首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patterns of cranial sexual dimorphism in certain groups of extant hominoids   总被引:1,自引:0,他引:1  
This paper presents a study of patterns of cranial variation within and between extant hominoids. Particular attention is paid to the relationship between sexual dimorphisms and size differences between sexes. It emerges that shape contrasts between sexes are closely linked to size differences whilst variance dimorphism appears to be relatively independent of size effects. This study demonstrates that there are differences between the hominoids in their magnitudes and patterns of sexual shape contrasts. These types of differences are also found to exist between subgroups of modern humans. It is suggested that the differences which occur between hominoid groups in their patterns of sexual dimorphism are probably the result of a mixture of time and rate hypermorphoses (in males relative to females) acting upon different ontogenetic trajectories. The findings of this study suggest the need for caution in extrapolating from the sexual dimorphisms found in living hominoids to hypothesized dimorphisms in fossils.  相似文献   

2.
Basic biomechanical principles predict that body size differences and differences in the positional behavior of primates should impact on the design of the locomotor skeleton. Allometric distortions in joint shape might be expected between sexes if the degree of body size dimorphism is substantial and/or if sex-specific differences exist in behavior. Nevertheless, there are few documented cases of sexual dimorphism in the limb joints of hominoids, despite substantial body size dimorphism and some reports of intersexual differences in positional behavior. This study re-examines sexual dimorphism in the hominoid distal humerus using coordinate data, and distinguishes explicitly between degree of dimorphism (i.e., the magnitude of intersexual differences) and pattern of dimorphism (i.e. , the nature of these differences). Using a variety of multivariate morphometric methods (e.g., canonical variates analysis of Mosimann shape variables; Euclidean Distance Matrix Analysis of both form and pattern difference matrices), we address the following issues: (1) do males and females of different species and subspecies (or ethnic groups for humans) maintain similar joint shapes? (2) are multiple patterns of dimorphism evident in this region of hominoids? (3) are differences and similarities in degree and pattern predicted by phylogenetic propinquity and positional behavior? For the most part, our results support earlier findings that sexual dimorphism in the shape of the anthropoid elbow is slight. Of the eight taxa considered here, only the western lowland gorillas exhibited significant differences in the shape of the distal humerus. Gorilla gorilla gorilla also displays a significantly different pattern of dimorphism from the orang-utan. Pattern differences between Andaman Islanders and both mountain gorillas and the orang-utan also approach statistical significance (P<0.06 and P<0.08, respectively). Overall, and despite marked differences in the degree of dimorphism, the knuckle-walking African apes are more similar in patterns of dimorphism to each other than to other taxa (e.g., gorillas are more similar to orang-utans in degree, but more similar to chimpanzees and bonobos in pattern). We could find no definitive "human pattern" in our results and suspect that this is because human upper limbs face less stringent mechanical constraints since they are relieved of locomotor stresses (but we cannot rule out the possibility of undocumented differences among our human groups in sex-specific, work-related activities). We anticipate finding additional pattern differences among anthropoids in articular dimorphism as we add other taxa to our sample (including fossil hominids), and examine other joint systems.  相似文献   

