首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uniquely among class A beta-lactamases, the RTEM-1 and RTEM-2 enzymes contain a single disulfide bond between Cys 77 and Cys 123. To study the possible role of this naturally occurring disulfide in stabilizing RTEM-1 beta-lactamase and its mutants at residue 71, this bond was removed by introducing a Cys 77----Ser mutation. Both the wild-type enzyme and the single mutant Cys 77----Ser confer the same high levels of resistance to ampicillin in vivo to Escherichia coli; at 30 degrees C the specific activity of purified Cys 77----Ser mutant is also the same as that of the wild-type enzyme. Also, neither wild-type enzyme nor the Cys 77----Ser mutant is inactivated by brief exposure to p-hydroxymercuribenzoate. However, above 40 degrees C the mutant enzyme is less stable than wild-type enzyme. After introduction of the Cys 77----Ser mutation, none of the double mutants (containing the second mutations at residue 71) confer resistance to ampicillin in vivo at 37 degrees C; proteins with Ala, Val, Leu, Ile, Met, Pro, His, Cys, and Ser at residue 71 confer low levels of resistance to ampicillin in vivo at 30 degrees C. The use of electrophoretic blots stained with antibodies against beta-lactamase to analyze the relative quantities of mutant proteins in whole-cell extracts of E. coli suggests that all 19 of the doubly mutant enzymes are proteolyzed much more readily than their singly mutant analogues (at Thr 71) that contain a disulfide bond.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Sites for Cys substitutions to form a disulfide bond were chosen in subtilisin E from Bacillus subtilis, a cysteine-free bacterial serine protease, based on the structure of aqualysin I of Thermus aquaticus YT-1 (a thermophilic subtilisin-type protease containing two disulfide bonds). Cys residues were introduced at positions 61 (wild-type, Gly) and 98 (Ser) in subtilisin E by site-directed mutagenesis. The Cys-61/Cys-98 mutant subtilisin appeared to form a disulfide bond spontaneously in the expression system used and showed a catalytic efficiency equivalent to that of the wild-type enzyme for hydrolysis of a synthetic peptide substrate. The thermodynamic characteristics of these enzymes were examined in terms of enzyme autolysis (t1/2) and thermal stability (Tm). The half-life of the Cys-61/Cys-98 mutant was found to be 2-3 times longer than that of the wild-type enzyme. Similar results were obtained by differential scanning calorimetry. The disulfide mutant showed a Tm of 63.0 degrees C, which was 4.5 degrees C higher than that observed for the wild-type enzyme. Under reducing conditions, however, the characteristics of the mutant enzyme were found to revert to those of the wild-type enzyme. These results strongly suggest that the introduction of a disulfide bond by site-directed mutagenesis enhanced the thermostability of subtilisin E without changing the catalytic efficiency of the enzyme.  相似文献   

3.
To examine whether the disulfide bridge between residues 65 and 81 can be replaced by a non-native disulfide bridge in the mutant h-lysozyme C77/95A and whether the formation of such a new disulfide bridge affects the folding of the protein, cysteine scanning mutagenesis has been performed within two discontinuous segments (residues 61-67 for the mutant C65/77/95A, and 74-84 for the mutant C77/81/95A). The position of the Cys residue at 65 or 81 was continuously shifted by site-directed mutagenesis. Of the mutants, only substitution of Cys for Trp64 allowed the secretion of mutant h-lysozyme(W64C) into the medium in a sufficient amount for analysis. After the purification, the mutant enzyme was obtained as two components (W64C-A and W64C-B). The only difference between A and B was that A had a peptide bond cleaved between Ala77 and His78. A non-native disulfide bridge between residues 64-81 was found in both components. Little difference was observed in CD spectra among wild-type and mutant enzymes. It is likely that the tertiary structure of the W64C mutant might be distorted at the location, because the directions of amino acid side chains at positions of 64 and 81 are shown to be opposite to each other in wild-type h-lysozyme by X-ray crystallographic analysis.  相似文献   

