首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nahum J  Kerr B 《Current biology : CB》2008,18(9):R385-R386
Optimal foraging theory aims to elucidate strategies that maximize resource intake. Although traditionally used to understand animal foraging behavior, recent evolutionary experiments with viruses offer a new twist on an old idea.  相似文献   

2.
Time resources and laziness in animals   总被引:5,自引:0,他引:5  
Joan M. Herbers 《Oecologia》1981,49(2):252-262
Summary Investigations of time budgets reveal that for many animals a surprising proportion of their active time is spent in inactivity. The question of why these beasts are often idle is investigated by examining their foraging behavior in a model which does not utilize optimization criteria. If an organism's goal is to stay alive, one satisfactory strategy is a thermostat feeding process whereby the animal initiates foraging when it perceives hunger and ceases when it becomes satiated. The simple model is formulated as a Markov chain and analyzed for three cases. Results from each case predict that for many combinations of activity levels and resource spectra, the time spent looking for food is smaller than the time spent not foraging, and laziness may result. Simple decision rules as well as optimization schemes are therefore useful for studying some types of foraging behavior.  相似文献   

3.
Niche construction theory (NCT) has emerged as a promising theoretical tool for interpreting zooarchaeological material. However, its juxtaposition against more established frameworks like optimal foraging theory (OFT) has raised important criticism around the testability of NCT for interpreting hominin foraging behavior. Here, we present an optimization foraging model with NCT features designed to consider the destructive realities of the archaeological record after providing a brief review of OFT and NCT. Our model was designed to consider a foragers decision to exploit an environment given predation risk, mortality, and payoff ratios between different ecologies, like more‐open or more‐forested environments. We then discuss how the model can be used with zooarchaeological data for inferring environmental exploitation by a primitive hominin, Homo floresiensis, from the island of Flores in Southeast Asia. Our example demonstrates that NCT can be used in combination with OFT principles to generate testable foraging hypotheses suitable for zooarchaeological research.  相似文献   

4.
Animal and plant ecologists generally follow separate paths. This often leads to disjointed approaches to solving similar ecological problems. In the past 20 years, two related, but unconnected, research fields have undergone rapid development: modular demography, with its morphological and functional analysis of resource capture, until now basically the domain of plant ecology; and foraging theory, traditionally applied and developed in animal ecology. The results of recent research on the foraging strategies of ants and clonal plants, however, outline a general framework of functional parallels between both types of organisms that could link important aspects of animal and plant foraging ecology.  相似文献   

5.
按照最优化觅食理论,动物在取食时需在能量获取与捕食风险之间权衡。本文通过室内行为实验,研究两种旧大陆果蝠棕果蝠和犬蝠对食物大小的选择规律与取食策略。按体积由小到大将苹果分为Ⅰ型、Ⅱ型、Ⅲ型、Ⅳ型4 种类型的食物块,通过红外相机观察果蝠对不同大小食块的取食情况,并就其对各类型食块的取食率、取食次数和停留时间进行统计分析。结果表明:这两种果蝠对Ⅱ型和Ⅲ型食块的取食率显著高于Ⅰ型和Ⅳ型;对Ⅰ型食块的取食次数显著高于Ⅱ型和Ⅳ型;对Ⅳ型食块的停留时间显著高于Ⅰ型和Ⅱ型。它们在摄取体积较小的食块时,以取走后进食为主要取食方式,但摄取大体积食块时则主要在原地进食。取食过程中,果蝠优先选择大小适于搬运的食块,是捕食风险与能量收益权衡的结果。  相似文献   

