首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic AMP formation from ATP was stimulated by unpurified and partially purified soluble hepatic guanylate cyclase in the presence of nitric oxide (NO) or compounds containing a nitroso moiety such as nitroprusside, N-methyl-N-nitro-N-nitrosoguanidine (MNNG), nitrosyl ferroheme, and S-nitrosothiols. Cyclic AMP formation was undetectable in the absence of NO or nitroso compounds and was not stimulated by fluoride or glucagon, indicating the absence of adenylate cyclase activity. The nitroso compounds failed to activate, whereas fluoride or glucagon activated, adenylate cyclase in washed rat liver membrane fractions. Cyclic GMP formation from GTP was markedly stimulated by the soluble hepatic fraction in the presence of NO or nitroso compounds. Cyclic AMP formation by partially purified guanylate cyclase was competitively inhibited by GTP and cyclic GMP formation is well-known to be competitively inhibited by ATP. Therefore, it appears that activated guanylate cyclase, rather than adenylate cyclase, was responsible for the formation of cyclic AMP from ATP. Formation of cyclic AMP of cyclic GMP was enhanced by thiols, inhibited by hemoproteins and oxidants, and required the addition of either Mg2+ or Mn2+. Further, several nitrosyl ferroheme compounds and S-nitrosothiols stimulated the formation of both cyclic AMP and cyclic GMP by the soluble hepatic fraction. These observations support the view that soluble guanylate cyclase is capable, under certain well-defined conditions, of catalyzing the conversion of ATP to cyclic AMP.  相似文献   

2.
The ability of glucagon (10 nM) to increase hepatocyte intracellular cyclic AMP concentrations was reduced markedly by the tumour-promoting phorbol ester TPA (12-O-tetradecanoyl phorbol-13-acetate). The half-maximal inhibitory effect occurred at 0.14 ng/ml TPA. This action occurred in the presence of the cyclic AMP phosphodiesterase inhibitor isobutylmethylxanthine (1 mM) indicating that TPA inhibited glucagon-stimulated adenylate cyclase activity. TPA did not affect either the binding of glucagon to its receptor or ATP concentrations within the cell. TPA did inhibit the increase in intracellular cyclic AMP initiated by the action of cholera toxin (1 microgram/ml) under conditions where phosphodiesterase activity was blocked. TPA did not inhibit glucagon-stimulated adenylate cyclase activity in a broken plasma membrane preparation unless Ca2+, phosphatidylserine and ATP were also present. It is suggested that TPA exerts its inhibitory effect on adenylate cyclase through the action of protein kinase C. This action is presumed to be exerted at the point of regulation of adenylate cyclase by guanine nucleotides.  相似文献   

3.
The adenylate cyclase system of the yeast Saccharomyces cerevisiae contains many proteins, including the CYR1 polypeptide, which is responsible for catalyzing the formation of cyclic AMP from ATP, RAS1 and RAS2 polypeptides, which mediate stimulation of cyclic AMP synthesis by guanine nucleotides, and the yeast GTPase-activating protein analog IRA1. We have previously reported that adenylate cyclase is only peripherally bound to the yeast membrane. We have concluded that IRA1 is a strong candidate for a protein involved in anchoring adenylate cyclase to the membrane. We base this conclusion on the following criteria: (i) a disruption of the IRA1 gene produced a mutant with very low membrane-associated levels of adenylate cyclase activity, (ii) membranes made from these mutants were incapable of binding adenylate cyclase in vitro, (iii) IRA1 antibodies inhibit binding of adenylate cyclase to the membrane, and (iv) IRA1 and adenylate cyclase comigrate on Sepharose 4B.  相似文献   

4.
The 105 000 X g gupernatant fractions from homogenates of various rat tissues catalyzed the formation of both cyclic GMP and cyclic AMP from GTP and ATP, respectively. Generally cyclic AMP formation with crude or purified preparations of soluble guanylate cyclase was only observed when enzyme activity was increased with sodium azide, sodium nitroprusside, N-methyl-N'-nitro-N-nitrosoguanidine, sodium nitrite, nitric oxide gas, hydroxyl radical and sodium arachidonate. Sodium fluoride did not alter the formation of either cyclic nucleotide. After chromatography of supernatant preparations on Sephadex G-200 columns or polyacrylamide gel electrophoresis, the formation of cyclic AMP and cyclic GMP was catalyzed by similar fractions. These studies indicate that the properties of guanylate cyclase are altered with activation. Since the synthesis of cyclic AMP and cyclic GMP reported in this study appears to be catalyzed by the same protein, one of the properties of activated guanylate cyclase is its ability to catalyze the formation of cyclic AMP from ATP. The properties of this newly described pathway for cyclic AMP formation are quite different from those previously described for adenylate cyclase preparations. The physiological significance of this pathway for cyclic AMP formation is not known. However, these studies suggest that the effects of some agents and processes to increase cyclic AMP accumulation in tissue could result from the activation of either adenylate cyclase or guanylate cyclase.  相似文献   