4.
To examine the effect of the introduction of a disulfide bond on the stability of Escherichia coli ribonuclease H, a disulfide bond was engineered between Cys13, which is present in the wild-type enzyme, and Cys44, which is substituted for Asn44 by site-directed mutagenesis. The disulfide bond was only formed between these residues upon oxidation in vitro with redox buffer. The conformational and thermal stabilities were estimated from the guanidine hydrochloride and thermal denaturation curves, respectively. The oxidized (cross-linked) mutant enzyme showed a Tm of 62.3 degrees C, which was 11.8 degrees C higher than that observed for the wild-type enzyme. The free energy change of unfolding in the absence of denaturant, delta G[H2O], and the mid-point of the denaturation curve, [D]1/2, of the oxidized mutant enzyme were also increased by 2.1-2.8 kcal/mol and 0.36-0.48 M, respectively. Introduction of a disulfide bond thus greatly enhanced both the thermal and conformational stabilities of the enzyme. In addition, kinetic analyses for the enzymatic activities of mutant enzymes suggest that Thr43 and Asn44 are involved in the substrate-binding site of the enzyme.  相似文献   

5.
Isocitrate dehydrogenase kinase/phosphatase (IDHK/P) is a homodimeric enzyme which controls the oxidative metabolism of Escherichia coli, and exibits a high intrinsic ATPase activity. When subjected to electrophoresis under nonreducing conditions, the purified enzyme migrates partially as a dimer. The proportion of the dimer over the monomer is greatly increased by treatment with cupric 1,10 phenanthrolinate or 5,5'-dithio-bis(2-nitrobenzoic acid), and fully reversed by dithiothreitol, indicating that covalent dimerization is produced by a disulfide bond. To identify the residue(s) involved in this intermolecular disulfide-bond, each of the eight cysteines of the enzyme was individually mutated into a serine. It was found that, under nonreducing conditions, the electrophoretic patterns of all corresponding mutants are identical to that of the wild-type, except for the Cys67-->Ser which migrates exclusively as a monomer and for the Cys108-->Ser which migrates preferentially as a dimer. Furthermore, in contrast to the wild-type enzyme and all the other mutants, the Cys67-->Ser mutant still migrates as a monomer after treatment with cupric 1,10 phenanthrolinate. This result indicates that the intermolecular disulfide bond involves only Cys67 in each IDHK/P wild-type monomer. This was further supported by mass spectrum analysis of the tryptic peptides derived from either the cupric 1,10 phenanthrolinate-treated wild-type enzyme or the native Cys108-->Ser mutant, which show that they both contain a Cys67-Cys67 disulfide bond. Moreover, both the cupric 1,10 phenanthrolinate-treated wild-type enzyme and the native Cys108-->Ser mutant contain another disulfide bond between Cys356 and Cys480. Previous results have shown that this additional Cys356-Cys480 disulfide bond is intramolecular [Oudot, C., Jault, J.-M., Jaquinod, M., Negre, D., Prost, J.-F., Cozzone, A.J. & Cortay, J.-C. (1998) Eur. J. Biochem. 258, 579-585].  相似文献   

6.
In vivo formation and stability of engineered disulfide bonds in subtilisin   总被引:9,自引:0,他引:9  
Computer modeling suggested that a disulfide bond could be built into Bacillus amyloliquefaciens subtilisin between positions 22 (wild-type, Thr) and 87 (Ser) or between positions 24 (Ser) and 87 (Ser). Single cysteines were introduced into this cysteine-free protease at positions 22, 24, or 87 by site-directed mutagenesis of the cloned subtilisin gene. The corresponding double-cysteine mutants were constructed, and recombinant plasmids were expressed in Bacillus subtilis. Double-cysteine mutant enzymes were secreted as efficiently as wild-type, and disulfide bonds were formed quantitatively in vivo. These disulfide bonds were introduced approximately 24 A away from the catalytic site and had no detectable effect on either the specific activities or the pH optima of the mutant enzymes. The equilibrium constants for the reduction of the mutant disulfide bonds by dithiothreitol were determined to be 82 +/- 22 and 20 +/- 5 for Cys22/Cys87 and Cys24/Cys87, respectively. Studies of autoproteolytic inactivation of wild-type subtilisin support a relationship between autolytic stability and conformational stability of the protein. The stabilities of Cys24/Cys87 and wild-type enzymes to autolysis were essentially the same; however, Cys22/Cys87 was actually less stable to autolysis. Reduction of the disulfide cross-bridge lowered the autolytic stability of both double-cysteine mutants relative to their disulfide forms. This correlates with a lowered autolytic stability for the Cys22 and Cys87 single-cysteine mutants, and the fact that an intramolecular hydrogen bond between the hydroxyl groups of Thr22 and Ser87 is likely to be disrupted in the Cys22 and Cys87 single-cysteine mutant proteins.  相似文献   

