首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have established Catharanthus roseus hairy root cultures transgenic for the rol ABC genes from T(L)-DNA of the agropine-type Agrobacterium rhizogenes strain A4. The rol ABC hairy root lines exhibit a wild-type hairy root syndrome in terms of growth and morphology on solid medium. However, they differ from wild-type hairy root lines in that they more frequently have excellent adaptability to liquid medium and do not appear to form calli during cultivation. Moreover, they do not produce detectable levels of mannopine and agropine which, in contrast, are often synthesized abundantly in wild-type hairy root lines. The absence of these opines does not appear to cause the rol ABC lines to have higher levels of terpenoid indole alkaloids than wild-type hairy root lines. Unlike wild-type lines, rol ABC lines produce very similar levels of total alkaloids despite wide variations in individual alkaloid contents. This work demonstrates that the three genes rol ABC are sufficient to induce high-quality hairy roots in Catharanthus roseus.  相似文献   

2.
Hyoscyamus muticus hairy root clones were established following infection with Agrobacterium rhizogenes strains A4, LBA-9402 and 15834 and with A. tumefaciens strain C58C1pRTGus104. The accumulation of tropane alkaloids hyoscyamine, littorine and scopolamine was evaluated by micellar electrokinetic capillary electrophoresis. Littorine was reported for the first time in these clones as well as in the roots of the intact plant and confirmed by collision induced dissociation-mass spectrometry. Tropane alkaloid content in hairy roots was compared with leaves and roots of normal plants at two vegetative stages. Significant differences appeared between the alkaloid contents of the different clones. In particular, all the hairy root clones and the roots of the intact plant produced 1.5-3 and 4.5-9 times more littorine than scopolamine, respectively. The only exception was clone KB7, carrying the h6h gene, which overproduced scopolamine. The aerial parts of H. muticus plants did not contain any littorine, thus indicating different transportation or translocation mechanisms of the various tropane alkaloids.  相似文献   

3.
Hairy root: plasmid encodes virulence traits in Agrobacterium rhizogenes   总被引:26,自引:11,他引:15       下载免费PDF全文
Agrobacterium rhizogenes strain 15834, which incites hairy root disease in plants, harbors three large plasmids: pAr15834a (107 x 10(6) daltons), pAr15834b (154 x 10(6) daltons), and pAr15834c (258 x 10(6) daltons). Kanamycin-resistant transconjugants were selected in a cross of kanamycin-resistant derivate of strain 15834 and an avirulent recipient. The transconjugants belonging to one class were virulent and contained all three donor plasmids. These transconjugants also acquired sensitivity to the bacteriocin agrocin 84. The loss of plasmids from virulent transconjugants during growth at 37 degrees C indicated that virulence genes reside on pAr15834b, whereas agrocin 84 sensitivity genes reside on pAr15834a. The pathology induced by the virulent transconjugants containing only pAr15834b was identical to that produced by the wild-type strain of A. rhizogenes. Restriction endonuclease fragment analysis of plasmids from the transconjugants and the donor revealed that pAr15834c is a cointegrate of pAr15834a and pAr15834b. Kanamycin-resistant transconjugants belonging to a second class were avirulent and contained an altered form of pAr15834b. Strain 15834 can utilize octopine. However, this trait was not detected in any of the transconjugants. Octopine is not synthesized by infected plant tissue.  相似文献   

4.
Hairy root cultures of Atropa belladonna L. were established by infection either with Agrobacterium rhizogenes ATCC 15834 or MAFF 03-01724, and transgenic plants were obtained from both hairy root cultures. Doubly transformed roots were induced by re-infection of the leaf segments of transgenic Atropa belladonna plants (A. rhizogenes 15834) with MAFF 03-01724. Shoots and viviparous leaves were regenerated from the doubly transformed roots. The genetic transformation was determined by the opine assay (agropine, mannopine and/or mikimopine) and polymerase chain reaction. Physiological changes and tropane alkaloid biosynthesis in the hairy roots (singly and doubly transformed) were investigated. The alkaloid content in the doubly transformed root strain was intermediate as compared to the root strains which were singly transformed. On the other hand endogenous IAA levels in doubly transformed roots were significantly decreased compared to both singly transformed roots.Abbreviations BA benzyladenine - IAA indoleacetic acid - NAA naphthaleneacetic acid - PCR polymerase chain reaction - t-ZR trans-zeatin  相似文献   