5.
Dog and rat adrenal glomerulosa cells and subcellular fractions have been utilized to evaluate the mechanism of angiotensin II- and angiotensin III-induced aldosterone production. The effects of angiotensin, ACTH, and potassium have been compared on cyclic AMP and cyclic GMP in isolated glomerulosa cells and adenylate cyclase activity in subcellular fractions. The effect of angiotensin II has also been assessed on Na+-K+-activated ATPase of plasma membrane enriched fractions of dog and rat adrenals. We have demonstrated no effect of angiotensin II or angiotensin III on either adenylate cyclase, cyclic AMP, cyclic GMP, or Na+-K+-dependent ATPase activity over a wide range of concentrations. Potassium ion in concentrations that stimulate significant aldosterone production was also without effect. The negative effects of angiotensin and potassium were contrasted against a positive correlation between an ACTH-induced effect on aldosterone production, adenylate cyclase, and cyclic AMP accumulation. These studies have served to demonstrate that neither adenylate cyclase, cyclic AMP, cyclic GMP, or Na+-K+-activated ATPase seem to be directly involved in the mechanism of action of angiotensins on aldosterone production in the rat and dog adrenal glomerulosa.  相似文献   

6.
The 105 000 × g supernatant fractions from homogenates of various rat tissues catalyzed the formation of both cyclic GMP and cyclic AMP from GTP and ATP, respectively. Generally cyclic AMP formation with crude or purified preparations of soluble guanylate cyclase was only observed when enzyme activity was increased with sodium azide, sodium nitroprusside, N-methyl-N′-nitro-N-nitrosoguanidine, sodium nitrite, nitric oxide gas, hydroxyl radical and sodium arachidonate. Sodium fluoride did not alter the formation of either cyclic nucleotide. After chromatography of supernatant preparations on Sephadex G-200 columns or polyacrylamide gel electrophoresis, the formation of cyclic AMP and clycic GMP was catalyzed by similar fractions. These studies indicate that the properties of guanylate cyclase are altered with activation. Since the synthesis of cyclic AMP and cyclic GMP reported in this study appears to be catalyzed by the same protein, one of the properties of activated guanylate cyclase is its ability to catalyze the formation of cyclic AMP from ATP. The properties of this newly described pathway for cyclic AMP formation are quite different from those previously described for adenylate cyclase preparations. The physiological significance of this pathway for cyclic AMP formation is not known. However, these studies suggest that the effects of some agents and processes to increase cyclic AMP accumulation in tissue could result from the activation of either adenylate cyclase or guanylate cyclase.  相似文献   

7.
M Shibuya  Y Takebe  Y Kaziro 《Cell》1977,12(2):521-528
Based on the following genetical experiments, the cya gene in E. coli was shown to be involved in the synthesis of both cyclic AMP and cyclic GMP. First, all five independent cya-deficient mutants accumulated exceedingly low amounts of cyclic GMP. Second, the ability to form both cyclic AMP and cyclic GMP was simultaneously restored by transduction of an intact cya locus to one of the above cya-deficient mutants. Third, a spontaneous revertant from one of the above mutants regained the synthetic activity for cyclic GMP as well as for cyclic AMP. Fourth, the characteristic of a strain overproducing cyclic GMP was co-transduced with the cya locus. These results suggest that the synthesis of both cyclic GMP and cyclic AMP is mediated by the same enzyme, adenylate cyclase, Interestingly, a reciprocal effect of glucose starvation was observed on the accumulation of both cyclic nucleotides. The formation of cyclic AMP was greatly enhanced on glucose starvation, whereas that of cyclic GMP proceeded at a slower rate than in the presence of glucose. This effect was observed only in cells carrying normal cya and crp genes, but not in a cya-altered or a crp-deficient strain.  相似文献   

