumulate protein tyrosine phosphatase 1B (PTP1B), which correlates with enhanced tyrosine phosphatase activity and dephosphorylation of multiple substrates. Treatment of Capn1-/- platelets with bis(N,N-dimethylhydroxamido)hydroxooxovanadate, an inhibitor of tyrosine phosphatases, corrected the aggregation defect and recovered impaired clot retraction. More importantly, platelet aggregation, clot retraction, and tyrosine dephosphorylation defects were rescued in the double knockout mice lacking both calpain-1 and PTP1B. Further evaluation of mutant mice by the ferric chloride-induced arterial injury model suggests that the Capn1-/- mice are relatively resistant to thrombosis in vivo. Together, our results demonstrate that PTP1B is a physiological target of calpain-1 and suggest that a similar mechanism may regulate calpain-1-mediated tyrosine dephosphorylation in other cells.  相似文献   

9.
BACKGROUND: The immune response is regulated through a tightly controlled cytokine network. The counteracting balance between protein tyrosine kinase (PTK) and protein tyrosine phosphatase (PTP) activity regulates intracellular signaling in the immune system initiated by these extracellular polypeptides. Mice deficient for the T cell protein tyrosine phosphatase (TCPTP) display gross defects in the hematopoietic compartment, indicating a critical role for TCPTP in the regulation of immune homeostasis. To date, the molecular basis underlying this phenotype has not been reported. RESULTS: We have identified two members of the Janus family of tyrosine kinases (JAKs), JAK1 and JAK3, as bona fide substrates of TCPTP. Inherent substrate specificity in the TCPTP-JAK interaction is demonstrated by the inability of other closely related PTP family members to form an in vivo interaction with the JAKs in hematopoietic cells. In keeping with a negative regulatory role for TCPTP in cytokine signaling, expression of TCPTP in T cells abrogated phosphorylation of STAT5 following interleukin (IL)-2 stimulation. TCPTP-deficient lymphocytes treated with IL-2 had increased levels of tyrosine-phosphorylated STAT5, and thymocytes treated with interferon (IFN)-alpha or IFN-gamma had increased tyrosine-phosphorylated STAT1. Hyperphosphorylation of JAK1 and elevated expression of iNOS was observed in IFN-gamma-treated, TCPTP-deficient, bone marrow-derived macrophages. CONCLUSIONS: We have identified JAK1 and JAK3 as physiological substrates of TCPTP. These results indicate a negative regulatory role for TCPTP in cytokine signaling and provide insight into the molecular defect underlying the phenotype of TCPTP-deficient animals.  相似文献   

10.
Increasing antibiotic resistance is making the identification of novel antimicrobial targets critical. Recently, we discovered an inhibitor of protein tyrosine phosphatase CpsB, fascioquinol E (FQE), which unexpectedly inhibited the growth of Gram-positive pathogens. CpsB is a member of the polymerase and histidinol phosphate phosphatase (PHP) domain family. Another member of this family found in a variety of Gram-positive pathogens is DNA polymerase PolC. We purified the PHP domain from PolC (PolCPHP), and showed that this competes away FQE inhibition of CpsB phosphatase activity. Furthermore, we showed that this domain hydrolyses the 5′-p-nitrophenyl ester of thymidine-5′-monophosphate (pNP-TMP), which has been used as a measure of exonuclease activity. Finally, we showed that FQE not only inhibits the phosphatase activity of CpsB, but also ability of PolCPHP to catalyse the hydrolysis of pNP-TMP. This suggests that PolC may be the essential target of FQE, and that the PHP domain may represent an as yet untapped target for the development of novel antibiotics.  相似文献   