3.
Sexual dimorphism is an important source of morphological variation, and species differences in dimorphism may be reflected in magnitude, pattern, or both. While the extant great apes are commonly used as a reference sample for distinguishing between sexual dimorphism and intertaxic variation in the fossil record, few studies have evaluated mandibular dimorphism in these taxa. In this study, percentage, degree, and pattern of mandibular dimorphism are evaluated in Pongo, Gorilla, and Pan. Mandibular dimorphism patterns are explored to determine the extent to which such patterns accurately track great ape phylogeny. Pattern stability is assessed to determine whether there are stable patterns of mandibular size and shape dimorphism that may be usefully applied to hominoid or hominid fossil species recognition studies. Finally, the established patterns of dimorphism are used to address recent debates surrounding great ape taxonomy. Results demonstrate that mandibular dimorphism is universally expressed in size, but only Pongo and Gorilla exhibit shape dimorphism. Pattern similarity tends to be greater between subspecies of the same species than between higher-order taxa, suggesting that within the great apes, there is a relationship between dimorphism pattern and phylogeny. However, this relationship is not exact, given that dimorphism patterns are weakly correlated between some closely related taxa, while great ape subspecies may be highly correlated with taxa belonging to other species or genera. Furthermore, dimorphism patterns are not significantly correlated between great ape genera, even between Gorilla and Pan. Dimorphism patterns are more stable in Gorilla and Pongo as compared to Pan, but there is little pattern stability between species or genera. Importantly, few variables differ significantly between taxa that simultaneously show consistently relatively low levels of dimorphism and low levels of variation within taxa. Combined, these findings indicate that mandibular dimorphism patterns can and do vary considerably, even among closely related species, and suggest that it would be difficult to employ great ape mandibular dimorphism patterns for purposes of distinguishing between intra- and interspecies variation in fossil samples. Finally, the degree of pattern similarity in mandibular dimorphism is lower than previously observed by others for craniofacial dimorphism. Thus, the possibility cannot be ruled out that patterns of craniofacial dimorphism in great apes may be associated with a stronger phylogenetic signal than are patterns of mandibular dimorphism.  相似文献   

4.
The Pliocene hominin samples from Hadar and Laetoli are thought to represent one species, Australopithecus afarensis, that exhibits stasis throughout its temporal range and has high levels of skeletal sexual dimorphism. In this paper, we test the hypothesis of stasis in dental and mandibular dimensions using nonparametric rank correlation methods to detect temporal trends and randomization tests to evaluate their statistical significance. We then use two methods (CV resampling; Fligner-Killeen test) to compare overall levels of variation in the fossil sample to those of extant hominoid species. Together, these analyses allow us to gauge the effects of changes through time on variation in mandibles and teeth of A. afarensis.P(3)mesiodistal length, M(3)size, and canine shape change through time but do not appear unusually variable in the sample as a whole. These temporal trends possibly reflect differences between the Laetoli and Hadar site-samples. For mandibles, a pronounced trend towards greater corpus size occurs late in the temporal sequence and contributes to high levels of variation compared to African apes. These results show that significant directional changes do occur in the A. afarensis mandibles and teeth, and in these elements, at least, the species is not static. Temporal variation is clearly an important component of overall variation in the A. afarensis lineage, even though other factors, such as sexual dimorphism, may also play a part.  相似文献   

5.
While a number of studies have documented the mandibular variations in hominoids, few focused on evaluating the variation of the whole outline of this structure. Using an efficient morphometrical approach, i.e. elliptical Fourier analysis, mandibular outlines in lateral view from 578 adult hominoids representing the genera Hylobates, Pongo, Gorilla, Pan, and Homo were quantified and compared. This study confirms that elliptical Fourier analysis provides an accurate characterization of the shape of the mandibular profile. Differences in mandibular shape between hominoid genera, species, subspecies, and to a lesser extent between sexes were demonstrated. Mandibles in great apes and hylobatids subspecies were generally less distinct from each other than were species. However, the magnitudes of differences among subspecies of Gorilla and Pongo approached or exceeded those between Pan troglodytes and P. paniscus. The powerful discrimination between taxa from the genus down to subspecific level associated to the relatively low level of intrageneric mandibular polymorphism in great apes provides strong evidences in support of the taxonomic utility of the shape of the mandibular profile in hominoids. In addition, morphological affinities between Pongo and Pan and the clear distinction between Homo and Pan suggest that the mandibular outline is a poor estimate of phylogenetic relationships in great apes and humans. The sexual dimorphism in mandibular shape exhibits two patterns of expression: a high degree of dimorphism in Gorilla, Pongo, and H. s. syndactylus and a relatively low one in modern humans and Pan. Besides, degree of mandibular shape dimorphism can vary considerably among closely related subspecies as observed in gorillas, arguing against the use of mandibular shape dimorphism patterns as characters in phylogenetic analyses. However, the quantification of the mandibular shape and of the variations among hominoids provides an interesting comparative framework that is likely to supply further arguments for a better understanding of the patterns of differentiation between living hominoids.  相似文献   