5.
Shoots of Salvia officinalis, a medicinally important plant, were infected with Agrobacterium rhizogenes strains ATCC 15834 and A4 which led to the induction of hairy roots in 57% and 37% of the explants, respectively. Seven lines of hairy roots were established in WP liquid medium under light and dark conditions. The transformed nature of the root lines was confirmed by polymerase chain reaction using rolB and rolC specific primers. Transformed root cultures of Salvia officinalis showed variations in biomass and rosmarinic acid production depending on the bacterial strain used for transformation and the root line analyzed. Both parameters (growth and rosmarinic acid content) of ATCC 15834-induced lines were significantly higher than the A4-induced lines. The maximum accumulation of rosmarinic acid (about 45 mg g(-1) of dry weight) was achieved by hairy root line 1 (HR-1) at the end of the culture period (45-50 days). The level was significantly higher than that found in untransformed root culture (19 mg g(-10 of dry wt).  相似文献   

6.
Hairy root cultures of Brugmansia suaveolens were set up by infection of root tips with Agrobacterium rhizogenes. The successful transformation was confirmed by analysing rolC and virC genes using polymerase chain reaction (PCR). Hairy root cultures were employed to study the formation of tropane alkaloids, such as hyoscyamine. The transformed cultures were incubated with potential elicitors, such as methyljasmonate, quercetin and salicylic acid in order to stimulate the biosynthesis of tropane alkaloids. Profile and amounts of tropane alkaloids were analysed using capillary GLC-MS. At least 18 different tropane alkaloids could be identified. Treatment of the cultures with 200 microM methyljasmonate increased the alkaloid accumulation 25-fold up to a level of 1 mg/g fresh weight as compared to untreated controls. Quercetin enhanced the alkaloid production 10 fold (0.4 mg/g fresh weight) within 24 h. In contrast 100 microM salicylic acid decreased alkaloids to a level of 1 microg/g fresh weight.  相似文献   

7.
Agrobacterium tumefaciens and A. rhizogenes are the causative agents of the crown gall and hairy root diseases, respectively. The pathogenicity of both species is caused by an inter-kingdom transfer of DNA from the bacteria to wounded plant cells. This 'transfer-DNA' (T-DNA) contains oncogenes whose expression transforms the plant recipient cell into a rapidly dividing tumour cell. In the case of A. tumefaciens , three of these oncogenes have been shown to encode enzymes catalyzing the biosynthesis of the plant growth hormones auxin and cytokinin. Therefore, the unorganized cell division in the crown gall tumour can be largely explained by an unregulated overproduction of these plant growth regulators. In contrast, the hairy root disease is characterized by a massive growth of adventitious roots at the site of infection. Because of the similarities of the infection processes, and because A. rhizogenes and A. tumefaciens are very closely related, it has been suggested that the most important A. rhizogenes oncogenes, the so called rol genes, are also encoding proteins involved in the regulation of plant hormone metabolism. However, recent data indicate that this is not the case. Thus the rol genes have functions that most likely are different from producing mere alterations of plant hormone concentrations. This review summarizes recent results concerning the expression and function of the rol genes, and presents a model for the role of these genes, especially rolB and rolC , in the A. rhizogenes infection process.  相似文献   

8.
Cytokinin production by Agrobacterium and Pseudomonas spp.   总被引:7,自引:2,他引:5       下载免费PDF全文
The production of cytokinins by plant-associated bacteria was examined by radioimmunoassay. Strains producing trans-zeatin were identified in the genera Agrobacterium and Pseudomonas. Agrobacterium tumefaciens strains containing nopaline tumor-inducing plasmids, A. tumefaciens Lippia isolates, and Agrobacterium rhizogenes strains produced trans-zeatin in culture at 0.5 to 44 micrograms/liter. Pseudomonas solanacearum and Pseudomonas syringae pv. savastanoi produced trans-zeatin at levels of up to 1 mg/liter. In vitro cytokinin biosynthetic activity was measured for representative strains and was found to correlate with trans-zeatin production. The genetic locus for trans-zeatin secretion (tzs) was cloned from four strains: A. tumefaciens T37, A. rhizogenes A4, P. solanacearum K60, and P. syringae pv. savastanoi 1006. Southern blot analysis showed substantial homology of the Agrobacterium tzs genes to each other but not to the two Pseudomonas genes.  相似文献   

9.
Hairy root cultures of Physalis minima L. were developed using Agrobacterium rhizogenes, strain ATCC 15834 mediated transformation and grown in half strength of Murashige and Skoog medium containing 8% (w/v) sucrose. Media supplementation with 1 mg naphthalenacetic acid l(-1) and 1 mg benzyladenine increased solasodine glycoside up to 900 g dry wt, which was 20 times higher than that in the native root.  相似文献   

