首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Angiotensin-Converting Enzyme Modulates Dopamine Turnover in the Striatum   总被引:3,自引:0,他引:3  
Abstract: The effect of chronic inhibition of the angiotensin-converting enzyme on dopamine content and release in the striatum was investigated using in vivo microdialysis in awake, freely moving rats. Rats were treated for 1 week with the angiotensin-converting enzyme inhibitor perindopril (1 mg/kg) via the drinking water, whereas the controls were given water alone. One week after perindopril treatment, striatal dopamine dialysate levels in the treated group were markedly elevated compared with control values: control, 233 ± 43 pg/ml; perindopril, 635 ± 53 pg/ml ( p < 0.001). These results were confirmed by a complementary study in which dopamine content was measured in striatal extracts (3.5 ± 0.4 µg of dopamine/g of tissue for controls compared with 9.2 ± 2.4 µg of dopamine/g of tissue for the treated group; p < 0.05). In the rats that were dialyzed, angiotensin-converting enzyme levels in the striatum were decreased by 50% after perindopril treatment. Levels of dopamine D1 and D2 receptors and of preprotachykinin and tyrosine hydroxylase mRNAs were unchanged after angiotensin-converting enzyme inhibition. A small, but significant, increase was detected in striatal preproenkephalin mRNA levels in the angiotensin-converting enzyme inhibitor-treated group. These results indicate that peripherally administered angiotensin-converting enzyme inhibitors penetrate the blood-brain barrier when given chronically and modulate extracellular dopamine and striatal neuropeptide levels.  相似文献   

2.
Angiotensin-converting enzyme was solubilized with papain from a particulate fraction of rat brain and purified to apparent homogeneity by a procedure including DEAE-cellulose, hydroxylapatite, Sephadex G-200, Cys(Bzl)-Pro-Sepharose, and ricin-Sepharose chromatography. Bradykinin potentiators, SQ 14,225, and Arg-Pro-Pro strongly inhibited the activity of the purified enzyme, whereas Phe-Ala, phosphoramidon, and pentobarbital exerted little inhibitory effect on the activity. Among neuropeptides investigated, substance P, bradykinin, and Leu-enkephalin (Arg6) exerted strong inhibitory actions on the enzyme. Furthermore, the latter two peptides were shown to be good substrates for the enzyme. Thus, angiotensin-converting enzyme of rat brain is distinct from endogenous enkephalinase and may interact with various neuropeptides located in the brain.  相似文献   

3.
Rats were infused intraventricularly with [3H]tyrosine over a 20-min period during various times while circling. 3,4-Dihydroxyphenylethylamine (dopamine) and dihydroxyphenylacetic acid (DOPAC) levels were measured using HPLC with electrochemical detection and fractions were collected for tritium monitoring. During the first 20 min of circling, the specific activity of dopamine was increased by 290% in striatum contralateral to the circling direction whereas DOPAC specific activity was increased 50% on the same side. This differential change in relative specific activity suggests that unlabeled storage pool dopamine was mobilized to DOPAC during circling. Synthesis of dopamine and DOPAC in contralateral striatum returned to baseline levels as turning slowed (50-70 min). When turning ceased, there was an increase in ipsilateral striatal dopamine synthesis during the 20-min period following circling. We hypothesize that this ipsilateral increase represents either a "stop" signal following circling or a release of inhibition of ipsilateral nigral neurons.  相似文献   

4.
Abstract: Angiotensin-converting enzyme (ACE) activity was measured by a radiochemical assay in 30 specific areas of the rat brain stem. ACE activity is unevenly distributed, with a 60-fold difference between the lowest and the highest activity. The area postrema exhibits the highest activity. The substantia nigra (pars reticulata), the locus coeruleus, the areas A1 and A2, the nuclei commissuralis, and tractus solitarii have a substantial ACE activity, whereas the lowest activity is found in the raphe nuclei and the nuclei of the reticular formation.  相似文献   