8.
Liver plasma membranes of hypophysectomized rats were purified, treated with 0.1 m Lubrol-PX and centrifuged at 165,000g for 1 h. The detergent solubilized 50% of the membrane protein; adenylate cyclase activity was present in the supernatant fraction. Optimal substrate concentration of the soluble enzyme was 0.32 mm ATP. Basal activity of 25 preparations of the solubilized enzyme ranged from 124 to 39 pmol cyclic AMP/mg protein/10 min. The solubilized enzyme retained the same sensitivity to activation by guanyl nucleotides as was present in the membrane preparation from which it was derived. Relative sensitivity of the solubilized enzyme with 0.1 mm nucleotides or -side was GDP > GTP > GMP > guanosine; GMP-PNP = GMP-PCP > ITP > GTP. GTP, GMP-PCP, GMP-PNP and other nucleotides were hydrolyzed by phosphohydrolases present in liver membranes that were solubilized with Lubrol-PX along with adenylate cyclase. The presence of the ATP regenerating system in the adenylate cyclase assay also aided in maintaining guanyl nucleotide concentrations. The degree of adenylate cyclase activation by guanyl nucleotides was not related to the sparing effects of nucleotides on substrate ATP hydrolysis. These findings demonstrate that activation of adenylate cyclase by nucleotides is a consequence of a nucleotide-enzyme interaction that is independent of membrane integrity.  相似文献   

9.
Salivary-gland homogenates contain 5-hydroxytryptamine-stimulated adenylate cyclase. Half-maximal stimulation was obtained with 0.1 microM-5-hydroxytryptamine in the presence of added guanine nucleotides. Gramine antagonized the stimulation of cyclase caused by 5-hydroxytryptamine. In the presence of hormone, guanosine 5'-[gamma-thio]triphosphate produced a marked activation of adenylate cyclase activity. Stimulation of adenylate cyclase by forskolin or fluoride did not require the addition of guanine nucleotides or hormone. In the presence of EGTA, Ca2+ produced a biphasic activation of cyclase activity. Ca2+ at 1-100 microM increased activity, whereas 2000 microM-Ca2+ inhibited cyclase activity. The neuroleptic drugs trifluoperazine and chlorpromazine non-specifically inhibited adenylate cyclase activity even in the absence of Ca2+. The cyclic AMP phosphodiesterase activity in homogenates was not affected by Ca2+ or exogenous calmodulin. This enzyme was also inhibited by trifluoperazine in the absence of Ca2+. These results indicate that Ca2+ elevates adenylate cyclase activity, but had no effect on cyclic AMP phosphodiesterase of salivary-gland homogenates.  相似文献   

10.
F Hertelendy  M Yeh 《Prostaglandins》1976,11(2):285-291
Alpha, beta-methylene-ATP, a competitive inhibitor of adenylate cyclase of liver and fat cell membrane preparations, caused a dose related inhibition of PGE1 and PGE2-induced cyclic AMP accumulation in rat anterior pituitary explants. At the same time, this ATP analog potentiated PGE1 and PGE2-promoted growth hormone secretion. The possible functional role of prostaglandins and cyclic nucleotides in the regulation of growth hormone secretion remains to be defined.  相似文献   

11.
Carbachol antagonizes isoproterenol-stimulable cyclic AMP accumulation in mouse atria by direct activation of cardiac muscarinic receptors. Inhibition by carbachol occurs rapidly and is completely reversed when the drug is removed. Neither nitroprusside nor 8-bromo-cyclic GMP mimics the actions of carbachol and low concentrations of carbachol block cyclic AMP accumulation without increasing the intracellular cyclic GMP content. Carbachol does not block cyclic AMP accumulation by activating phosphodiesterase since it is fully effective in the face of marked phosphodiesterase inhibition, nor does it appear to inhibit the catalytic activity of adenylate cyclase since it does not decrease either basal or cholera toxin-stimulated cyclic AMP accumulation. The interaction between carbachol and isoproterenol is not competitive, since cholinergic inhibition cannot be surmounted by increasing concentrations of isoproterenol. The site of muscarinic action therefore appears to involve the mechanisms coupling the hormone-receptor complex to adenylate cyclase. This site is distinct from that of cholera toxin action since there is no antagonism between the effects of cholera toxin and carbachol on cyclic AMP metabolism in the atrium.  相似文献   