11.
cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2   总被引:116,自引:0,他引:116  
cdc25 controls the activity of the cyclin-p34cdc2 complex by regulating the state of tyrosine phosphorylation of p34cdc2. Drosophila cdc25 protein from two different expression systems activates inactive cyclin-p34cdc2 and induces M phase in Xenopus oocytes and egg extracts. We find that the cdc25 sequence shows weak but significant homology to a phylogenetically diverse group of protein tyrosine phosphatases. cdc25 itself is a very specific protein tyrosine phosphatase. Bacterially expressed cdc25 directly dephosphorylates bacterially expressed p34cdc2 on Tyr-15 in a minimal system devoid of eukaryotic cell components, but does not dephosphorylate other tyrosine-phosphorylated proteins at appreciable rates. In addition, mutations in the putative catalytic site abolish the in vivo activity of cdc25 and its phosphatase activity in vitro. Therefore, cdc25 is a specific protein phosphatase that dephosphorylates tyrosine and possibly threonine residues on p34cdc2 and regulates MPF activation.  相似文献   

12.
PRL-1 is one of three closely related protein-tyrosine phosphatases, which are characterized by C-terminal farnesylation. Recent reports suggest that they are involved in the regulation of cell proliferation and transformation. However, their biological function has not yet been determined. Here we show that PRL-1 mRNA is overexpressed in a number of human tumor cell lines, including HeLa cells. Using immunofluorescence we studied the subcellular localization of endogenous PRL-1, and our results demonstrate that PRL-1 exhibits cell cycle-dependent localization; in non-mitotic HeLa cells, PRL-1 is localized to the endoplasmic reticulum in a farnesylation-dependent manner. In mitotic cells PRL-1 relocalizes to the centrosomes and the spindle apparatus, proximal to the centrosomes, in a farnesylation-independent manner. Conditional expression of a catalytic domain mutant in HeLa cells results in a delay in the progression of cells through mitosis but has no effect on other phases of the cell cycle. Further, expression of a farnesylation site PRL-1 mutant results in mitotic defects, characterized by chromosomal bridges in anaphase and lagging chromosomes, without affecting spindle checkpoint function. Together, these results suggest that PRL-1 function is regulated in a cell cycle-dependent manner and implicate PRL-1 in regulating progression through mitosis, possibly by modulating spindle dynamics.  相似文献   

13.
Ezrin is a cyclic AMP-dependent protein kinase anchoring protein.   总被引:16,自引:1,他引:16       下载免费PDF全文
cAMP-dependent protein kinase (A-kinase) anchoring proteins (AKAPs) are responsible for the subcellular sequestration of the type II A-kinase. Previously, we identified a 78 kDa AKAP which was enriched in gastric parietal cells. We have now purified the 78 kDa AKAP to homogeneity from gastric fundic mucosal supernates using type II A-kinase regulatory subunit (RII) affinity chromatography. The purified 78 kDa AKAP was recognized by monoclonal antibodies against ezrin, the canalicular actin-associated protein. Recombinant ezrin produced in either Sf9 cells or bacteria also bound RII. Recombinant radixin and moesin, ezrin-related proteins, also bound RII in blot overlay. Analysis of recombinant truncations of ezrin mapped the RII binding site to a region between amino acids 373 and 439. This region contained a 14-amino-acid amphipathic alpha-helical putative RII binding region. A synthetic peptide containing the amphipathic helical region (ezrin409-438) blocked RII binding to ezrin, but a peptide with a leucine to proline substitution at amino acid 421 failed to inhibit RII binding. In mouse fundic mucosa, RII immunoreactivity redistributed from a predominantly cytosolic location in resting parietal cells, to a canalicular pattern in mucosa from animals stimulated with gastrin. These results demonstrate that ezrin is a major AKAP in gastric parietal cells and may function to tether type II A-kinase to a region near the secretory canaliculus.  相似文献   