6.
Optimal foraging theory concerns animal behavior in landscapes where food is concentrated in patches. The efficiency of foraging is an effect of both the animal behavior and the geometry of the landscape; furthermore, the landscape is itself affected by the foraging of animals. We investigated the effect of landscape heterogeneity on the efficiency of an optimal forager. The particular aspect of heterogeneity we considered was "clumpiness"– the degree to which food resource patches are clustered together. The starting point for our study was the framework of the Mean Value Theorem (MVT) by Charnov. Since MVT is not spatially explicit, and thus not apt to investigate effects of clumpiness, we built an agent-based (or individual-based) model for animal movement in discrete landscapes extending the MVT. We also constructed a model for generating landscapes where the clumpiness of patches can be easily controlled, or "tuned", by an input parameter. We evaluated the agent based model by comparing the results with what the MTV would give, i.e. if the spatial effects were removed. The MVT matched the simulations best on landscapes with random patch configuration and high food recovery rates. As for our main question about the effects of clumpiness, we found that, when landscapes were highly productive (rapid food replenishment), foraging efficiency was greatest in clumped landscapes. In less productive landscapes, however, foraging efficiency was lowest in landscapes with a clumped patch distribution.  相似文献   

7.
食草动物与植物的相互关系   总被引:3,自引:0,他引:3  
动植物相互作用是决定动植物群落结构的重要因素[50 ] 。动物从多方面和多层次影响植物 ,最后都反映到植物群落结构的变化。而变化的植物群落又从各方面影响动物的生理、行为、种群特征、分布、种间关系等方面 ,最终反映到动物群落水平层次的改变 ,所以对动物群落与植物群落关系及机理的研究是个内容十分丰富的重要领域。1 食草动物的牧食作用对植物的影响食草动物的牧食作用 ,常使植物形态和结构发生变化 ,如导致植株的“矮化”或“匍匐化”,增加剌结构和机械结构 ,以抵御进一步被牧食[42 ] 。一定强度的牧食会加速植物光合作用强度 ,从而…  相似文献   

8.
Foraging behavior of bumblebees has been in the past analyzedfrom two major perspectives. On the one hand, behavioral mechanismshave been studied to learn more about the animal. On the otherextreme, the animal has been used incidentally to examine optimalforaging theory (O.F.T.). Major problems have arisen when theorydesigned to answer evolutionary questions was used to determineproximal mechanisms. While O.F.T. could be highly useful inmaking predictions to point out useful problems, the bottleneckto our understanding at the present resides in the lack of experimentsthat test alternative hypotheses. Whether or not a bumblebee worker's foraging behavior is adaptive(enhances fitness), however, or is optimal (maximizes fitness)cannot yet be resolved by observations or experimentation onindividual bees. However, calculations can show the potentialenergy costs and payoffs of alternative potential foraging behaviors.Rapid progress could be made by examining the mechanisms offoraging behavior that act to enhance foraging returns, withoutworrying about whether or not the behavior is "optimal."  相似文献   

9.
Optimal foraging theory explains diet restriction as an adaptation to best utilize an array of foods differing in quality, the poorest items not worth the lost opportunity of finding better ones. Although optimal foraging has traditionally been applied to animal behavior, the model is easily applied to viral host range, which is genetically determined. The usual perspective for bacteriophages (bacterial viruses) is that expanding host range is always advantageous if fitness on former hosts is not compromised. However, foraging theory identifies conditions favoring avoidance of poor hosts even if larger host ranges have no intrinsic costs. Bacteriophage T7 rapidly evolved to discriminate among different Escherichia coli strains when one host strain was engineered to kill infecting phages but the other remained productive. After modifying bacteria to yield more subtle fitness effects on T7, we tested qualitative predictions of optimal foraging theory by competing broad and narrow host range phages against each other. Consistent with the foraging model, diet restriction was favored when good hosts were common or there was a large difference in host quality. Contrary to the model, the direction of selection was affected by the density of poor hosts because being able to discriminate was costly.  相似文献   