5.
Abstract: L-DOPA is a large neutral amino acid subject to transport out of, as well as into, brain tissue. Competition between dopamine synthesis and L-DOPA egress from striatum must favor L-DOPA egress if decarboxylation declines relatively more than transport in Parkinson's disease. To test this hypothesis, we injected patients with Parkinson's disease with a radidabeled analogue of L-DOPA and recorded regional brain radioactivity as a function of time by means of positron emission tomography. We simultaneously estimated the activity of the decarboxylating enzyme and the amino acid transport. In the striatum of patients, we found the L-DOPA decarboxylase activity to be reduced in the head of the caudate nucleus and the putamen. However, the rate of egress of the DOPA analogue was unaffected by the disease and thus inhibited dopamine synthesis more than predicted in the absence of L-DOPA egress.  相似文献   

6.
Abstract: Rapid chronoamperometric recordings, using Nafion-coated carbon-fiber electrodes (30–90 µm o.d.), were used to investigate overflow and uptake of dopamine (DA) in the striatum of normal and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated rhesus monkeys. The monkeys were anesthetized with isoflurane and placed in a stereotaxic apparatus. Magnetic resonance imaging-guided sterile stereotaxic procedures were used for implantations of the electrochemical electrodes coupled with single-barrel micropipettes that were used to apply potassium or DA locally. Potassium evoked a robust overflow of DA-like electrochemical signals into the brain extracellular space in the unlesioned or normal putamen and caudate nucleus of the rhesus monkeys. In contrast, potassium did not produce any detectable changes (> 97% depletion) of DA in the MPTP-lesioned striatum. In addition, the diffusion/clearance of locally applied DA was markedly altered in the lesioned caudate nucleus and putamen compared with unlesioned striatum. Cell counts of the number of residual tyrosine hydroxylase-positive neurons in MPTP-treated monkeys, in conjunction with whole-tissue levels of DA and its metabolites, showed that the MPTP lesions produced extensive damage of the nigrostriatal DA system. These data indicate that residual dopaminergic fibers remaining after MPTP lesions are dysfunctional and have a greatly diminished capacity for high-affinity DA uptake.  相似文献   

7.
Renin and Angiotensin-Converting Enzyme in Human Neuroblastoma Tissue   总被引:1,自引:0,他引:1  
High activity of renin was demonstrated in human neuroblastoma tissue. This activity was inhibited by specific antibody raised against human renal renin, indicating that it was not due to the nonspecific action of proteases. The specific activity of renin was 122.8 ng of angiotensin I generated mg of protein-1 h-1. It shared some biochemical features with well-known kidney renin, such as molecular weight, optimum pH, the presence of trypsin-activatable inactive renin, and glycoprotein nature. Furthermore, angiotensin-converting enzyme (ACE) activity (2.64 nmol mg of protein-1 min-1) was found in the tissue. This activity was inhibited by captopril, a specific ACE inhibitor, or by omission of chloride ion. These results suggest that true renin in addition to ACE exists in human neuroblastoma tissue.  相似文献   

8.
Angiotensin-converting enzyme (ACE) activity of Neuro-2A mouse neuroblastoma cells was found predominantly in particulate fractions. Density gradient centrifugation of the particulate fractions showed ACE activity in light fractions of the gradient, a result suggesting a plasma membrane localization. This was confirmed using the aqueous two-phase polymer system of plasma membrane isolation. The rapid and energy-independent hydrolysis of exogenous substrate by ACE of intact cells and the sensitivity of the enzyme of intact cells to proteases indicate further that the active site of ACE is oriented extracellularly.  相似文献   