14.
Phosphatase of regenerating liver 3 (PRL-3) is suggested as a biomarker and therapeutic target in several cancers. It has a well-established causative role in cancer metastasis. However, little is known about its natural substrates, pathways, and biological functions, and only a few protein substrates have been suggested so far. To improve our understanding of the substrate specificity and molecular determinants of PRL-3 activity, the wild-type (WT) protein, two supposedly catalytically inactive mutants D72A and C104S, and the reported hyperactive mutant A111S were tested in vitro for substrate specificity and activity toward phosphopeptides and phosphoinositides (PIPs), their structural stability, and their ability to promote cell migration using stable HEK293 cell lines. We discovered that WT PRL-3 does not dephosphorylate the tested phosphopeptides in vitro. However, as shown by two complementary biochemical assays, PRL-3 is active toward the phosphoinositide PI(4,5)P(2). Our experimental results substantiated by molecular docking studies suggest that PRL-3 is a phosphatidylinositol 5-phosphatase. The C104S variant was shown to be not only catalytically inactive but also structurally destabilized and unable to promote cell migration, whereas WT PRL-3 promotes cell migration. The D72A mutant is structurally stable and does not dephosphorylate the unnatural substrate 3-O-methylfluorescein phosphate (OMFP). However, we observed residual in vitro activity of D72A against PI(4,5)P(2), and in accordance with this, it exhibits the same cellular phenotype as WT PRL-3. Our analysis of the A111S variant shows that the hyperactivity toward the unnatural OMFP substrate is not apparent in dephosphorylation assays with phosphoinositides: the mutant is completely inactive against PIPs. We observed significant structural destabilization of this variant. The cellular phenotype of this mutant equals that of the catalytically inactive C104S mutant. These results provide a possible explanation for the absence of the conserved Ser of the PTP catalytic motif in the PRL family. The correlation of the phosphatase activity toward PI(4,5)P(2) with the observed phenotypes for WT PRL-3 and the mutants suggests a link between the PI(4,5)P(2) dephosphorylation by PRL-3 and its role in cell migration.  相似文献   

15.
Pleiotrophin (PTN the protein, Ptn the gene) signals downstream targets through inactivation of its receptor, the transmembrane receptor protein tyrosine phosphatase (RPTP)beta/zeta, disrupting the balanced activity of RPTPbeta/zeta and the activity of a constitutively active tyrosine kinase. As a consequence of the inactivation of RPTPbeta/zeta, PTN stimulates a sharp increase in the levels of tyrosine phosphorylation of the substrates of RPTPbeta/zeta in PTN-stimulated cells. We now report that the Src family member Fyn interacts with the intracellular domain of RPTPbeta/zeta in a yeast two-hybrid system. We further demonstrate that Fyn is a substrate of RPTPbeta/zeta, and that tyrosine phosphorylation of Fyn is sharply increased in PTN-stimulated cells. In previous studies, we demonstrated that beta-catenin and beta-adducin are targets of the PTN/RPTPbeta/zeta-signaling pathway and defined the mechanisms through which tyrosine phosphorylation of beta-catenin and beta-adducin disrupts cytoskeletal protein complexes. We conclude that Fyn is a downstream target of the PTN/RPTPbeta/zeta-signaling pathway and suggest that PTN coordinately regulates tyrosine phosphorylation of beta-catenin, beta-adducin, and Fyn through the PTN/RPTPbeta/zeta-signaling pathway and that together Fyn, beta-adducin, and beta-catenin may be effectors of the previously described PTN-stimulated disruption of cytoskeletal stability, increased cell plasticity, and loss of cell-cell adhesion that are characteristic of PTN-stimulated cells and a feature of many human malignant cells in which mutations have established constitutive expression of the Ptn gene.  相似文献   

16.
It has been proposed on the basis of amino acid sequence homology that the leukocyte common antigen CD45 represents a family of catalytically active, receptor-linked protein tyrosine phosphatases [Charbonneau, H., Tonks, N. K., Walsh, K. A., & Fischer, E. H. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 7182-7186]. The present study confirms that CD45 possesses intrinsic protein tyrosine phosphatase (PTPase) activity. First, a mouse monoclonal antibody to CD45 (mAb 9.4) specifically eliminated, by precipitation, PTPase activity from a high Mr fraction containing CD45, prepared by gel filtration (Sephacryl S200) of a Triton X-100 extract of human spleen. Second, PTPase activity was demonstrated in a highly purified preparation of CD45 that was eluted with a high pH buffer from an affinity column, constructed from the same antibody. Third, on sucrose density gradient centrifugation, PTPase activity was only found in those fractions that contained CD45 as determined by Western analysis. When CD45 was caused to aggregate, first by reacting it with mAb 9.4 and then adding a secondary, cross-linking anti-mouse mAb, the PTPase activity shifted to the same higher Mr fractions that contained CD45. No shift in CD45 or PTPase was observed following addition of a control IgG2a. On this basis, it is concluded that CD45 is a protein tyrosine phosphatase.  相似文献   

