首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
W Ito  H Ishiguro  Y Kurosawa 《Gene》1991,102(1):67-70
A simple and fast method for introducing a series of mutations in cloned DNA has been developed. The polymerase chain reaction (PCR) has been used for site-directed mutagenesis. Because mutations can be introduced only within the primer sequences used for PCR, a suitable restriction site in the vicinity of the mutated nucleotide is required to permit recloning. Several methods have been devised to overcome this limitation. Our present method is a modification of the overlap extension method [Ho et al., Gene 77 (1989) 51-57], and has some advantages over this and other published methods. In our method, three common primers and a series of primers specific for various mutations are chemically synthesized. Once the proper oligodeoxyribonucleotides are selected as common primers, each mutation requires only one additional primer. Therefore, this method is very useful for introducing many mutations in various sites of the target DNA. We describe our protocol for the site-directed mutagenesis and an example of the introduction of several mutations in the hen egg-white lysozyme-encoding gene.  相似文献   

2.
Site-directed mutagenesis (SDM) has been widely used for studying the structure and function of proteins. A one-step polymerase chain reaction (PCR)-based multiple site-directed plasmid mutagenesis method with extended non-overlapping sequence at the 3′ end of the primer increases the PCR amplification efficiency and the capacity of multi-site mutagenesis. Here, we introduced silent restriction sites in the primers used in this PCR-based SDM method by utilizing SDM-Assist software to generate mutants of Helicobacter pylori neutrophil-activating protein (HP-NAP), whose gene has low GC content. The HP-NAP mutants were efficiently generated by this modified mutagenesis method and quickly identified by a simple restriction digest due to the presence of the silent restriction site. This modified PCR-based SDM method with the introduction of a silent restriction site on the primer is efficient for generation and identification of mutations in the gene of interest.  相似文献   

3.
Several primer prediction and analysis programs have been developed for diverse applications. However, none of these existing programs can be directly used for the design of primers in protein interaction experiments, since proteins may have transmembrane domains (TMDs) and/or a signal peptide that must be excluded from experiments. Furthermore, it is frequently the case that a short restriction sequences must be added to each primer in order to clone PCR products into a given destination vectors for expression. DePIE, a web-based primer design tool, was developed to address these deficiencies. The program takes as input NCBI protein accession numbers and returns primer information including nucleotide sequences, thermodynamic melting temperature of the nucleotide sequences and the target positions. DePIE is implemented in JAVA, PERL and PHP and has proven to be very efficient in designing primers for our interaction experiments. DePIE services can be accessed at the web site: http://biocore.unl.edu/primer/primerPI.html.  相似文献   

4.
目的:介绍一种简便、有效的定点突变技术。方法:根据突变位点附近的DNA序列推导出氨基酸序列,再以此氨基酸序列进行逆翻译,这样在不改变氨基酸序列的前提下可以得到数目巨大的隐性突变体(silent mutants),这些突变体中包含大量的限制性内切酶位点,选择合适的酶切位点设计引物用PCR技术扩增两侧DNA片段,然后以相应酶切融合这两个片段即可完成定点突变。结果:用该方法成功地在人工合成的含有缺失的可溶性组织因子基因的472位插入C,T两个碱基,校正了阅读框架,获得了预期的目的基因。结论:该方法简便、有效, 避免了多轮PCR和合成长引物导致突变的可能性,这种改进的PCR 定点诱变技术我们称之为“设计限制酶辅助突变”(Designed Restriction Enzyme Assisted Mutagenesis, DREAM)。此技术简单方便, 诱变的成功率高, 适于实验室常规应用。  相似文献   

5.
PrimerCE: Designing Primers for Cloning and Gene Expression   总被引:2,自引:0,他引:2  
A number of primer design programs have been developed for diverse applications. However, none of these programs can be used to design primers for gene cloning aimed at expressing protein. Here we report the design of PrimerCE, which can be used to cover the whole process of gene cloning and expression. The main features of PrimerCE include inspection of restriction enzyme recognition sequence, open reading frame verification, stop codon inspection, base adjustment, primer optimization, sequence assembly and protein analysis. In addition to this, the program can be modified based on the different needs of users, e.g. new vector sequence and restriction enzyme recognition sequences can be integrated. With the use of PrimerCE, a pair of primers can be designed within minutes. The program has been proven to be efficient in designing primers in our high throughput cloning and gene expression experiments. The software is freely available at .  相似文献   