10.
Agrobacterium tumefaciens and Agrobacterium rhizogenes transfer plasmid-encoded genes and virulence (Vir) proteins into plant cells. The transferred DNA (T-DNA) is stably inherited and expressed in plant cells, causing crown gall or hairy root disease. DNA transfer from A. tumefaciens into plant cells resembles plasmid conjugation; single-stranded DNA (ssDNA) is exported from the bacteria via a type IV secretion system comprised of VirB1 through VirB11 and VirD4. Bacteria also secrete certain Vir proteins into plant cells via this pore. One of these, VirE2, is an ssDNA-binding protein crucial for efficient T-DNA transfer and integration. VirE2 binds incoming ssT-DNA and helps target it into the nucleus. Some strains of A. rhizogenes lack VirE2, but they still transfer T-DNA efficiently. We isolated a novel gene from A. rhizogenes that restored pathogenicity to virE2 mutant A. tumefaciens. The GALLS gene was essential for pathogenicity of A. rhizogenes. Unlike VirE2, GALLS contains a nucleoside triphosphate binding motif similar to one in TraA, a strand transferase conjugation protein. Despite their lack of similarity, GALLS substituted for VirE2.  相似文献   

11.
青蒿转杜松烯合成酶基因发根系的培养   总被引:10,自引:2,他引:8  
将已克隆的棉花杜松烯合成酶的cDNA(cadC14)插入到植物表达载体pBI121中,构建含CaMV35S启动子驱动下的杜松烯合成酶基因的植物表达载体pBIC14。用含pBIC14质粒的发根农杆菌(Agrobacteriumrhizogenes)15834感染青蒿(ArtemisiaannuaL.)叶片并诱导发根,共建立121个生长迅速的发根系。经浓度为20mg/L的Kan筛选,获得12个抗Kan阳性根系。PCR和Southernbloting分析表明,外源杜松烯合成酶基因已整合到青蒿基因组中,其转基因频率为3%。RTPCR分析表明,外源杜松烯合成酶基因在C37根系中,在转录水平上已有表达。  相似文献   

12.
Kanamycin resistance gene was introduced into tobacco and Atropa belladonna cells by binary vectors, based on Agrobacterium, by means of inoculation of seedlings. The plasmid pGA472, which carries chimaeric kanamycin resistance gene expressed in plants was introduced by transformation into A. tumefaciens Bo542, harbouring pTiBo542 plasmid and A. rhizogenes 8196, carrying pRi8196 plasmids and the resulting two strains were used as binary vectors. Tobacco tumors induced by A. tumefaciens Bo542(pGA472) grew as undifferentiated, kanamycin resistant tissues. Those induced by A. rhizogenes 8196(pGA472) differentiated into transformed plants. When cultivated in vitro on 200 μg ml-1 kanamycin medium, they showed yellow green sectoring, which was not selected out during vegetative propagation. Atropa belladonna tissues transformed by both A. tumefaciens Bo542(pGA472) and A. rhizogenes 8196(pGA472) differentiated plants which grew well on 200 μg ml-1 kanamycin as green, non-sectoring plants; sensitive cells obviously did not divide at all. Selection of Atropa belladonna transformed tissues on kanamycin medium is much more efficient than selection of transformed tobacco tissues with introduced kanamycin resistance gene.  相似文献   

13.
Susceptibility of Paulownia elongata S.Y. Hu (princess tree) to Agrobacterium tumefaciens and A. rhizogenes was demonstrated by inoculating in vitro shoots. Shoots had a gall formation frequency of ≥83% when inoculated with any of three A. tumefaciens strains (542, A281, or C58). Timing of gall appearance and type of callus proliferation differed among A. tumefaciens strains. Rapidly proliferating callus was produced from explants that were inoculated with A. tumefaciens. Hairy roots were produced directly from wound sites on 33% of shoots inoculated with A. rhizogenes strain R1601. Rapidly growing detached roots were produced from explants that were inoculated with A. rhizogenes. Opine analyses demonstrated the expression of foreign genes in proliferating galls/hairy roots shortly after emergence from wound sites and in callus and roots after 12 weeks of in vitro culture. Southern analyses demonstrated the presence of tDNA in long-term callus and root cultures. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
农杆菌转化的小冠花发状根的诱导及其植株再生   总被引:6,自引:0,他引:6  
利用野生型发根农杆菌15834菌株感染小冠花15日龄无菌苗子叶和下胚轴切段,建立了高效的发状根培养及其体细胞胚胎发生再生体系。发状根可直接从受伤的外植体表面产生,也能在外植体诱导的愈伤组织上发生,在无外源激素的MS固体和液体培养基上,转化根能自主生长,表现出典型的发根特征。用适宜浓度的乙酰丁香酮处理对数生长期的农杆菌菌液2h,感染预培养2d的子叶获得了最高的转化频率(87.4%)。在附加0.2mgL2,4_D,0.5mgLNAA和0.5mgLKT的MS培养基上,发状根能100%形成胚性愈伤组织,并于含0.5mgLKT,0.2mgLIBA和300mgL脯氨酸的MS培养基上顺序经过体细胞胚胎发育的各个典型时期,转换成完整植株。再生植株除具有发达的侧根外,其它形态特征与未转化植株未见明显的差异,但在获得的5个转化克隆中,其中1个的发状根及其再生植株叶片中有毒物质3_硝基丙酸的含量显著下降,分别为未转化对照的57.68%和58.17%。冠瘿碱纸电泳检测和rolB基因PCR扩增检测均证明农杆菌Ri质粒上的T_DNA已经整合到小冠花转化细胞的基因组中。  相似文献   