9.
Abstract : Lesch-Nyhan disease is a neurogenetic disorder caused by deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT). Affected individuals exhibit a characteristic pattern of neurological and behavioral features attributable in part to dysfunction of basal ganglia dopamine systems. In the current studies, striatal dopamine loss was investigated in five different HPRT-deficient strains of mice carrying one of two different HPRT gene mutations. Caudoputamen dopamine concentrations were significantly reduced in all five of the strains, with deficits ranging from 50.7 to 61.1%. Mesolimbic dopamine was significantly reduced in only three of the five strains, with a range of 31.6-38.6%. The reduction of caudoputamen dopamine was age dependent, emerging between 4 and 12 weeks of age. Tyrosine hydroxylase and aromatic amino acid decarboxylase, two enzymes responsible for the synthesis of dopamine, were reduced by 22.4-37.3 and 22.2-43.1%, respectively. These results demonstrate that HPRT deficiency is strongly associated with a loss of basal ganglia dopamine. The magnitude of dopamine loss measurable is dependent on the genetic background of the mouse strain used, the basal ganglia sub-region examined, and the age of the animals at assessment.  相似文献   

10.
Abstract: Angiotensin-converting enzyme (ACE) activity in brain microvessels of spontaneously hypertensive rats (SHR) and Wistar Kyoto (WKY) controls was measured. Cerebral microvessels, prepared from the cerebral cortices by the albumin flotation and glass bead filtration technique, were free of neuronal and glial elements. ACE activity in brain microvessels of SHR was lower than that of WKY. A Woolf-Augustinsson-Hofstee plot showed that the reduction of the enzyme activity in SHR was due to a 30% decrease in Vmax without any change in Km for substrate. The decrease of ACE activity in brain micro-vessels of SHR may indicate an impairment of the central renin-angiotensin system and may be related to cerebral microvascular dysfunctions occurring in hypertension.  相似文献   

11.
Abstract: The effect of various doses of the serotonin (5-HT) release-inducing agent d -fenfluramine ( d -fenf) on extracellular dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) was studied in vivo in the striatum of halothane-anesthetized rats, following systemic and local administration. At 5 and 10 but not 2.5 mg/kg, d -fenf administered intraperitoneally significantly increased DA extracellular concentration and reduced DOPAC outflow. A concentration-dependent enhancement of DA dialysate content was also found following intrastriatal application (5, 10, 25, and 50 µ M ). The bilateral administration of 5,7-dihydroxytryptamine into the dorsal raphe nucleus, which markedly depleted 5-HT in the striatum, did not modify the effect on extracellular DA concentration of 25 µ M d -fenf locally applied into the striatum. The enhancement of extracellular DA level induced by 25 µ M d -fenf was slightly but significantly reduced by the local application of 25 µ M citalopgram. The blockade of DA uptake sites by nomifensine (0.1, 0.3, and 1 µ M ) did not modify significantly the effect of d -fenf. The rise of DA outflow induced by 25 µ M d -fenf was strongly reduced in the presence of 1 µ M tetrodotoxin (TTX) or by the removal of Ca2+ from the perfusion medium. The results obtained show that d -fenf increases the striatal extracellular DA concentration by a Ca2+-dependent and TTX-sensitive mechanism that is independent of striatal 5-HT itself or DA uptake sites.  相似文献   

12.
Abstract: The acute effect of physiological doses of estradiol (E2) on the dopaminergic activity in the striatum was studied. In a first series of experiments, ovariectomized rats were injected with 17α or 17β E2 (125, 250, or 500 ng/kg of body weight, s.c.), and in situ tyrosine hydroxylase (TH) activity (determined by DOPA accumulation in the striatum after intraperitoneal administration of NSD 1015) was quantified. A dose-dependent increase in striatal TH activity was observed within minutes after 17β (but not 17α) E2 treatment. To examine whether E2 acts directly on the striatum, in a second series of experiments, anesthetized rats were implanted in the striatum with a push-pull cannula supplied with an artificial CSF containing [3H]tyrosine. The extracellular concentrations of total and tritiated dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were measured at 20-min intervals. Addition of 10?9M 17β (but not 17α) E2 to the superfusing fluid immediately evoked an ~50% increase in [3H]DA and [3H]DOPAC extracellular concentrations, but total DA and DOPAC concentrations remained constant. This selective increase in the newly synthesized DA and DOPAC release suggested that E2 affects DA synthesis rather than DA release. Finally, to determine whether this rapid E2-induced stimulation of DA synthesis was a consequence of an increase in TH level of phosphorylation, the enzyme constant of inhibition by DA (Ki DA) was calculated. Incubation of striatal slices in the presence of 10?9M 17β (but not 17α) E2 indeed evoked an approximate twofold increase in the Ki DA of one form of the enzyme. It is concluded that physiological levels of E2 can act directly on striatal tissue to stimulate DA synthesis. This stimulation appears to be mediated, at least in part, by a decrease in TH susceptibility to end-product inhibition, presumably due to phosphorylation of the enzyme. The rapid onset of this effect, and the fact that the striatum does not contain detectable nuclear E2 receptors, suggest a nongenomic action of the steroid.  相似文献   