12.
Isolated adrenocortical carcinoma cells of rat contain alpha 2- and beta-adrenergic receptors. When these cells are incubated with alpha 2-adrenergic agonists, there is a concentration-dependent increase of cyclic GMP that is blocked by the alpha 2-adrenergic antagonist yohimbine but not by the beta-antagonist propranolol. Concomitantly, both p-aminoclonidine (20 microM) and clonidine (100 microM), the alpha 2-adrenergic agonists, stimulate membrane guanylate cyclase activity. In calcium free medium there is no alpha 2-agonist-dependent increase in cyclic GMP. Isoproterenol, a beta-agonist, and forskolin cause an increase in cyclic AMP but not cyclic GMP. The cyclic AMP increase induced by isoproterenol is blocked by propranolol but not by yohimbine. Isoproterenol- and forskolin-dependent increases in cyclic AMP are inhibited by p-aminoclonidine and the inhibition is relieved by yohimbine. These results indicate a dual regulation of guanylate cyclase and adenylate cyclase by the alpha 2-receptor signal: guanylate cyclase is coupled to the receptor in a positive fashion, whereas adenylate cyclase is coupled in a negative fashion. Calcium is obligatory in the cyclic GMP-mediated response.  相似文献   

13.
Lanthanum (La+++) is a well-known Ca++ antagonist in a number of biological systems. It was used in the present study to examine the role of Ca++ in the regulation of adenyl cyclase of the adrenal cortex by ACTH. In micromolar concentrations, .La+++ inhibited both cyclic AMP and corticosterone response of isolated adrenal cortex cells to ACTH. However, a number of intracellular processes were not affected by La+++. These include the stimulation of steroidogenesis by dibutyryl cyclic AMP, conversion of several steroid precursors into corticosterone, and stimulation of the latter by glucose. Thus, inhibition of steroidogenesis by La+++ appears to be solely due to an inhibition of ACTH-stimulated cyclic AMP formation. Electron microscope examination showed that La+++ was localized on plasma membrane of the cells and did not appear to penetrate beyond this region. Since La+++ is believed to replace Ca++ at superficial binding sites on the cell membrane, it is proposed that Ca++ at these sites plays an important role in the regulation of adenyl cyclase by ACTH. Similarities in the role of Ca++ in "excitation-contraction" coupling and in the ACTH-adenyl cyclase system raise the possibility that a contractile protein may be involved in the regulation of adenyl cyclase by those hormones which are known to require Ca++ in the process.  相似文献   

14.
Catecholamines induce unique growth and secretory responses in salivary glands. An analysis of three enzyme activities involved in cyclic AMP metabolism was carried out to identify the specificity of these responses for salivary glands. Although parotid adenylate cyclase has an unusually high specific activity, its kinetic properties and responses to NaF, guanine nucleotides, and isoproterenol are similar to other tissues not stimulated to grow after isoproterenol stimulation. Solubilized adenylate cyclase was separated from other membrane proteins by isoelectric focusing on polyacrylamide gels. There was a single broad peak of activity witha pI of 5.9. Parotid protein kinase has a subcellular distribution and substrate preference similar to hepatic protein kinase. Activation by cyclic AMP is also similar to that reported for other tissues, with a Ka of 1.2 - 10(-7) M. Parotid cyclic AMP and cyclic GMP phosphodiesterases are a heterogeneous group of enzymes with relatively low specific activity as compared with mouse pancreas, liver and brain. Isoelectric focusing of supernatant phosphodiesterases revealed at least sixpeaks of enzyme activity in the pI range of 4-6. Previous reports of a large increase in parotid cyclic AMP levels after in vivo administration of catecholamines and specific growth and secretion could be the result of a relatively high specific activity adenylate cyclase associated with low specific activity cyclic AMP phosphodiesterases.  相似文献   