6.
Tang L  Gao H  Zhu X  Wang X  Zhou M  Jiang R 《BioTechniques》2012,52(3):149-158
Site-saturation mutagenesis is a powerful tool for protein optimization due to its efficiency and simplicity. A degenerate codon NNN or NNS (K) is often used to encode the 20 standard amino acids, but this will produce redundant codons and cause uneven distribution of amino acids in the constructed library. Here we present a novel "small-intelligent" strategy to construct mutagenesis libraries that have a minimal gene library size without inherent amino acid biases, stop codons, or rare codons of Escherichia coli by coupling well-designed combinatorial degenerate primers with suitable PCR-based mutagenesis methods. The designed primer mixture contains exactly one codon per amino acid and thus allows the construction of small-intelligent mutagenesis libraries with one gene per protein. In addition, the software tool DC-Analyzer was developed to assist in primer design according to the user-defined randomization scheme for library construction. This small-intelligent strategy was successfully applied to the randomization of halohydrin dehalogenases with one or two randomized sites. With the help of DC-Analyzer, the strategy was proven to be as simple as NNS randomization and could serve as a general tool to efficiently randomize target genes at positions of interest.  相似文献   

7.
Better understanding of proteins'' structure/function relationship and dissecting their functional domains are still challenges yet to be mastered. Site-directed mutagenesis approaches that can alter bases at precise positions on the gene sequence can help to reach this goal. This article describes an efficient strategy that can be applied not only for both deletion and substitution of target amino acids, but also for insertion of point mutations in promoter regions to study cis-regulating elements. This method takes advantage of the plasticity of the genetic code and the use of compatible restriction sites.Key words: site-directed mutagenesis, restriction site, cloning, PCRUnderstanding the proteins structure/function relationship and dissecting their functional domains is one of the biggest challenges to current proteomic studies.1 This is mainly achieved by site-directed mutagenesis experiments that can alter bases at precise positions on the gene sequence.2 Modifying DNA sequences has become feasible with PCR amplification.3 During the last decade, several strategies have been developed to simplify this approach and increase its efficiency.4 The introduction of a site-directed mutation can be realized by one or more PCR reactions. Most of the strategies used in site-directed mutagenesis are based on a substitution of a single base, which leads to a change in one amino acid. This article describes an efficient strategy that can be applied for either deletion or substitution of target amino acids. This strategy is based on performing PCR reactions to create a new restriction site in the sequence of origin, corresponding to the desired mutation. The choice of the restriction site to be created depends on the nature of the amino acid that one desires to introduce in the protein sequence. Since such restriction sites may extend beyond the mutated codon. The preservation of the other codon is done by taking advantage of the plasticity of the genetic code where one amino acid can be encoded by multiple codons.This method was performed in two steps (Fig. 1). In the first step, the DNA sequence of interest, cloned in a plasmid, served as a template for two PCR reactions. Two PCR products are generated. The first one consists of the beginning of the sequence, from the start codon to the mutagenized amino acid codon, where the forward primer bears the start codon region and the reverse primer bears the newly introduced restriction site at the same location of the mutagenized codon. The second PCR product consists of the end of the coding sequence, from the mutagenized amino acid codon to the stop codon. This fragment is generated using a forward primer bearing the same new restriction site as the first PCR product''s reverse primer, and a reverse primer bearing the stop codon region. The two PCR products were cloned separately into a vector in the appropriate orientation. In the second step, the cloning vector bearing the first PCR product was digested with a restriction enzyme site in the vector, and by the restriction enzyme corresponding to the restriction site created by the reverse primer used in the PCR reaction. The resulting fragment was cloned into the vector containing the second PCR fragment, predigested with same two restriction enzymes. The whole mutagenized coding sequence is reassembled by in-frame subcloning of the 3′ end of the coding sequence downstream the 5′ end. All the PCR products were generated using the high fidelity Pfu DNA Polymerase (Promega, Madison, WI USA). For any site-directed mutagenesis experiment, this two-step cloning procedure requires the use of appropriate PCR primers that harbor the desired mutation of the target amino acid. These primers are partially overlapping and contain a common or complementary restriction site enabling the in-frame assembly of the whole coding sequence.Open in a separate windowFigure 1Mutagenesis strategy by restriction enzyme site insertion. (A) In the first step, two PCR products were generated using the full length coding sequence as template. The mutation is carried by the two primers b and c, which are flanked by the same or compatible restriction enzyme''s site (white segment). Both PCR products are separately cloned in the cloning vector in the appropriate orientation. In the second step, the whole mutagenized coding sequence is reassembled by in-frame sub cloning of the 3′ end of the coding sequence downstream the 5′ end. (B) Substitution of threonine by arginine as a result of the insertion of a BglII restriction site. DNA sequencing is carried out to make sure that only the desired change is introduced in the coding sequence. (B-1) The sequence of the native cDNA. (B-2) the sequence of the mutagenized cDNA included BglII restriction site sequence.This approach has been used in a recent study to address the structure/function relationship of the STAS domain of the Arabidopsis thaliana Sultr1;2 sulfate transporter.5 A good example of this approach is the replacement of the threonine-serine couple at position 587–588 with an arginine-serine couple. The codon for threonine is: TGT, and that for arginine is: TCT. Serine can be encoded by both TCA and AGA codons. The chosen restriction site used for the reassembly of the whole coding sequence is that of the BglII enzyme: TCT AGA. The insertion of this restriction site enables the substitution of the Thr in position 587 with an Arg while preserving the serine residue in position 588. The BglII restriction site is introduced in the reverse primer and the forward primer used to generate the first and second PCR products respectively. The DNA sequence of the reassembled mutagenized cDNA was checked by sequencing. Than it was expressed, under pGAL1O promoter bearing by pYES2 vector, in yeast mutant deficient in sulfate transporter and the mutagenic protein was detected by imunodetection.Bioinformatic study reveals that this method can be applied to checked a large number of substitutions, insertions or deletions and that finding the right restriction site is not a limiting factor (data no shown).In conclusion, this article describes an efficient two-step procedure for site-directed mutagenesis using primers bearing a restriction site, which is absent from the sequence of origin. The primers flanked by sequences introducing the same or compatible restriction sites mediate the incorporation of the mutation at the selection site. The choice of the restriction site depends on the nature of the desired mutation: insertion, substitution or deletion of an amino acid in a particular position. This strategy can be also used to insert point mutations in promoter regions to study cis-regulating elements.  相似文献   