6.
The magnitude and meaning of morphological variation among Plio-Pleistocene hominid distal humeri have been recurrent points of disagreement among paleoanthropologists. Some researchers have found noteworthy differences among fossil humeri that they believe merit taxonomic separation, while others question the possiblity of accurately sorting these fossils into different species and/or functional groups. Size and shape differences among fossil distal humeri are evaluated here to determine whether the magnitude and patterns of these differences can be observed within large-bodied, living hominoids. Specimens analyzed in this study have been assigned to various taxa (Australopithecus afarensis, A. africanus, A. anamensis, Paranthropus, and early Homo) and include AL 288-1m, AL 288-1s, AL 137-48a, AL 322-1, Gomboré IB 7594, TM 1517, KNM-ER 739, KNM-ER 1504, KMN-KP 271 (Kanapoi), and Stw 431. Five extant hominoid populations are sampled to provide a standard by which to consider differences found between the fossils, including two modern human groups (Native American and African American), one group of Pan troglodytes, and two subspecies of Gorilla gorilla (G. g. beringei, G. g. gorilla). All possible pairwise d values (average Euclidean distances) are calculated within each of the reference populations using an exact randomization procedure. This is done using both raw linear measurements as well as scale-free shape data created as ratios of each measurement to the geometric mean. Differences between each pair of fossil humeri are evaluated by comparing their d values to the distribution of d values found within each of the reference populations. Principal coordinate analysis and an unweighted pair group method with arithmetic averages (UPGMA) cluster analysis are utilized to further assess similarities and differences among the fossils. Finally, canonical variates analysis and discriminant analysis are employed using all hominoid samples in order to control for correlations among variables and to identify those variables that discriminate among groups; possible affinities of individual fossils with specific extant species are also examined. The largest size differences, those between the small Hadar specimens and the two largest fossils (KNM-ER 739, IB 7594), can be accommodated easily within the ranges of variation of the two Gorilla samples, but are extreme relative to the other reference samples. The d values between most of the fossils based on shape data, with the notable exception of those associated with KNM-ER 739 and KNM-ER 1504, can be sampled safely within all five reference samples. Subsequent analyses further support the inference that KNM-ER 739 and KNM-ER 1504 are different from the other hominid humeri and possess a unique total morphometric pattern. In overall shape, the distal humeri of the other fossils (non-Koobi Fora) are most similar to living chimpanzees. The distal humerus of Paranthropus from Kromdraai (TM 1517e) is most similar to one of the Hadar specimens of A. afarensis (AL 137-48a), whereas the first specimen of A. africanus from Sterkfontein (Stw 431) is not closely linked to any of the other australopithecines. The A. anamensis humerus from Kanapoi exhibits no special affinities to A. afarensis or to modern humans. © 1996 Wiley-Liss, Inc.  相似文献   

7.
Canines of fossil hominoids and primitive catarrhines from several early, middle, and late Miocene sites were analyzed according to the shape indices described in Kelley (1995) and compared to those of males and females of extant great apes. In bivariate plots of the fossil canines utilizing the indices, 90% of the upper canines and 85% of the lower canines fell within or just outside the exclusively male or exclusively female territories delimited by the extant great apes. The remainder fell in the male-female overlap zones. Sex assignments based on these distributions were nearly 100% concordant with classifications according to canine height, suggesting a high degree of accuracy. There were various taxon-specific shifts in bivariate space among fossil genera, reflecting subtle differences in canine shape between taxa within the overall pattern of similarity to extant great apes as a whole. In many cases these shifts are matched by particular extant-ape species and subspecies, while other fossil taxa have no exact analogue for canine shape among the extant great apes. However, the pattern of spatial segregation of canines identified as either male or female at each of the sites largely mirrors that of males and females within the extant-ape sample, indicating that Miocene catarrhines shared with extant great apes a common pattern of shape differences between male and female canines, regardless of taxonspecific morphologies. These observations demonstrate that the canines of fossil catarrhines can be sexed with a high degree of confidence based solely on intrinsic features of shape. This will permit more reliable characterizations of morphological sexual dimorphism among fossil species. It is also argued that canine shape is a more reliable indicator of sex in fossil taxa than are canine/molar size ratios. © 1995 Wiley-Liss, Inc.  相似文献   