15.
The biochemical events initiated by mitogen in T lymphocytes are the subject of this paper. Following interaction of the mitogen with its receptors, a transmembrane 'trigger-type' signal is propagated which has both positive and negative correlates. The negative signal occurs with high mitogen concentrations and is associated with membrane freezing, microtubular aggregation, receptor capping, adenylate cyclase activation, and cellular cyclic AMP increases. The positive signal occurs with optimal mitogen concentrations and is associated with changes in membrane permeability and transport with influx of calcium and potassium ion and efflux of sodium, in transport processes for glucose, amino acids, and nucleosides, and in a collected series of early membrane lipid changes which can be considered essential for the positive signal. These lipid changes include the uptake of arachidonic acid and other fatty acids, choline, phosphate and other molecules, their incorporation into membrane phospholipids, particularly phosphatidylinositol (PI), and a turnover of PI with the production of inositol triphosphate, which can be related to calcium mobilization and diacylglycerol which activates a cytoplasmic protein kinase C. A key event associated with mitogen action is arachidonic acid release. Arachidonic acid may give rise to prostaglandins and thromboxanes as part of negative components of the signal through effects on the adenylate cyclase/cyclic AMP system. Arachidonic acid gives rise to eicosanoids like 5-, 11-, possibly 12- and 15-hydroxyperoxy and hydroxy eicosatetraenoic acids and leukotrienes B4 and C4. The activation of the 5-lipoxygenase, a critical calcium-dependent step, leads via the production of 5-HPETE and 5-HETE to the activation of membrane and soluble guanylate cyclase and the production of cyclic GMP. Cyclic GMP appears to be essential for mitogen activation and is associated with cyclic GMP-dependent protein kinase activation and the phosphorylation of a number of substrates. Calcium ion influx is clearly central to mitogen action. Calcium through its influx and mobilization from cellular stores is thought to contribute directly and indirectly through the action of calmodulin and protein kinase C to the activation of a number of enzymatic processes involved in the positive signal including phospholipase C, diglyceride kinase and lipase, 5-lipoxygenase, and guanylate cyclase. Cyclic GMP and calcium ion both participate in nuclear processes leading to RNA and protein synthesis. Interleukin 2 is associated with midcycle increases in cyclic GMP and entry into DNA synthesis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Whereas extracellular calcium is absolutely required for neurotransmitter release consequent to stimulation of adrenergic and other neurons, a large number of substances are known to modify the amount of norepinephrine released per nerve impulse. In general, cyclic nucleotides, phosphodiesterase inhibitors, beta-adrenoceptor agonists, cholinergic nicotinic agonists, and angiotensin are able to enhance neurally mediated norepinephrine release, whereas alpha-adrenoreceptor agonists, cholinergic muscarinic agonists, prostaglandins of the E series, opiates, enkephalins, dopamine, and adenosine inhibit neurally mediated norepinephrine release. Although it has been proposed that cyclic AMP may enhance, and endogenous cyclic GMP may inhibit, neurotransmitter release, no consistent relationship between the effects of the several modulators of neurally mediated norepinephrine release and their effects on adenylate and guanylate cyclase is as yet apparent. The demonstration of whether such a relationship exists must await the development of techniques that will allow the measurement of cyclic nucleotide levels in the presynaptic adrenergic nerve terminal after exposure to the putative modulators of release and consequent to nerve stimulation.  相似文献   

17.
B Ashby 《Prostaglandins》1992,43(3):255-261
We have compared the effects of prostacyclin (PGI2) and its stable analogs, Iloprost and Cicaprost, on cyclic AMP metabolism in intact platelets. All three compounds show similar but not identical patterns of prostaglandin concentration-dependent cyclic AMP formation. All three compounds apparently stimulate and inhibit cyclic AMP formation with different concentration dependencies, indicating the presence of distinct stimulatory and inhibitory receptors. Differences in response can be accounted for by slight differences in affinity of stimulatory and inhibitory receptors for the prostaglandins, by the fact that Iloprost contains almost 50% of a relatively inactive isomer, and by the fact that PGI2 is labile in aqueous solution, with a half-life on the order of a few minutes. We conclude 1) stimulation and inhibition of adenylate cyclase is not due to separate effects of 16S- and 16R-stereoisomers of Iloprost because similar patterns were obtained with a single isomeric form of Cicaprost and with authentic PGI2; 2) prostaglandin induced inhibition of adenylate cyclase is readily reversible because inhibition disappears when PGI2 concentration decays below saturation of the inhibitory receptor; 3) the potency of prostaglandins in stimulating platelet adenylate cyclase must be viewed in terms of their effects on both stimulatory and inhibitory receptors.  相似文献   