8.
A novel plasmid vector pSELECT-1 is described which can be used for highly efficient site-directed in vitro mutagenesis. The mutagenesis method is based on the use of single-stranded DNA and two primers, one mutagenic primer and a second correction primer which corrects a defect in the ampicillin resistance gene on the vector and reverts the vector to ampicillin resistance. Using T4 DNA polymerase and T4 DNA ligase the two primers are physically linked on the template. The non-mutant DNA strand is selected against by growth in the presence of ampicillin. In tests of the vector, highly efficient (60-90%) mutagenesis was obtained.  相似文献   

9.
E Uhlmann 《Gene》1988,71(1):29-40
A novel approach for the synthesis of double-stranded DNA fragments from only one long oligodeoxynucleotide (oligo) is presented. The basic strategy is to use oligos which possess a short inverted repeat at their 3' end resulting in the formation of a hairpin structure. The 3' end of this hairpin then serves as a primer in the Klenow (large) fragment of E. coli DNA polymerase I-mediated synthesis of the second DNA strand. Removal of the loop structure as well as generation of sticky ends for subsequent cloning is achieved by digestion with restriction enzymes. Several oligos ranging in size from 130 to 147 nt were synthesized and successfully used in the cloning of gene fragments of up to 120 bp in length. Furthermore, a strategy for the simultaneous cloning of two synthetic DNA fragments is outlined yielding even larger gene fragments. By sequential cloning of these gene fragments the methodology presented here will allow the synthesis of genes of any size. The proposed methodology should also be useful for site-directed mutagenesis as well as saturation mutagenesis.  相似文献   

10.
Li X  Qiu Y  Shen Y  Ding C  Liu P  Zhou J  Ma Z 《Analytical biochemistry》2008,373(2):398-400
A modified polymerase chain reaction (PCR)-based site-directed mutagenesis method used to splice together different regions of a gene by deleting hundreds of nucleotides of undesired sequences is described. This method was inspired by a PCR-based site-directed mutagenesis method developed by Stratagene (La Jolla, CA, USA); the procedure and primer design were modified to enable the method to generate deletions several hundreds of nucleotides in length with an efficiency of 80-100%, and to delete two DNA fragments simultaneously in a single PCR. This method should be useful for deletion of large DNA fragments from a gene.  相似文献   