10.
捕食风险及其对动物觅食行为的影响   总被引:13,自引:0,他引:13  
对捕食风险的涵义及其对猎物动物觅食行为的影响、猎物动物面对捕食风险时的反应进行了论述。捕食风险可以简单地理解为一定时间内猎物动物被杀死的概率。当捕食风险存在时 ,动物会选择相对安全但觅食效益较低的地点觅食 ;由于死亡率和消化方面的限制 ,一般都会产生食谱收缩 ;觅食活动方式的时间格局也会因捕食风险而发生改变 ,如水生动物的昼夜垂直迁移、某些陆生动物昼行性与夜行性活动的转换、月光回避等。在与捕食者发生遭遇时 ,猎物动物的主要反应是 :①发出某些信号以阻止捕食者的追捕 ;②靠近并注视捕食者 ;③逃逸 ;④在一定的时间恢复觅食活动。在以往的研究中 ,对捕食者种类已经有了较多的了解 ,而对猎物如何判断捕食者丰富度信息、估计风险程度等方面则知之甚少 ;同时 ,对捕食风险水平的调控、对多种因素的综合分析也较少涉及。在今后的研究中 ,还应该考虑研究的尺度问题 ,因为在不同尺度的环境条件下 ,猎物动物对于捕食风险的反应可能大相径庭。  相似文献   

11.
Browsing enrichment may aid in developing species-specific behaviors for giraffes managed in zoos as a means of improving animal welfare. By nature, giraffes are tree-feeding animals, including tree bark, but the extent of food other than leaves as a form of browsing enrichment has not been well investigated. Therefore, to investigate the effectiveness of non-leaf foraging, three giraffes at the Kyoto City Zoo in Japan were observed for 228 h from May 2019 to February 2020. In conjunction with behavioral instantaneous sampling, tree use (landscape tree or enrichment branch) and plant part (leaves, twigs, or barks) were recorded by the 1-0 sampling method. There was no significant change in the foraging behavior on the leaves of enriched branches, nor was there any significant change in the foraging behavior of the giraffes, except for one animal in the deciduous phase. No significant changes were observed in rumination or other behaviors between the two phases. Although vegetation foraging behavior significantly decreased, except for one animal, dry hay foraging behavior significantly increased in all the animals during the deciduous phase. Some individuals also showed a significant increase in the foraging behavior for non-leafy parts of the enrichment branches (twigs and bark) during the deciduous phase. This suggests that in some tree species, giraffes forage on the bark and twigs to compensate for the loss of leaves during the deciduous phase, similar to feeding on hay or hay cubes as a substitute for tree leaves.  相似文献   

12.
The function(s) of a particular sound can be explored in detail only if the context of its use is well understood. The behavior of the signaler, and the habitat in which that behavior is observed, are two of the most important components of understanding context specific use of a sound. Bottlenose dolphin foraging behavior is often inferred from relatively few behavioral cues that are visible from the surface. To investigate the use of three specific sound types: echolocation, whistles, and pops during foraging, I recorded sound use by animals engaged in a set of previously defined specific foraging behaviors using a system that allowed me to see animals throughout the water column. Lone foraging animals produced all three sounds at significantly higher rates than animals foraging in groups, and the rate of sound production per animal in multi-animal foraging groups did not vary even as the groups reached up to five individuals. Production of echolocation and pops by lone foraging animals accounted for much of the difference. Foraging dolphins also displayed habitat-specific use of particular sound types. They preferentially produced echolocation and pops in the sand habitat and, at least for lone animals, in the seagrass edge habitat.  相似文献   