18.
1. The effect of insulin, acetylcholine, histamine, 5-hydroxytryptamine and prostaglandins E1, E2 and F2alpha on basal and adrenalin-stimulated cyclic AMP content in intact pigeon erythrocytes was investigated. 2. None of these compounds influenced basal cyclic AMP contest, and only 5-hydroxytryptamine antagonized the effect of adrenalin. The increase in cyclic AMP with 0.55 micronM adrenalin was inhibited by approx. 60% in the presence of 10 muM 5-hydroxytryptamine. The interaction between adrenalin and 5-hydroxytryptamine was competitive. 3. 5-Hydroxytryptamine did not affect the rate of degradation of cyclic AMP in intact cells, but did inhibit adrenalin-stimulated cyclic AMP formation in permeable or resealed cell "ghosts". 4. The effect of 5-hydroxytryptamine to inhibit cyclic AMP accumulation was not dependent on the presence of Ca2+, in either intact cells or "ghosts". 5. Various indole derivatives and other compounds were tested for their ability to inhibit the effect of adrenalin on cyclic AMP accumulation. Only those derivatives with a free amino group and net positive charge in the side chain were effective. 6. It was concluded that 5-hydroxytryptamine inhibits adrenalin-stimulated adenylate cyclase activity in pigeon erythrocytes, possibly by competing with adrenalin for binding to the beta-adrenergic receptor.  相似文献   

19.
Cyclic AMP and cyclic GMP content and activities of cyclic nucleotide metabolic enzymes were determined in intima and media of atherosclerotic and unaffected human aorta obtained shortly after death due to myocardial infarction. Cyclic AMP content in fatty streaks and atherosclerotic plaques was lower by three- and five-fold, respectively, as compared with uninvolved intima. Cyclic GMP level in atherosclerotic lesions was estimated to be three-fold higher than in grossly normal area. Basal activity of adenylate cyclase in fatty streaks and plaques was two- to six-fold lower than in unaffected intima. Besides, the ability of adenylate cyclase to be stimulated by the stable analogue of prostacyclin, carbacyclin, was suppressed in plaques. Guanylate cyclase activity in fatty streaks was 1.5- to three-fold higher than in normal tissue. The thiol-reducing agent, dithiothreitol, decreased the enzyme activity to normal level, suggesting the oxidative nature of guanylate cyclase activation in the lesion zone. There were no significant changes in cyclic AMP phosphodiestease activity in the regions of the atherosclerotic lesion. Cyclic GMP phosphodiesterase activity in atherosclerotic plaques was two-fold lower than in the intima of unaffected areas. We did not find differences in the content of cyclic nucleotides or related enzyme activities in the media of uninvolved areas of human aorta nor in the media underlying atherosclerotic lesions. Our findings suggest that development of human atherosclerotic lesions is accompanied by dramatic changes in the cyclic nucleotide metabolism featuring gradual hormonal receptor uncoupling from adenylate cyclase, activation of guanylate cyclase in fatty streaks and inhibition of cyclic GMP phosphodiesterase in plaques.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Pyruvate increased cyclic GMP levels in rat hepatocytes. The effects were observed without or with 1-methyl-3-isobutylxanthine. Lactate, acetate, oxaloacetate, alpha-ketoglutarate, succinate, acetoacetate and beta-hydroxybutyrate also increased cyclic GMP levels. Some compounds increased cyclic GMP in kidney cortex slices. The effects were dependent upon Ca2+ in the medium. Cyclic AMP was increased 30-50% by some of these substances with 2.6 mM Ca2+. Rotenone, oligomycin, antimycin, dinitrophenol, KCN, and arsenate decreased GTP and ATP, basal cyclic GMP and the pyruvate effect, but did not alter cyclic AMP. Although fluoroacetate alone had no effect on cyclic nucleotides, GTP, or ATP, it potentiated the pyruvate effect on cyclic GMP. Adenosine and guanosine increased cyclic GMP and GTP to a similar extent of 30-50%. Aminooxyacetate, cycloserine, pentenoic acid and mepacrine decreased the pyruvate effect while cycloserine or mepacrine alone increased cyclic GMP. Citrate and mepacrine inhibited soluble and particulate guanylate cyclase from rat liver while cycloserine and acetoacetate increased guanylate cyclase activity. None of the other compounds altered guanylate cyclase activity. These results indicate that various metabolites and inhibitors can alter cyclic GMP accumulation in hepatocytes and renal cortex slices. Several mechanisms may be involved in these effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号