11.
Restriction-free (RF) cloning provides a simple, universal method to precisely insert a DNA fragment into any desired location within a circular plasmid, independent of restriction sites, ligation, or alterations in either the vector or the gene of interest. The technique uses a PCR fragment encoding a gene of interest as a pair of primers in a linear amplification reaction around a circular plasmid. In contrast to QuickChange site-directed mutagenesis, which introduces single mutations or small insertions/deletions, RF cloning inserts complete genes without the introduction of unwanted extra residues. The absence of any alterations to the protein as well as the simplicity of both the primer design and the procedure itself makes it suitable for high-throughput expression and ideal for structural genomics.  相似文献   

12.
A polymerase chain reaction-based method of site-directed mutagenesis was used to introduce anNco I restriction site on the translation start site of a tomato peroxidase gene. This quick and efficient method utilized two overlapping synthetic oligonucleotide primers containing the requisite base pair changes on the ATG translation start site and two flanking primers in PCR. The resulting DNA amplified fragments were fused together byNco I digestion at the mutated ends followed by a T4 ligation reaction. A rapid alternative method utilizing the overlapping fragments and the flanking primers in PCR can also be used for ligating the two fragments. Cloning and sequencing of the PCR-amplified fragments provided additional evidence for the presence of the site-specific mutations. Unique restriction sites upstream and downstream of the site-specific mutation allows for the easy transfer of this mutated region into the wild type peroxidase gene.  相似文献   

13.
We developed an efficient system of site-directed mutagenesis for the envelope (env) gene of human immunodeficiency virus type 1 (HIV-1). To make a template plasmid for mutagenesis, pS+B/MluI, two independent selection markers, i.e. a unique restriction site, MluI, and an in-frame termination codon, were introduced into the region encoding the V3 domain of the env gene of an HIV-1 strain, NL4-3, which had been cloned in the pUC118 plasmid. When the env gene of the pS+B/MluI plasmid was mutated successfully using mutagenic primers such as synthetic oligonucleotides or PCR-amplified DNA fragments longer than 1.5 kbp, the plasmids became resistant to digestion with MluI and competent env genes were formed by suppression of the in-frame termination. Various site-directed mutants of the env gene of HIV-1 were accurately constructed in a short time even in the absence of proper restriction sites by this system. The system of site-directed mutagenesis we reported here will be a useful method to analyze the functions of variable genes like the env gene of HIV-1 precisely and rapidly.  相似文献   

14.
We describe a rapid and efficient megaprimer PCR procedure for site-directed mutagenesis that does not require any intermediate purification of DNA between the two rounds of PCR. This protocol is based on the design of forward and reverse flanking primers with significantly different melting temperatures ( T m). A megaprimer is synthesized in the first PCR reaction using a mutagenic primer, the low T m flanking primer and a low annealing temperature. The second PCR reaction is performed in the same tube as the first PCR and utilizes the high T m flanking primer, the megaprimer product of the first PCR and a high annealing temperature, which prevents priming by the low T m primer from the first PCR reaction. We have used this protocol with two different plasmids to produce cDNAs encoding seven distinct mutated proteins. We have observed an average mutagenesis efficiency of 82% in these experiments.  相似文献   

15.
Site-directed mutagenesis is a powerful tool to explore the structure-function relationship of proteins, but most traditional methods rely on the mutation of only one site at a time and efficiencies drop drastically when more than three sites are targeted simultaneously. Many applications in functional proteomics and genetic engineering, including codon optimization for heterologous expression, generation of cysteine-less proteins, and alanine-scanning mutagenesis, would greatly benefit from a multiple-site mutagenesis method with high efficiency. Here we describe the development of a simple and rapid method for site-directed mutagenesis of more than 10 sites simultaneously with up to 100% efficiency. The method uses two terminal tailed primers with a unique 25-nucleotide tail each that are simultaneously annealed to template DNA together with the set of mutagenic primers in between. Following synthesis of the mutant strand by primer extension and ligation with T4 DNA polymerase and ligase, the unique mutant strand-specific tails of the terminal primers are used as anchors to specifically amplify the mutant strand by high-fidelity polymerase chain reaction. We have employed this novel method to mutate simultaneously all 9 and 11 CUG leucine codons of the Hyg and Neo resistance genes, respectively, to the Candida albicans-friendly UUG leucine codon at 100% efficiency.  相似文献   