13.
State‐space models offer researchers an objective approach to modeling complex animal location data sets, and state‐space model behavior classifications are often assumed to have a link to animal behavior. In this study, we evaluated the behavioral classification accuracy of a Bayesian state‐space model in Pacific walruses using Argos satellite tags with sensors to detect animal behavior in real time. We fit a two‐state discrete‐time continuous‐space Bayesian state‐space model to data from 306 Pacific walruses tagged in the Chukchi Sea. We matched predicted locations and behaviors from the state‐space model (resident, transient behavior) to true animal behavior (foraging, swimming, hauled out) and evaluated classification accuracy with kappa statistics (κ) and root mean square error (RMSE). In addition, we compared biased random bridge utilization distributions generated with resident behavior locations to true foraging behavior locations to evaluate differences in space use patterns. Results indicated that the two‐state model fairly classified true animal behavior (0.06 ≤ κ ≤ 0.26, 0.49 ≤ RMSE ≤ 0.59). Kernel overlap metrics indicated utilization distributions generated with resident behavior locations were generally smaller than utilization distributions generated with true foraging behavior locations. Consequently, we encourage researchers to carefully examine parameters and priors associated with behaviors in state‐space models, and reconcile these parameters with the study species and its expected behaviors.  相似文献   

14.
Little is known of the foraging abilities of children in modern cultures, especially when children forage in groups. Here we present a test of optimal foraging theory in groups of street children working for money. The children we observed were selling bottles of water to drivers distributed in two lanes at a crossroad of Istanbul, Turkey. As predicted by the ideal free distribution (a model of optimal group foraging), the ratio of children working in the two lanes was sensitive to the ratio of cars (and therefore the ratio of potential buyers) present in each lane. Deviations from the ideal free model arose largely from numerical restrictions on the set of possible ratios compatible with a small group size. When these constraints were taken into account, optimal behavior emerged as a robust aspect of the children's group distribution. Our results extend to human children aspects of group foraging that were previously tested in human adults or other animal species.  相似文献   

15.
Research in foraging theory has been dominated by studies ofactive foragers choosing among patches and among prey withina patch. Studies of central-place foraging have mainly focusedon loading decisions of an animal provisioning a central place.The problem faced by a sit-and-wait forager that encountersprey at a distance has received little attention. In this studywe tested foraging theory predictions for such foragers, Anolisgingivinus females in the West Indies island of Anguilla. Wepresented lizards with antlion larvae at various distances.Experiment 1 showed that an individual's probability of pursuingprey decreases with the prey's distance and is best describedby a sigmoidal function (which may be as steep as a step function).This function's inflection point defines a cutoff distance.Experiment 3 tested how cutoff distance changes as a functionof prey size. Cutoff distances were greater for larger prey,as predicted for an energy-maximizing forager. Experiments 2and 4 tested how cutoff distance changes as a function of preyabundance. As predicted, cutoff distance were greater at a sitewhere prey abundance was lower. Furthermore, cutoff distancesdecreased immediately following prey augmentation and returnedto previous values within one day of ending augmentation. Thus,moles' foraging behavior is a dynamic process, consistent withthe qualitative predictions of foraging theory. We attributethe success of this study in supporting fundamental foragingtheory predictions to the lizards exhibiting natural behaviorunder field conditions and to particular advantages of studyingsit-and-wait foragers.  相似文献   

16.
This study investigated how female Antarctic fur seals adapt their foraging behavior, over time scales of days, to spatial unpredictability in the distribution of their food. Lactating Antarctic fur seals are central-place foragers that feed on highly patchy but spatially and temporally dynamic food. We measured the foraging distribution of 28 fur seals to test whether variation in foraging trip durations was reflected in variation in the location of foraging and the diving behavior of seals at sea. Based on the maximum distance travelled from the breeding beach, three categories of foraging trips were denned: those to the continental shelf area ( n = 12, median = 71 km), to oceanic water ( n = 11, median =164 km), and to farther offshore oceanic waters ( n = 5, median = 260 km). Trip duration and mean surface speed were positively correlated with the maximum distance travelled from the breeding beach. Seals on longer trips spent proportionally less of their time submerged, but there was no significant difference in the total number of dives or the total time spent foraging by seals in relation to trip duration. Evidence from this study and previous work investigating energy gain suggests that an animal on a longer foraging trip could potentially have a higher mean energy return per dive than a similar animal on a shorter foraging trip. Evidence presented suggests that the type of foraging trip (near or far) is not predetermined by the animal but may be a simple response to the stochastic distribution of the resources available.  相似文献   

