首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
During pregnancy in mice, uterine natural killer (uNK) cells abundantly accumulate on the mesometrial side of the placenta. In this study, we show that the presence of both mature and immature uNK cells requires IL-15. Bone marrow transplantation of NK cell-negative mice due to null mutations in the recombination-activating gene (Rag) 2/common cytokine receptor gamma-chain (Rag2(-/-)gamma(c)(-/-)) genes indicated that uNK cells originate from the bone marrow and require IL-15 to develop. NK cells are thought to be central players in the immune response to intracellular pathogens such as Listeria monocytogenes, a bacterium that also has a predilection for replication in the placenta. However, IL-15(-/-), NK cell-deficient mice were relatively protected from this infection compared with wild-type mice, and during pregnancy the absence of NK cells did not compromise the immune response at this site. The loss of uNK cells results in decidual abnormalities, including thickening of the arterial walls with luminal narrowing and a hypocellular decidua basalis. These defects were rescued by bone marrow transplantation of the Rag2(-/-)gamma(c)(-/-) mice that restored the uNK cell population. The decidual abnormalities in the IL-15(-/-) mice however did not result in infertility as gestation times and litter sizes were comparable to those of wild-type mice. Fetal weights were mildly compromised, consistent with the arterial pathologies. These results show that uNK cells are not required for successful pregnancy and that NK cells are not essential for an adequate immune response to L. monocytogenes in either pregnant or nonpregnant mice.  相似文献   

2.
3.
Recently, a new approach to reprogram somatic cells into pluripotent stem cells was shown by fusion of somatic cells with embryonic stem (ES) cells, which results in a tetraploid karyotype. Normal hepatocytes are often polyploid, so we decided to investigate the differentiation potential of fusion hybrids into hepatic cells. We chose toxic milk mice (a model of Wilson's disease) and performed initial transplantation experiments using this potential cell therapy approach. Mononuclear bone marrow cells from Rosa26 mice were fused with OG2 (Oct4-GFP transgenic) ES cells. Unfused ES cells were eliminated by selection with G418 for OG2-Rosa26 hybrids and fusion-derived colonies could be subcloned. Using an endodermal differentiation protocol, hepatic precursor cells could be generated. After FACS depletion of contaminating Oct4-GFP-positive cells, the hepatic precursor cells were transplanted into immunosuppressed toxic milk mice by intrasplenic injection. However, five out of eight mice showed teratoma formation within 3-6 weeks after transplantation in the spleen and liver. In conclusion, a hepatic precursor cell type was achieved from mononuclear bone marrow cell-ES cell hybrids and preliminary transplantation experiments confirmed engraftment, but also showed teratoma formation, which needs to be excluded by using more stringent purification strategies.  相似文献   

4.
CD4+CD25+ regulatory T cells control innate immune reactivity after injury   总被引:10,自引:0,他引:10  
Major injury initiates a systemic inflammatory response that can be detrimental to the host. We have recently reported that burn injury primes innate immune cells for a progressive increase in TLR4 and TLR2 agonist-induced proinflammatory cytokine production and that this inflammatory phenotype is exaggerated in adaptive immune system-deficient (Rag1(-/-)) mice. The present study uses a series of adoptive transfer experiments to determine which adaptive immune cell type(s) has the capacity to control innate inflammatory responses after injury. We first compared the relative changes in TLR4- and TLR2-induced TNF-alpha, IL-1beta, and IL-6 production by spleen cell populations prepared from wild-type (WT), Rag1(-/-), CD4(-/-), or CD8(-/-) mice 7 days after sham or burn injury. Our findings indicated that splenocytes prepared from burn-injured CD8(-/-) mice displayed TLR-induced cytokine production levels similar to those in WT mice. In contrast, spleen cells from burn-injured CD4(-/-) mice produced cytokines at significantly higher levels, equivalent to those in Rag1(-/-) mice. Moreover, reconstitution of Rag1(-/-) or CD4(-/-) mice with WT CD4(+) T cells reduced postinjury cytokine production to WT levels. Additional separation of CD4(+) T cells into CD4(+)CD25(+) and CD4(+)CD25(-) subpopulations before their adoptive transfer into Rag1(-/-) mice showed that CD4(+)CD25(+) T cells were capable of reducing TLR-stimulated cytokine production levels to WT levels, whereas CD4(+)CD25(-) T cells had no regulatory effect. These findings suggest a previously unsuspected role for CD4(+)CD25(+) T regulatory cells in controlling host inflammatory responses after injury.  相似文献   