8.
9.
Differences in body size between conspecific sexes may incur differences in the relative size and/or shape of load-bearing joints, potentially confounding our understanding of variation in the fossil record. More specifically, larger males may experience relatively greater limb joint stress levels than females, unless an increase in weight-related forces is compensated for by positive allometry of articular surface areas. This study examines variation in limb joint size dimorphism (JSD) among extant catarrhines to: 1) determine whether taxa exhibit JSD beyond that expected to simply maintain geometric similarity between sexes, and 2) test whether taxa differ in JSD (relative to body size dimorphism) with respect to differences in limb use and/or phylogeny. "Joint size" was quantified for the distal humerus and distal femur of 25 taxa. Analysis of variance was used to test for differences between sexes (in joint size ratios) and among taxa (in patterns of dimorphism). Multiple regression was used to examine differences in JSD among taxa after accounting for variation in body size dimorphism (BSD) and body size. Although degrees of humeral and femoral JSD tend to be the same within species, interspecific variation exists in the extent to which both joints are dimorphic relative to BSD. While most cercopithecoids exhibit relatively high degrees of JSD (i.e., positive allometry), nonhuman hominoids exhibit degrees of JSD closer to isometry. These results may reflect a fundamental distinction between cercopithecoids and hominoids in joint design. Overall, the results make more sense (from a mechanical standpoint) when adjustments to BSD are made to account for the larger effective female body mass associated with bearing offspring. In contrast to other hominoids, modern humans exhibit relatively high JSD in both the knee and elbow (despite lack of forelimb use in weight support). Estimates of BSD based on fossil limb bones will vary according to the extant analogue chosen for comparison.  相似文献   

10.
The degree of size and shape variation in the A. afarensis fossil sample has been interpreted in a variety of ways. Size variation has been described as exceeding that of extant hominoids, similar to that of strongly sexually dimorphic hominoids, and best matched to modern humans. The degree of shape variation has been characterized both as great and negligible. Recent fieldwork has increased the proximal femoral sample, providing new data with which to examine variation. The proximal femur of A. afarensis is analyzed in a comparative framework in order to gauge the magnitude of size and shape variation in this element.Seven of the best-preserved A. afarensis proximal femora contribute to the analysis (A.L. 128-1, A.L. 152-2, A.L. 211-1, A.L. 288-1ap, A.L. 333-3, A.L. 333-123, A.L. 827-1). Comparative samples from Pan, Pongo, Gorilla, and Homo provide context for interpreting variation among the fossils. The coefficient of variation (CV) of linear measurements is used to estimate size variation. Bootstrap resampling of CVs from extant hominoids provides distributions for comparison to A. afarensis CVs. Ratios of linear measurements provide scale-free shape variables that are used in pairwise comparisons. The Euclidean distance between pairs of A. afarensis are compared to the Euclidean distances between extant hominoid pairs.As found in some earlier analyses, size variation in A. afarensis is accommodated best in gorillas and orangutans. The magnitude of difference in shape between A. afarensis pairs is exceeded by most taxa, indicating that shape variation is not extreme. These general findings are contradicted by a few instances of excessive size and shape variation. These are uncharacteristic results and could point to temporal bias, although other alternatives are explored. The signal from the proximal femur is that size variation in A. afarensis is like that of the strongly sexually dimorphic apes, and shape variation is well within the range of most hominoids irrespective of their degree of size dimorphism.  相似文献   