17.
Site fidelity, the recurrent visit of an animal to a previously occupied area is a wide-spread behavior in the animal kingdom. The relevance of site fidelity to territoriality, successful breeding, social associations, optimal foraging and other ecological processes, demands accurate quantification. Here we generalize previous theory that connects site fidelity patterns to random walk parameters within the framework of the space-time fractional diffusion equation. In particular, we describe the site fidelity function in terms of animal movement characteristics via the Lévy exponent, which controls the step-length distribution of the random steps at each turning point, and the waiting time exponent that controls for how long an animal awaits before actually moving. The analytical results obtained will provide a rigorous benchmark for empirically driven studies of animal site fidelity.  相似文献   

18.
Food acquisition is an important modulator of animal behavior and habitat selection that can affect fitness. Optimal foraging theory predicts that predators should select habitat patches to maximize their foraging success and net energy gain, likely achieved by targeting areas with high prey availability. However, it is debated whether prey availability drives fine‐scale habitat selection for predators. We assessed whether an ambush predator, the timber rattlesnake (Crotalus horridus), exhibits optimal foraging site selection based on the spatial distribution and availability of prey. We used passive infrared camera trap detections of potential small mammal prey (Peromyscus spp., Tamias striatus, and Sciurus spp.) to generate variables of prey availability across the study area and used whether a snake was observed in a foraging location or not to model optimal foraging in timber rattlesnakes. Our models of small mammal spatial distributions broadly predicted that prey availability was greatest in mature deciduous forests, but T. striatus and Sciurus spp. exhibited greater spatial heterogeneity compared with Peromyscus spp. We found the spatial distribution of cumulative small mammal encounters (i.e., overall prey availability), rather than the distribution of any one species, to be highly predictive of snake foraging. Timber rattlesnakes appear to forage where the probability of encountering prey is greatest. Our study provides evidence for fine‐scale optimal foraging in a low‐energy, ambush predator and offers new insights into drivers of snake foraging and habitat selection.  相似文献   

19.
The evolutionary divergence of sexual signals is often important during the formation of new animal species, but our understanding of the origin of signal diversity is limited [1, 2]. Sensory drive, the optimization of communication signal efficiency through matching to the local environment, has been highlighted as a potential promoter of diversification and speciation [3]. The swordtail characin (Corynopoma riisei) is a tropical fish in which males display a flag-like ornament that elicits female foraging behavior during courtship. We show that the shape of the male ornament covaries with female diet across natural populations. More specifically, natural populations in which the female diet is more dominated by ants exhibit male ornaments more similar to the shape of an ant. Feeding experiments confirm that females habituated to a diet of ants prefer to bite at male ornaments from populations with a diet more dominated by ants. Our results show that the male ornament functions as a "fishing lure" that is diversifying in shape to match local variation in female search images employed during foraging. This direct link between variation in female feeding ecology and the evolutionary diversification of male sexual ornaments suggests that sensory drive may be a common engine of signal divergence.  相似文献   

20.
Summary Understanding the foraging behavior of an animal is critically dependent upon knowledge of the constraints on that animal. In this study, I tested whether fidelity to foraging direction acts as a behavioral constraint to foraging western harvester ants, Pogonomyrmex occidentalis. Individual P. occidentalis foragers showed strong fidelity to foraging route and direction. Directional fidelity in this population was not related to trunk trail use, food specialization, colony activity levels, or mortality risks. Directional fidelity constrained individual foraging decisions; when colonies were offered seeds of different quality in 2 directions, individuals did not switch directions to obtain the energetically more rewarding seeds. Colony-level recruitment was increased for energetically more profitable seeds, indicating that colonial responses may compensate for the constraints of directional fidelity on individual foragers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号