7.
Resistance to wide spectrum of antibiotics was studied and most widespread genetic determinants of resistance to beta-lactam antibiotics were revealed. Susceptibility testing was performed using serial broth microdilution method. Detection of class A expanded spectrum beta-lactamases genes (TEM, SHV, CTX) by polymerase-chain reaction method was performed in 90 strains. Carbapenems remained the most active antibacterial agents with respect to studied E. coli strains. Among the 3rd generation cephalosporins the lowest minimal inhibitory concentrations were observed for inhibition-protected combined agents (ceftazidime/clavulanic acid and cefoperazone/ sulbactam). Alone or in various combinations TEM, SHV, and CTX types of beta-lactamases were found in 58.9%, 14.4%, and 77.8% of strains. Combinations of 2 determinants were detected in 55.6% of the isolates, and all 3 determinants--in 5.6%. Most often E. coli was isolated in patients with urinary tract infections. Carbapenems and inhibition-protected combined 3rd generation cephalosporins are the most active agents against E. coli.  相似文献   

8.
Third-generation cephalosporin resistance is often mediated by TEM- and SHV-type beta-lactamases in Enterobacteriaceae. TEM-type and OXA-1 enzymes are the major plasmid-borne beta-lactamases implicated in amoxicillin-clavulanic acid resistance in Escherichia coli isolates. We have developed a rapid and simple multiplex polymerase chain reaction (PCR) which discriminates bla(TEM), bla(SHV) and bla(OXA-1) genes by generating fragments of 516, 392 and 619 bp respectively. Multiplex PCR analysis of 51 amoxicillin-clavulanate resistant E. coli isolates detected bla(TEM) and bla(SHV) genes in 45 and two strains, respectively, and only one strain harboured a bla(OXA-1) gene. Twenty-three of the 40 cefotaxime-resistant Enterobacteriaceae isolates produced amplicons with a size compatible with the presence of bla(TEM) (13 strains), bla(SHV) (six strains) genes or the association of both genes (four strains). These results were verified by colony hybridisation. Therefore, multiplex PCR is a suitable tool for initial rapid screening of bla genes in Enterobacteriaceae.  相似文献   

9.
From the comparison of the three-dimensional structure of mesophilic pyroglutamyl peptidase from Bacillus amyloliquefaciens and the thermophilic enzyme from Thermococcus litoralis, the intersubunit disulfide bond was estimated to be one of the factors for thermal stability. Since Ser185 was corresponded to Cys190 of the thermophilic enzyme by sequence alignment, the Ser185 residue was replaced with cysteine by site-directed mutagenesis. The S185C mutant enzyme appeared to form a disulfide bond, which was confirmed by SDS-PAGE with and without 2-mercaptoethanol. The mutant enzyme showed a catalytic efficiency equivalent to that of the wild-type enzyme for hydrolysis of a synthetic peptide substrate. However, the thermal stability of the S185C mutant was found to be 30 degrees C higher than that of wild-type. Thus the introduction of a disulfide bond enhanced thermal stability without changing the catalytic efficiency of the enzyme.  相似文献   

10.
Spinach fructose 1,6-bisphosphatase (FBPase, EC 3.1.3.11), a redox-modulated chloroplast enzyme and part of the Calvin cycle, and three different Cys mutants were expressed in E. coli. The properties of the purified proteins were compared to those of native and recombinant chloroplast FBPase from the red alga Galdieria sulphuraria. In spinach chloroplast FBPase, Cys(155) and Cys(174) are engaged in the formation of the disulfide bridge. The corresponding mutants are active when expressed in E. coli, while C179S is inactive and can be reductively activated as can the wild-type enzyme. The active C174S mutant, however, could be inactivated by oxidation, and reactivated, but only by reduction, not alternatively with high pH and high Mg(2+) as is the case for the wild-type enzyme. In the sequence of Galdieria FBPase, the Cys that corresponds to Cys(179) in the spinach enzyme is lacking. However, the Galdieria FBPase, in contrast to the spinach Cys(179) mutant, does not show any indication for a comparable redox modulation of its activity. Instead, oxidation only leads to partial inactivation without any qualitative changes in enzyme properties. Upon reduction, the lost activity can be recovered.  相似文献   