5.
Immunological diseases such as inflammatory bowel disease (IBD) are infrequent in less developed countries, possibly because helminths provide protection by modulating host immunity. In IBD murine models, the helminth Heligmosomoides polygyrus bakeri prevents colitis. It was determined whether H. polygyrus bakeri mediated IBD protection by altering dendritic cell (DC) function. We used a Rag IBD model where animals were reconstituted with IL10(-/-) T cells, making them susceptible to IBD and with OVA Ag-responsive OT2 T cells, allowing study of a gut antigenic response. Intestinal DC from H. polygyrus bakeri-infected Rag mice added to lamina propria mononuclear cells (LPMC) isolated from colitic animals blocked OVA IFN-γ/IL-17 responses in vitro through direct contact with the inflammatory LPMC. DC from uninfected Rag mice displayed no regulatory activity. Transfer of DC from H. polygyrus bakeri-infected mice into Rag mice reconstituted with IL10(-/-) T cells protected animals from IBD, and LPMC from these mice lost OVA responsiveness. After DC transfer, OT2 T cells populated the intestines normally. However, the OT2 T cells were rendered Ag nonresponsive through regulatory action of LPMC non-T cells. The process of regulation appeared to be regulatory T cell independent. Thus, H. polygyrus bakeri modulates intestinal DC function, rendering them tolerogenic. This appears to be an important mechanism through which H. polygyrus bakeri suppresses colitis. IFN-γ and IL-17 are colitogenic. The capacity of these DC to block a gut Ag-specific IFN-γ/IL-17 T cell response also is significant.  相似文献   

6.
Gene targeting in embryonic stem (ES) cells allows the production of mice with specified genetic mutations. Currently, germline-competent ES cell lines are available from only a limited number of mouse strains, and inappropriate ES cell/host blastocyst combinations often restrict the efficient production of gene-targeted mice. Here, we describe the derivation of C57BL/6J (B6) ES lines and compare the effectiveness of two host blastocyst donors, FVB/NJ (FVB) and the coisogenic strain C57BL/6-Tyr(c)-2J (c2J), for the production of germline chimeras. We found that when B6 ES cells were injected into c2J host blastocysts, a high rate of coat-color chimerism was detected, and germline transmission could be obtained with few blastocyst injections. In all but one case, highly chimeric mice transmitted to 100% of their offspring. The injection of B6 ES cells into FVB blastocysts produced some chimeric mice. However; the proportion of coat-color chimerism was low, with many more blastocyst injections required to generate chimeras capable of germline transmission. Our data support the use of the coisogenic albino host strain, c2J, for the generation of germline-competent chimeric mice when using B6 ES cells.  相似文献   

7.
Products of arachidonic acid metabolism are important for mucosal homeostasis, because blockade of this pathway with an NSAID triggers rapid onset of severe colitis in the IL-10 knockout (IL-10(-/-)) model of IBD. Rag mice do not make T or B cells. This study determined whether reconstitution of Rag mice with T cells from IL-10(-/-) mice transferred NSAID colitis susceptibility. Rag mice were reconstituted by intraperitoneal injection with splenocytes from wild-type (WT) or IL-10(-/-) animals. Colitis was induced by using piroxicam and was graded histologically. Isolated lamina propria mononuclear cells (LPMC), lamina propria T cells, and LPMC depleted of T cells from reconstituted Rag mice were studied for cytokine production. Only animals reconstituted with IL-10(-/-) CD4(+) T cells and administered piroxicam developed severe colitis. LPMC from these colitic animals made IFN-gamma, whose production was dependent on T cells. Some IL-10 was produced but only from non-T cells. LPMC from the healthy Rag mice that were reconstituted with WT T cells and were piroxicam resistant made much more IL-10. This was mostly T cell dependent. In conclusion, only CD4(+) T cells from IL-10(-/-) animals leave Rag mice susceptible to NSAID-induced, Th1 colitis. Lamina propria T cells normally make large quantities of IL-10, suggesting that IL-10 from T cells may be protective.  相似文献   