16.
In this study, we report a novel megaprimed and ligase-free, PCR-based, site-directed mutagenesis method modified from the QuikChange site-directed mutagenesis (QCM). One mutagenic oligonucleotide and one universal flanking primer were used to produce the complementary megaprimers that were then used to amplify the whole plasmid template. This method yields a mutagenesis efficiency ( approximately 90%) similar to that of QCM but uses only one mutagenic oligonucleotide instead of two of them, and the length of the oligonucleotide could be shorter. This method can be further extended to double mutations that are located at distant sites by using two mutagenic oligonucleotides and even to site saturation mutagenesis by introducing randomized codons.  相似文献   

17.
Overlap extension represents a new approach to genetic engineering. Complementary oligodeoxyribonucleotide (oligo) primers and the polymerase chain reaction are used to generate two DNA fragments having overlapping ends. These fragments are combined in a subsequent 'fusion' reaction in which the overlapping ends anneal, allowing the 3' overlap of each strand to serve as a primer for the 3' extension of the complementary strand. The resulting fusion product is amplified further by PCR. Specific alterations in the nucleotide (nt) sequence can be introduced by incorporating nucleotide changes into the overlapping oligo primers. Using this technique of site-directed mutagenesis, three variants of a mouse major histocompatibility complex class-I gene have been generated, cloned and analyzed. Screening of mutant clones revealed at least a 98% efficiency of mutagenesis. All clones sequenced contained the desired mutations, and a low frequency of random substitution estimated to occur at approx. 1 in 4000 nt was detected. This method represents a significant improvement over standard methods of site-directed mutagenesis because it is much faster, simpler and approaches 100% efficiency in the generation of mutant product.  相似文献   

18.
We have utilized infidelity of DNA synthesis as a basis for site-directed mutagenesis. Both an endonuclease restriction fragment and a synthetic oligonucleotide were used as primers. DNA polymerase from bacteriophage T4 was used to elongate primer termini to a position immediately adjacent to two different preselected positions on phiX174 DNA templates. Then, the error-prone DNA polymerase from avian myeloblastosis virus was used to insert single non-complementary nucleotides at the designated positions at high efficiency. DNA sequence analysis confirmed that the mutant phage produced as a result of each site-specific mutagenesis reaction contained the nucleotide that was complementary to the one provided during the DNA copying reaction. The general applicability of this methodology to cloned DNAs will be discussed.  相似文献   

19.
用DREAM技术进行全长质粒快速定点突变   总被引:2,自引:1,他引:1  
利用“设计限制酶辅助突变”(Designed Restriction Enzyme Assisted Mutagenesis, DREAM)进行全长质粒快速定点突变。根据突变位点附近氨基酸靶序列, 以简并密码子进行逆向推导, 这样在不改变氨基酸序列的前提下可以得到数目巨大的隐性突变体(Silent mutants), 这些突变体中包含大量的限制性酶切位点, 选择合适的酶切位点设计引物, 用Phusion超保真DNA聚合酶扩增全长质粒的DNA序列, 得到的PCR产物用T4多聚核苷酸激酶添加5¢磷酸基团后进行平末端连接, 转化大肠杆菌受体菌后用设计的酶切位点进行快速筛选。本研究用该方法成功地纠正了长约8 kb的质粒pcDNA3.1-pIgR中的突变碱基, 从而获得了多聚免疫球蛋白受体(pIgR)的野生型氨基酸序列。以上结果表明: 利用DREAM技术将限制性酶切位点引入目的基因而不改变目的蛋白质的氨基酸序列, 使突变体的筛选简单化; 配合使用高保真和高效率的Phusion DNA聚合酶可以进行长达8 kb的全长质粒的快速突变; 该方法无需使用定点突变试剂盒和特殊的受体菌, 同时避免了核酸杂交以及同位素的使用。  相似文献   

20.
Three-step PCR mutagenesis for 'linker scanning'.   总被引:2,自引:0,他引:2       下载免费PDF全文
'Linker scanning' has been used as an efficient method for systematically surveying a segment of DNA for functional elements by mutagenesis. A three-step PCR method was developed to simplify this process. In this method, a set of 'mutation primers' was made with 6 to 8 base substitutions in the center of the primers. In the first PCR reaction, these 'mutation primers' are paired with an 3' primer from the opposite end of the analyzed sequences to form a 'ladder' of fragments containing the base pair substitutions. These are used as templates in the second PCR with the 3' primer as the only primer to generate single stranded sequences, which are used as primers in the third PCR paired with an 5' primer to complete the mutagenesis. We have tested the method in a mutation screen of the steroid sulfatase promoter. Its application to general site specific mutagenesis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号