11.
Most of the ADP-glucose pyrophosphorylases from different sources are stable to a heat treatment. We found that in the potato (Solanum tuberosum L.) tuber enzyme, the intermolecular disulfide bridge located between Cys12 of the small subunits is responsible for the stability at 60 degrees C. When this unique disulfide bond is cleaved the enzyme is stable up to 40 degrees C. Mutation of Cys12 in the small subunit into either Ala or Ser yielded enzymes with stability similar to the reduced form of the wild type. Concurrently, the enzyme with a truncated small subunit on the N-terminal was stable only up to 40 degrees C. Thus, the N-terminal is important for the stability of the enzyme because of the presence of a disulfide bond.  相似文献   

12.
Majiduddin FK  Palzkill T 《Genetics》2003,163(2):457-466
The TEM-1 and SHV-1 beta-lactamases are important contributors to resistance to beta-lactam antibiotics in gram-negative bacteria. These enzymes share 68% amino acid sequence identity and their atomic structures are nearly superimposable. Extended-spectrum cephalosporins were introduced to avoid the action of these beta-lactamases. The widespread use of antibiotics has led to the evolution of variant TEM and SHV enzymes that can hydrolyze extended-spectrum antibiotics. Despite being highly similar in structure, the TEM and SHV enzymes have evolved differently in response to the selective pressure of antibiotic therapy. Examples of this are at residues Arg164 and Asp179. Among TEM variants, substitutions are found only at position 164, while among SHV variants, substitutions are found only at position 179. To explain this observation, the effects of substitutions at position 164 in both TEM-1 and SHV-1 on antibiotic resistance and on enzyme catalytic efficiency were examined. Competition experiments were performed between mutants to understand why certain substitutions preferentially evolve in response to the selective pressure of antibiotic therapy. The data presented here indicate that substitutions at position Asp179 in SHV-1 and Arg164 in TEM-1 are more beneficial to bacteria because they provide increased fitness relative to either wild type or other mutants.  相似文献   

13.
呼吸道产超广谱β-内酰胺酶分离株耐药基因初步分型   总被引:1,自引:0,他引:1  
目的了解产超广谱β-内酰胺酶 (ESBLs)呼吸道分离株的主要基因型分布特点.方法用表型确证试验确定临床呼吸道标本中产ESBLs的大肠埃希菌和肺炎克雷伯菌.应用聚合酶链反应(PCR)方法扩增产ESBLs株的bla(TEM)、bla(SHV)和bla(CTX-M)基因.结果 PCR结果显示bla(TEM)、bla(SHV)和bla(CTX-M)基因的总阳性率分别为40 .7%、45.7%和75.3%,其中大肠埃希菌分别为:64.9%、2.7%和91.9%,肺炎克雷伯菌分别为:20.5%、81.8%和61.4%.67.6%的大肠埃希菌和95.5%的肺炎克雷伯菌同时携带多个基因.结论深圳市人民医院呼吸道分离的产ESBLs大肠埃希菌的主要基因型为CTX-M,肺炎克雷伯菌主要基因型为SHV.大多数菌株同时携带多个基因.  相似文献   

14.
We examined the effect of a novel disulfide bond engineered in subtilisin E from Bacillus subtilis based on the structure of a thermophilic subtilisin-type serine protease aqualysin I. Four sites (Ser163/Ser194, Lys170/Ser194, Lys170/Glu195, and Pro172/Glu195) in subtilisin E were chosen as candidates for Cys substitutions by site-directed mutagenesis. The Cys170/Cys195 mutant subtilisin formed a disulfide bond in B. subtilis, and showed a 5-10-fold increase in specific activity for an authentic peptide substrate for subtilisin, N-succinyl-L-Ala-L-Ala-L-Pro-L-Phe-p-nitroanilide, compared with the single-Cys mutants. However, the disulfide mutant had a 50% decrease in catalytic efficiency due to a smaller k(cat) and was thermolabile relative to the wild-type enzyme, whereas it was greatly stabilized relative to its reduced form. These results suggest that an electrostatic interaction between Lys170 and Glu195 is important for catalysis and stability in subtilisin E. Interestingly, the disulfide mutant was found to be more stable in polar organic solvents, such as dimethylformamide and ethanol, than the wild-type enzyme, even under reducing conditions; this is probably due to the substitution of uncharged Cys by charged surface residues (Lys170 and Glu195). Further, the amino-terminal engineered disulfide bond (Gly61Cys/Ser98Cys) and the mutation Ile31Leu were introduced to enhance the stability and catalytic activity. A prominent 3-4-fold increase in the catalytic efficiency occurred in the quintet mutant enzyme over the range of dimethylformamide concentration (up to 40%).  相似文献   