15.
16.
Shi HP  Kintzios S 《Plant cell reports》2003,21(11):1103-1107
An efficient transformation system for the medicinal plant Pueraria phaseoloides was established by using agropine-type Agrobacterium rhizogenes ATCC15834. Hairy roots could be obtained directly from the cut edges of petioles of leaf explants or via callus 10 days after inoculation with the bacteria. The highest frequency of explant transformation by A. rhizogenes ATCC15834 was about 70% after infection for 30 days. Hairy roots could grow rapidly on solid, growth regulator-free Murashige and Skoog medium and had characteristics of transformed roots such as fast growth and high lateral branching. Paper electrophoresis revealed that bacteria-free hairy roots of P. phaseoloides could synthesize agropine and mannopine. The polymerase chain reaction amplification of rooting locus genes showed that left-hand transferred DNA of the root inducing plasmid of A. rhizogenes was inserted into the genome of transformed P. phaseoloides hairy roots. The content of puerarin in hairy roots reached a level of 1.190 mg/g dry weight and was 1.067 times the content in the roots of untransformed plants.  相似文献   

17.
18.
We used the transposon Mu dI1681 to identify genes on the Agrobacterium tumefaciens chromosome that are inducible by extracts from carrot roots. One such locus (picA, for plant inducible chromosomal), harbored by A. tumefaciens At156, was inducible 10- to 50-fold by these extracts. Mutation of picA had no detectable effect upon bacterial growth or virulence under laboratory assay conditions. However, A. tumefaciens cells harboring a mutated picA locus aggregated into long "ropes" when incubated with pea root tip cells. Such aggregation was not displayed by the parental strain A. tumefaciens A136. A preliminary characterization of the inducing compound in the carrot root extract suggests that the active substance is an acidic polysaccharide that is most likely derived from the pectic portion of the plant cell wall.  相似文献   

19.
Ti (Tumor inducing) plasmids in Agrobacterium tumefaciens can transfer their T-DNA region into dicotyledonous plants, in which the expression of T-DNA genes causes plant tumors and the production of bacterial nutrients, e.g., opines such as nopaline. Naturally occurring Ti plasmids (pTi) are difficult to cure by conventional curing methods because of their high stability. Here, we developed a novel curing method based on plasmid incompatibility. For this, a curing plasmid, pMGTrep1, was newly constructed and subsequently introduced into A. tumefaciens strains harboring pTi by conjugation with Escherichia coli harboring pMGTrep1. The conjugation yielded 32-99% nopaline non-utilizing agrobacterial transconjugants in which pMGTrep1 replaced pTi due to incompatibility. Then, pMGTrep1-less derivatives of the transconjugants are easily selected in the presence of sucrose because pMGTrep1 contains a sucrose-sensitive sacB gene. This efficient method is directly applicable for curing plasmids with the same incompatibility group and shoud also applicable to other types of plasmids in Agrobacterium groups, including A. rhizogenes, by replacing the rep gene region of the curing plasmid with that of the corresponding incompatibility.  相似文献   

20.
Agrobacterium rhizogenes induces root formation and inserts a fragment of its plasmid into the genome of infected plants. A part of the transferred region (TL-region) of the Ri plasmid of A. rhizogenes strain A4 was cloned in pBR322. Insertions of the Escherichia coli lacZ coding region into the hybrid plasmids were made in vivo using mini-Mu-duction. Two mini-Mus were used, one with the Mu A and B transposase genes (MudII1681) and the other without (MudII1734). Two inserts which result in E. coli lacZ expression where shown to be located in the T-DNA region. This indicates that portions of the T-DNA are capable of expression in bacteria. When these two hybrid plasmids were transformed into Agrobacterium only the one harboring MudII1734 insert gave transformants which correspond to homologous recombination. These results indicate that gene fusion and insertion directed mutagenesis can be simultaneously obtained with this mini-Mu and could be used to study Agrobacterium gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号