13.
Angiotensin-converting enzyme (ACE) activity in serum and lung tissue from both normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) was determined at six different circadian times. In WKY rats serum ACE varied significantly within 24 h, mainly due to reduced enzyme activity at 12:00 h. In SHR the 24-h profile of serum ACE did not exhibit time-dependent differences. Mean serum ACE activity over 24 h was significantly higher in WKY than in SHR. In lung tissue ACE activity did not depend on the circadian time in either strain. Mean enzyme activity in lung tissue was not different between WKY and SHR. We conclude that circadian changes in the activity of serum and tissue ACE are unlikely to play an important role in the regulation of the circadian blood pressure profile in both normotensive and spontaneously hypertensive rats.  相似文献   

14.
Angiotensin-converting enzyme (ACE) activity in serum and lung tissue from both normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) was determined at six different circadian times. In WKY rats serum ACE varied significantly within 24 h, mainly due to reduced enzyme activity at 12:00 h. In SHR the 24-h profile of serum ACE did not exhibit time-dependent differences. Mean serum ACE activity over 24 h was significantly higher in WKY than in SHR. In lung tissue ACE activity did not depend on the circadian time in either strain. Mean enzyme activity in lung tissue was not different between WKY and SHR. We conclude that circadian changes in the activity of serum and tissue ACE are unlikely to play an important role in the regulation of the circadian blood pressure profile in both normotensive and spontaneously hypertensive rats.  相似文献   

15.
Angiotensin-converting enzyme (ACE) activity was measured in microvessels prepared from cerebral cortices of 4-week-old spontaneously hypertensive rats (SHR). The Vmax value of the ACE activity in the cerebral microvessels of SHR was lower than that of Wistar Kyoto controls of the same age by 25% without difference in Km value for substrate. The low activity of ACE in the cerebral microvessels of young SHR indicates that in this animal model of hypertension the function of ACE is genetically altered in the cerebral microvessels, which may be correlated with the alteration of the cerebral microcirculation and pathogenesis of hypertension.  相似文献   

16.
It is becoming apparent that the synthesis of nitric oxide (NO) from L-arginine not only explains endothelium-dependent vascular relaxation, but is a widespread mechanism for the regulation of cell function and communication. We examined the role of NO on the endogenous dopamine (DA) release from rat striatum. Nitroprusside, in the concentration range of 3-100 microM, induced a dose-dependent increase in the endogenous DA release from rat striatal slices. The maximal response was 330% over the baseline release. A higher concentration of nitroprusside (300 microM) produced an inhibitory effect on the spontaneous release of DA. L-Arginine (10 and 100 microM), a substrate in the NO-forming enzyme system, also produced an elevation of DA release. L-Arginine-induced DA release was attenuated by NG-monomethyl-L-arginine, an inhibitor of NO synthase. NADPH (1 microM), a cofactor of NO synthase, enhanced L-arginine-induced DA release. These results suggest a possible involvement of NO in the DA release process in rat striatum.  相似文献   