15.
Inhibitor-resistant class A beta-lactamases are an emerging threat to the use of beta-lactam/beta-lactamase inhibitor combinations (e.g. amoxicillin/clavulanate) in the treatment of serious bacterial infections. In the TEM family of Class A beta-lactamases, single amino acid substitutions at Arg-244 confer resistance to clavulanate inactivation. To understand the amino acid sequence requirements in class A beta-lactamases that confer resistance to clavulanate, we performed site-saturation mutagenesis of Arg-244 in SHV-1, a related class A beta-lactamase found in Klebsiella pneumoniae. Twelve SHV enzymes with amino acid substitutions at Arg-244 resulted in significant increases in minimal inhibitory concentrations to ampicillin/clavulanate when expressed in Escherichia coli. Kinetic analyses of SHV-1, R244S, R244Q, R244L, and R244E beta-lactamases revealed that the main determinant of clavulanate resistance was reduced inhibitor affinity. In contrast to studies in the highly similar TEM enzyme, we observed increases in clavulanate k(inact) for all mutants. Electrospray ionization mass spectrometry of clavulanate inhibited SHV-1 and R244S showed nearly identical mass adducts, arguing against a difference in the inactivation mechanism. Testing a wide range of substrates with C3-4 carboxylates in different stereochemical orientations, we observed impaired affinity for all substrates among inhibitor resistant variants. Lastly, we synthesized two boronic acid transition state analogs that mimic cephalothin and found substitutions at Arg-244 markedly affect both the affinity and kinetics of binding to the chiral, deacylation transition state inhibitor. These data define a role for Arg-244 in substrate and inhibitor binding in the SHV beta-lactamase.  相似文献   

16.
The treatment of infectious diseases by beta-lactam antibiotics is continuously challenged by the emergence and dissemination of new beta-lactamases. In most cases, the cephalosporinase activity of class A enzymes results from a few mutations in the TEM and SHV penicillinases. The PER-1 beta-lactamase was characterized as a class A enzyme displaying a cephalosporinase activity. This activity was, however, insensitive to the mutations of residues known to be critical for providing extended substrate profiles to TEM and SHV. The x-ray structure of the protein, solved at 1.9-A resolution, reveals that two of the most conserved features in class A beta-lactamases are not present in this enzyme: the fold of the Omega-loop and the cis conformation of the peptide bond between residues 166 and 167. The new fold of the Omega-loop and the insertion of four residues at the edge of strand S3 generate a broad cavity that may easily accommodate the bulky substituents of cephalosporin substrates. The trans conformation of the 166-167 bond is related to the presence of an aspartic acid at position 136. Selection of class A enzymes based on the occurrence of both Asp(136) and Asn(179) identifies a subgroup of enzymes with high sequence homology.  相似文献   

17.
In order to understand the unusual heat resistance of LamB protein (the outer membrane component of the maltose transport system in Escherichia coli and its receptor for bacteriophage lambda), we investigated the role of its 2 cysteinyl residues. Our studies show that Cys22 and Cys38 form an intrasubunit disulfide bond which contributes to the heat stability of the LamB protein trimer. Physical evidence for the disulfide was obtained by using site-directed mutagenesis to convert Asn36 to Met, which allowed cyanogen bromide cleavage between the 2 cysteines. Upon reduction one of the N36M fragments migrated as two pieces, resolved by two-dimensional polyacrylamide gel electrophoresis. Other mutagenized LamB proteins, in which 1 or both Cys residues were converted to Ser, exhibited a sharp loss of thermal stability. In contrast to wild-type LamB protein trimer, which does not dissociate to monomers even after 60 min at 100 degrees C, only 10-15% of the mutant LamB proteins remain trimeric after boiling 10 min. The disulfide bond in LamB protein is not required for its transport function, since both mutagenized LamB protein and N-ethylmaleimide-labeled LamB protein exhibit normal uptake of sugars in proteoliposomes. Finally, the disulfide bond must not be between subunits of the LamB trimer since reversible dissociation of trimer is achieved by low pH or denaturants in the absence of reducing agent.  相似文献   