11.
This paper reviews the non-dental morphological configuration of Miocene hominoids with special reference to the hypothesis of linear relationships between certain fossil species and living analogues. Metrical analysis of the wrist shows thatDryopithecus africanus andPliopithecus vindobonensis are unequivocally affiliated with the morphological pattern of quadrupedal monkeys. Similar analyses of the fossil hominoid elbow shows that they are more cercopithecoid-like than hominoid-like. Multivariate analysis of theP. vindobonensis shoulder in the matrix of extant Anthropoidea indicate that this putative hylobatine fossil shows no indication of even the initial development of hominoid features. The total morphological pattern of theD. africanus forelimb as assessed by principal coordinates analysis of allometrically adjusted shape variables has little resemblance toPan. Likewise, the feet and proximal femora of the Miocene fossils are unlike any living hominoid species. Even theD. africanus skull is similar to extant cercopithecoids in several features. Although ancestors cannot be expected to resemble descendants in every way, the striking dissimilarity between Miocene and extant hominoids seems to eliminate the consideration of a direct ancestor-descendant relationship between specific Miocene and modern forms.  相似文献   

12.
Social behaviour of fossil hominoid species is notoriously difficult to predict owing to difficulties in estimating body size dimorphism from fragmentary remains and, in hominins, low canine size dimorphism. Recent studies have shown that the second-to-fourth digit ratio (2D : 4D), a putative biomarker for prenatal androgen effects (PAEs), covaries with intra-sexual competition and social systems across haplorrhines; non-pair-bonded polygynous taxa have significantly lower 2D : 4D ratios (high PAE) than pair-bonded monogamous species. Here, we use proximal phalanx ratios of extant and fossil specimens to reconstruct the social systems of extinct hominoids. Pierolapithecus catalaunicus, Hispanopithecus laietanus and Ardipithecus ramidus have ratios consistent with polygynous extant species, whereas the ratio of Australopithecus afarensis is consistent with monogamous extant species. The early anatomically modern human Qafzeh 9 and Neanderthals have lower digit ratios than most contemporary human populations, indicating increased androgenization and possibly higher incidence of polygyny. Although speculative owing to small sample sizes, these results suggest that digit ratios represent a supplementary approach for elucidating the social systems of fossil hominins.  相似文献   

13.
The hominin fossils of Dmanisi, Republic of Georgia, present an ideal means of assessing levels of skeletal size and shape variation in a fossil hypodigm belonging to the genus Homo because they have been recovered from a spatially and temporally restricted context. We compare variation in mandible size and shape at Dmanisi to that of extant hominoids and extinct hominins. We use height and breadth measurements of the mandibular corpus at the first molar and the symphysis to assess size, and analyze shape based on size-adjusted (using a geometric mean) versions of these four variables. We compare size and shape variation at Dmanisi relative to all possible pairs of individuals within each comparative taxon using an exact resampling procedure of the ratio of D2600 to D211 and the average Euclidean distance (AED) between D2600 and D211, respectively. Comparisons to extant hominoids were conducted at both the specific and subspecific taxonomic levels and to extinct hominins by adopting both a more, and less speciose, hominin taxonomy. Results indicate that the pattern of variation for the Dmanisi hominins does not resemble that of any living species: they exhibit significantly more size variation when compared to modern humans, and they have significantly more corpus shape variation and size variation in corpus heights and overall mandible size than any extant ape species. When compared to fossil hominins they are also more dimorphic in size (although this result is influenced by the taxonomic hypothesis applied to the hominin fossil record). These results highlight the need to re-examine expectations of levels of sexual dimorphism in members of the genus Homo and to account for marked size and shape variation between D2600 and D211 under the prevailing view of a single hominin species at Dmanisi.  相似文献   

14.
To examine the evolutionary differences between hominoid locomotor systems, a number of observations concerning the growth of the pelvis among the great apes as compared to modern and fossil hominids are reported. We are interested in the size and shape of the coxal bones at different developmental stages across species that may elucidate the relationship between ontogeny and phylogeny (i.e., heterochrony) in the hominoid pelvis. Our hypotheses are: (1) do rates of absolute growth differ?, (2) do rates of relative growth differ?, and (3) does heterochrony explain these differences? Bivariate and multivariate analyses of pelvic dimensions demonstrate both the diversity of species-specific ontogenetic patterns among hominoids, and an unequivocal separation of hominids and the great apes. Heterochrony alone fails to account for the ontogenetic differences between hominids and the great apes. Compared to recent Homo,Australopithecus can be described as 'hyper-human' from the relative size of the ischium, and short but broad ilium. Australopithecus afarensis differs from Australopithecus africanus by its relatively long pubis. In multivariate analyses of ilium shape, the most complete coxal bone attributed to Homo erectus, KNM-ER 3228, falls within the range of juvenile and adult Australopithecus, whereas Broken Hill falls within the range of modern Homo, suggesting that the modern human ilium shape arose rather recently. Among the great apes, patterns of pelvic ontogeny do not exclusively separate the African apes from Pongo.  相似文献   