17.
PTEN, a tumor suppressor commonly targeted in human cancer, possesses phosphatase activities toward both protein and lipid substrates. While PTEN suppresses gliomas through cell cycle inhibition which requires its lipid phosphatase activity, PTEN's effects on other tumor types and the role of its protein phosphatase activity are controversial or unknown. Here we show that exogenous wild-type PTEN arrests some, but not all human breast cancer cell lines in G1, in a manner independent of endogenous PTEN. Unexpectedly, the G129E mutant of PTEN selectively deficient in the lipid phosphatase activity still blocked the cell cycle of MCF-7 cells, while the G129R and H123Y mutants lacking both phosphatase activities were ineffective. These results suggest that PTEN's protein phosphatase activity likely contributes to its tumor suppressor function in subsets of tumors and that elucidation of downstream targets which dictate cellular responses to PTEN may have important implications for future cancer treatment strategies.  相似文献   

18.
19.
Anthraquinones have been reported as phosphatase inhibitors. Therefore, anthraquinone derivatives were screened to identify a potent phosphatase inhibitor against the phosphatase of regenerating liver-3 (PRL-3). Emodin strongly inhibited phosphatase activity of PRL-3 with IC(50) values of 3.5μM and blocked PRL-3-induced tumor cell migration and invasion in a dose-dependent manner. Emodin rescued the phosphorylation of ezrin, which is a known PRL-3 substrate. The results of this study reveal that emodin is a PRL-3 inhibitor and a good lead molecule for obtaining a selective PRL-3 inhibitor.  相似文献   

20.
Polyaromatic quinones, such as the environmental pollutants 9,10-phenanthrenediones, elicit a wide range of responses including growth inhibition, immune suppression, and glucose normalization in diabetic models. Yet the molecular mechanisms behind these effects remain controversial. Here we report that many of them are oxygen-dependent and catalytic inactivators of protein tyrosine phosphatases (PTP). Under aerobic conditions, the PTP inactivation by 2-nitro-9,10-phenanthrenedione followed a pseudo-first-order process, with the rate of inactivation increasing nearly linearly with increasing inhibitor concentration, yielding apparent inactivation rate constants of 4300, 387, and 5200 M(-1) s(-1) at pH 7.2 against CD45, PTP1B, and LAR, respectively. The rate of CD45 inactivation increased approximately 25-fold from pH 6.0 to 7.5, with complete inactivation achieved using a catalytic amount (0.05 molar equiv) of the inhibitor. The quinone-catalyzed CD45 inactivation was prevented by catalase or superoxide dismutase. Inactivated CD45 after (125)I-9,10-phenanthrenedione treatment carried no radioactivity, indicating the absence of a stable inhibitor/enzyme complex. The activity of inactivated CD45 was partially restored ( approximately 10%) by hydroxylamine or dithiothreitol, supporting the presence of a small population of sulfenic acid or sulfenyl-amide species. Treatment of PTP1B with 2-nitro-9,10-phenanthrenedione resulted in the specific and sequential oxidation of the catalytic cysteine to the sulfinic and sulfonic acid. These results suggest that reactive oxygen species and the semiquinone radical, continuously generated during quinone-catalyzed redox cycling, mediate the specific catalytic cysteine oxidation. Naturally occurring quinones may act as efficient regulators of protein tyrosine phosphorylation in biological systems. Aberrant phosphotyrosine homeostasis resulting from continued polyaromatic hydrocarbon quinone exposure may play a significant role in their disease etiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号