18.
The oxidative folding pathway of leech carboxypeptidase inhibitor (LCI; four disulfide bonds) proceeds through the formation of two major intermediates (III-A and III-B) that contain three native disulfide bonds and act as strong kinetic traps in the folding process. The III-B intermediate lacks the Cys19-Cys43 disulfide bond that links the beta-sheet core with the alpha-helix in wild-type LCI. Here, an analog of this intermediate was constructed by replacing Cys19 and Cys43 with alanine residues. Its oxidative folding follows a rapid sequential flow through one, two, and three disulfide species to reach the native form; the low accumulation of two disulfide intermediates and three disulfide (scrambled) isomers accounts for a highly efficient reaction. The three-dimensional structure of this analog, alone and in complex with carboxypeptidase A (CPA), was determined by X-ray crystallography at 2.2A resolution. Its overall structure is very similar to that of wild-type LCI, although the residues in the region adjacent to the mutation sites show an increased flexibility, which is strongly reduced upon binding to CPA. The structure of the complex also demonstrates that the analog and the wild-type LCI bind to the enzyme in the same manner, as expected by their inhibitory capabilities, which were similar for all enzymes tested. Equilibrium unfolding experiments showed that this mutant is destabilized by approximately 1.5 kcal mol(-1) (40%) relative to the wild-type protein. Together, the data indicate that the fourth disulfide bond provides LCI with both high stability and structural specificity.  相似文献   

19.
Human α-defensin 5 (HD5, HD5(ox) to specify the oxidized and disulfide linked form) is a 32-residue cysteine-rich host-defense peptide, expressed and released by small intestinal Paneth cells, that exhibits antibacterial activity against a number of Gram-negative and -positive bacterial strains. To ascertain the contributions of its disulfide array to structure, antimicrobial activity, and proteolytic stability, a series of HD5 double mutant peptides where pairs of cysteine residues corresponding to native disulfide linkages (Cys(3)-Cys(31), Cys(5)-Cys(20), Cys(10)-Cys(30)) were mutated to Ser or Ala residues, overexpressed in E. coli, purified, and characterized. A hexa mutant peptide, HD5[Ser(hexa)], where all six native Cys residues are replaced by Ser residues, was also evaluated. Removal of a single native S-S linkage influences oxidative folding and regioisomerization, antibacterial activity, Gram-negative bacterial membrane permeabilization, and proteolytic stability. Whereas the majority of the HD5 mutant peptides show low micromolar activity against Gram-negative E. coli ATCC 25922 in colony counting assays, the wild-type disulfide array is essential for low micromolar activity against Gram-positive S. aureus ATCC 25923. Removal of a single disulfide bond attenuates the activity observed for HD5(ox) against this Gram-positive bacterial strain. This observation supports the notion that the HD5(ox) mechanism of antibacterial action differs for Gram-negative and Gram-positive species [Wei et al. (2009) J. Biol. Chem. 284, 29180-29192] and that the native disulfide array is a requirement for its activity against S. aureus.  相似文献   

20.
PsbO protein is an important constituent of the water-oxidizing complex, located on the lumenal side of photosystem II. We report here the efficient expression of the spinach PsbO in E. coli where the solubility depends entirely on the formation of the disulfide bond. The PsbO protein purified from a pET32 system that includes thioredoxin fusion is properly folded and functionally active. Urea unfolding experiments imply that the reduction of the single disulfide bridge decreases stability of the protein. Analysis of inter-residue contact density through the PsbO molecule shows that Cys51 is located in a cluster with high contact density. Reduction of the Cys28-Cys51 bond is proposed to perturb the packing interactions in this cluster and destabilize the protein as a whole. Taken together, our results give evidence that PsbO exists in solution as a compact highly ordered structure, provided that the disulfide bridge is not reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号