15.
Gorillas are the largest and among the most sexually dimorphic of all extant primates. While gorillas have been incorporated in broad-level comparisons among large-bodied hominoids or in studies of the African apes, comparisons between gorilla subspecies have been rare. During the past decade, however, behavioral, morphological, and molecular data from a number of studies have indicated that the western lowland (Gorilla gorilla gorilla) and eastern mountain (Gorilla gorilla beringei) subspecies differ to a greater extent than has been previously believed. In this study I compare patterns of relative growth of the postcranial skeleton to evaluate whether differences between subspecies result from the differential extension of common patterns of relative growth. In addition, patterns of ontogeny and sexual dimorphism are also examined. Linear skeletal dimensions and skeletal weight were obtained for ontogenetic series of male and female G.g. gorilla (n = 315) and G.g. beringei (n = 38). Bivariate and multivariate methods of analysis were used to test for differences in patterns of relative growth, ontogeny, and sexual dimorphism between sexes of each subspecies and in same-sex comparisons between subspecies. Results indicate males and females of both subspecies are ontogenetically scaled for postcranial proportions and that females undergo an earlier skeletal growth spurt compared to males. However, results also indicate that the onset of the female growth spurt occurs at different dental stages in lowland and mountain gorillas and that mountain gorillas may be characterized by higher rates of growth. Finally, data demonstrate lowland and mountain gorilla females do not differ significantly in adult body size, but mountain gorilla males are significantly larger than lowland gorilla males, suggesting mountain gorillas are characterized by a higher degree of sexual dimorphism in body size. Thus, although lowland and mountain gorillas do not appear to have evolved novel adaptations of the postcranium which correlate with differences in locomotor behavior, the present investigation establishes subspecies differences in ontogeny and sexual dimorphism which may be linked with ecological variation. Specifically, these findings are evaluated in the context of risk aversion models which predict higher growth rates and increased levels of sexual dimorphism in extreme folivores. Am. J. Primatol. 43:1–31, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
The fossil sample attributed to the late Miocene hominoid taxon Ouranopithecus macedoniensis is characterized by a high degree of dental metric variation. As a result, some researchers support a multiple-species taxonomy for this sample. Other researchers do not think that the sample variation is too great to be accommodated within one species. This study examines variation and sexual dimorphism in mandibular canine and postcanine dental metrics of an Ouranopithecus sample. Bootstrapping (resampling with replacement) of extant hominoid dental metric data is performed to test the hypothesis that the coefficients of variation (CV) and the indices of sexual dimorphism (ISD) of the fossil sample are not significantly different from those of modern great apes. Variation and sexual dimorphism in Ouranopithecus M(1) dimensions were statistically different from those of all extant ape samples; however, most of the dental metrics of Ouranopithecus were neither more variable nor more sexually dimorphic than those of Gorilla and Pongo. Similarly high levels of mandibular molar variation are known to characterize other fossil hominoid species. The Ouranopithecus specimens are morphologically homogeneous and it is probable that all but one specimen included in this study are from a single population. It is unlikely that the sample includes specimens of two sympatric large-bodied hominoid species. For these reasons, a single-species hypothesis is not rejected for the Ouranopithecus macedoniensis material. Correlations between mandibular first molar tooth size dimorphism and body size dimorphism indicate that O. macedoniensis and other extinct hominoids were more sexually size dimorphic than any living great apes, which suggests that social behaviors and life history profiles of these species may have been different from those of living species.  相似文献   