17.
Abstract: Mice of different ages and homozygous or heterozygous for the weaver gene ( wv ) were used to study the time course for the effect of the weaver gene on several striatal dopaminergic parameters. Dopamine uptake was decreased in the homozygous weaver at all ages examined. The deficit in uptake at the earliest age studied, postnatal day 3, was approximately 50% and increased to greater than 70% at older ages. In control mice, dopamine uptake reached a maximum by postnatal day 22, but in homozygous weaver mice, development of uptake activity was curtailed by postnatal day 7. Dopamine content and tyrosine hydroxylase activity were significantly decreased in the homozygous weaver at all ages studied except postnatal days 7 and 10. The magnitude of the deficit in dopamine content ranged from approximately 40% at postnatal days 3 and 5 to about 70% in adults (6 months to 1 year of age). The magnitude of the deficit in tyrosine hydroxylase activity ranged from 40 to 70%. In general, no major differences between heterozygotes and controls were observed for any of the dopaminergic parameters investigated. The results of the present investigation indicate that neurochemical alterations can be observed in the striata of weaver mice as early as postnatal day 3 and raise the possibility that the striatal dopamine transporter may be an early target of the weaver mutation.  相似文献   

18.
Abstract: Aromatic L-amino acid decarboxylase (AAAD) activity is enhanced in the striatum of control and MPTP-treated mice after administration of a single dose of the dopamine receptor antagonists haloperidol, sulpiride, and SCH 23390. MPTP-treated mice appear more sensitive to the antagonists, i.e., respond earlier and to lower doses of antagonists than control mice. The rise of AAAD activity induced by the antagonists is prevented by pretreatment with cycloheximide. The apparent K m values for L-3,4-dihydroxyphenylalanine (L-DOPA) and pyridoxal 5-phosphate appear unchanged after treatment with the antagonists. Increased AAAD activity was observed also after subchronic administration of dopamine receptor antagonists or treatment with reserpine. A single dose of a selective dopamine receptor agonists had no effect on AAAD activity. In contrast, administration of L-DOPA, quinpirole, or SKF 23390 for 7 days lowers AAAD activity in the striatum. We conclude that AAAD is modulated in striatum via dopaminergic receptors.  相似文献   

19.
Anatoxin-a is an important neurotoxin that acts a potent nicotinic acetylcholine receptor agonist. This characteristic makes anatoxin-a an important tool for the study of nicotinic receptors. Anatoxin-a has been used extensively in vitro experiments, however anatoxin-a has never been studied by in vivo microdialysis studies. This study test the effect of anatoxin-a on striatal in vivo dopamine release by microdialysis.The results of this work show that anatoxin-a evoked dopamine release in a concentration-dependent way. Atropine had not any effect on dopamine release evoked by 3.5 mM anatoxin-a. However, perfusion of nicotinic antagonists mecamylamine and α-bungarotoxin induced a total inhibition of the striatal dopamine release. Perfusion of α7*-receptors antagonists, metillycaconitine or α-bungarotoxin, partially inhibits the release of dopamine stimulated by anatoxin-a. These results show that anatoxin-a can be used as an important nicotinic agonist in the study of nicotinic receptor by in vivo microdialysis technique and also support further in vivo evidences that α7*nicotinic AChRs are implicated in the regulation of striatal dopamine release.  相似文献   

20.
Nigral and striatal GABA contents were assayed in male rats treated chronically with haloperidol or sulpiride, two dopamine-receptor blocking agents that have different neuropharmacological spectra in regard to their biochemical, behavioural, and clinical properties. No great difference was observed between the chronic effects of haloperidol and sulpiride on nigral and striatal GABA content. However, low doses (30 μg/kg, intraperitoneally) of the dopamine-receptor agonist apomorphine, injected 12 h after the discontinuation of chronic haloperidol or chronic sulpiride treatment, induced opposite changes in nigral GABA levels suggesting the existence of a different “status” of the dopamine receptors during the 12 h-period following the withdrawal of haloperidol or sulpiride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号