17.
Forelimb proportions have been used to infer locomotor adaptation in Australopithecus afarensis. However, little is known about proportions among individual forelimb segments in extant or fossil hominoids. The partial A. afarensis skeleton A.L. 438-1 and the more complete skeleton A.L. 288-1 provide the opportunity to assess relative length of the arm, forearm, wrist, and palm. We compare scaling relationships between pairs of forelimb bones of extant hominoids and A. afarensis, and length of individual forelimb elements to a body size surrogate. Hylobatids, and to a lesser extent orangutans, have the longest forelimb bones relative to size, although the carpus varies little among taxa, perhaps due to functional constraints of the wrist. Pan species are unique in having long metacarpals relative to ulnar length, demonstrating that they probably differ from the common chimp-human ancestor, and also that developmental mechanisms can be altered to results in differential growth of individual forelimb segments. A. afarensis has no forelimb bones that are significantly longer than those of humans for its size. It falls within the range of variation seen in modern humans for all comparisons relative to size, but appears to differ from the typical human brachial index due to a slightly shorter humerus and/or slightly longer ulna. It has short metacarpals like humans only among hominoids. Thus, while Pan may have elongated its metacarpus relative to ulnar length, A. afarensis may have reduced the length of its metacarpals and possibly its humerus relative to body size from the primitive condition.  相似文献   

18.
Odontometric data are utilized to investigate both the extent of variation in the Pliocene hominid remains from Hadar and Laetoli and whether this variation is best explained as resulting from sexual dimorphism or from the presence of more than one species in the sample. Coefficients of variation for the Hadar/Laetoli dental elements are compared with those from other established Plio-Pleistocene hominid taxa and extant pongids. Results indicate that while CVs for the central cheek teeth (M1/1 and M2/2) tend to be rather high, the variability does not consistently exceed ranges of variability for extant anthropoids and other primate species. Thus odontometric data do not disprove the null hypothesis that the Hadar/Laetoli sample can be accommodated within a single species. Therefore, although the Hadar/Laetoli sample tends to exhibit less canine variability than is found among sexually dimorphic apes, odontometric variation in this sample is more likely due to sexual dimorphism than the presence of multiple taxa in the sample.  相似文献   

19.
An important debate has been taking place during the last few years concerningAustralopithecus afarensis: can the Hadar sample be ascribed to one highly dimorphic species or should it be separated into two distinct taxa? A similar problem occurs with the Middle Miocene cercopithecoids from East Africa: does this material belong to one dimorphic group or can we recognize two different taxa? The study of the long bones of the upper limb of many extant primates suggests that the extremities in different taxa are very distinctive but that within taxa the joints are weakly or are not morphologically dimorphic although they can be markedly size dimorphic. The main shape and size differences which can be ascribed to sexual dimorphism occur in the shafts of the long bones. Examinations have been made inHomo, Pan, Gorilla, Pongo, Hylobates, Alouatta, Cebus, Saimiri, Ateles, Nasalis, Presbytis and some Cercopithecinae. It appears, then, that the extremities of the bones are shape monomorphic. If the same relationships occurred in the fossil record, then the differences observed in the hominid fossil elbow joints at Hadar suggest that at least two different taxa are represented in the collection. In addition, among the cercopithecoid material assigned toVictoriapithecus from Maboko and Nyakach in East Africa, we recognize two distinct elbow morphologies indicating that two different taxa occur in the localities.  相似文献   

20.
Subnasal alveolar morphology and the systematic position of Sivapithecus   总被引:1,自引:0,他引:1  
Recent collecting in the Potwar Plateau of Pakistan has produced several new maxillae attributable to Sivapithecus. Since the subnasal region is preserved in most of these specimens, comparisons with early Miocene hominoid and Pliocene hominid maxillae become possible. On the basis of these comparisons, it has become clear that subnasal/premaxillary morphology distinguishes Asian and African hominoids. Ramapithecus and Sivapithecus share with Pongo an "Asian" subnasal pattern. The Proconsul species from the early Miocene of western Kenya and Australopithecus afarensis from the Hadar Formation of Ethiopia present two subsets of an "African" subnasal pattern. We think it likely that Ramapithecus and Sivapithecus represent a lineage that postdates the last common ancestor of African and Asian hominoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号