8.
It is well known that immune responses in the intestine remain in a state of controlled inflammation, suggesting that not only does active suppression by regulatory T (T(REG)) cells play an important role in the normal intestinal homeostasis, but also that its dysregulation of immune response leads to the development of inflammatory bowel disease. In this study, we demonstrate that murine CD4(+)CD25(+) T cells residing in the intestinal lamina propria (LP) constitutively express CTLA-4, glucocorticoid-induced TNFR, and Foxp3 and suppress proliferation of responder CD4(+) T cells in vitro. Furthermore, cotransfer of intestinal LP CD4(+)CD25(+) T cells prevents the development of chronic colitis induced by adoptive transfer of CD4(+)CD45RB(high) T cells into SCID mice. When lymphotoxin (LT)alpha-deficient intercrossed Rag2 double knockout mice (LTalpha(-/-) x Rag2(-/-)), which lack mesenteric lymph nodes and Peyer's patches, are transferred with CD4(+)CD45RB(high) T cells, they develop severe wasting disease and chronic colitis despite the delayed kinetics as compared with the control LTalpha(+/+) x Rag2(-/-) mice transferred with CD4(+)CD45RB(high) T cells. Of note, when a mixture of splenic CD4(+)CD25(+) T(REG) cells and CD4(+)CD45RB(high) T cells are transferred into LTalpha(-/-) x Rag2(-/-) recipients, CD4(+)CD25(+) T(REG) cells migrate into the colon and prevent the development of colitis in LTalpha(-/-) x Rag2(-/-) recipients as well as in the control LTalpha(+/+) x Rag2(-/-) recipients. These results suggest that the intestinal LP harboring CD4(+)CD25(+) T(REG) cells contributes to the intestinal immune suppression.  相似文献   

9.
Although embryonic stem (ES) cell-derived hepatocytes have the capacity for liver engraftment and repopulation, their in vivo hepatic function has not been analyzed yet. We aimed to determine the metabolic function and therapeutic action of ES cell-derived hepatocytes after serial liver repopulations in fumaryl acetoacetate hydrolase knockout (Fah(-/-)) mice. Albumin expressing (Alb(+)) cells were obtained by hepatic differentiation of ES cells using two frequently reported methods. After transplantation, variable levels of liver repopulation were found in Fah(-/-) mice recipients. FAH expressing (FAH(+)) hepatocytes were found either as single cells or as nodules with multiple hepatocytes. After serial transplantation, the proportion of the liver that was repopulated by the re-transplanted FAH(+) hepatocytes increased significantly. ES cell-derived FAH(+) hepatocytes were found in homogenous nodules and corrected the liver metabolic disorder of Fah(-/-) recipients and rescued them from death. ES cell-derived hepatocytes had normal karyotype, hepatocytic morphology and metabolic function both in vitro and in vivo. In conclusion, ES cell-derived hepatocytes were capable of liver repopulation and correction of metabolic defects after serial transplantation. Our results are an important piece of evidence to support future clinical applications of ES cell-derived hepatocytes in treating liver diseases.  相似文献   

10.
Establishment of a novel embryonic stem cell line by a modified procedure   总被引:1,自引:0,他引:1  
To generate mutant mice, embryonic stem (ES) cells are used as a vehicle for introducing mutations. The establishment of ES cells is diffucult because it requires specific skills and it is time-consuming. We established a novel ES cell line derived from hybrid mice between C57BL/6 and DBA/2 using a modified method. To collect a large number of preimplantational embryos, we collected embryos at the 8-cell stage and cultured them to blastocysts, whereas the usual procedure of preparing the delayed blastocysts demands technical skills. To eliminate unnecessary female cells at an initial stage of inner cell mass culture, male clones were selected by polymerase chain reaction to detect the mouseSry gene. The established ES cell line efficiently contributed to the germ-line when injected into 8-cell embryos of ICR mice. This potency was maintained after manipulation throughout gene targeting.Abbreviations DMEM Dulbecco's modified Eagle's medium - FBS fetal bovine serum - FIAU 1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-5-iodouracil - LIF leukemia inhibitory factor - NEAA non-essential amino acids  相似文献   

11.
Development of human hematopoietic stem cells and differentiation of embryonic stem (ES) cells/induced pluripotent stem (iPS) cells to hematopoietic stem cells are poorly understood. NOD (Non‐obese diabetic)‐derived mouse strains, such as NSG (NOD‐Scid‐il2Rg) or NRG (NOD‐Rag1‐il2Rg), are the best available models for studying the function of fetal and adult human hematopoietic cells as well as ES/iPS cell‐derived hematopoietic stem cells. Unfortunately, engraftment of human hematopoietic stem cells is very variable in these models. Introduction of additional permissive mutations into these complex genetic backgrounds of the NRG/NSG mice by natural breeding is a very demanding task in terms of time and resources. Specifically, since the genetic elements defining the NSG/NRG phenotypes have not yet been fully characterized, intense backcrossing is required to ensure transmission of the full phenotype. Here we describe the derivation of embryonic stem cell (ESC) lines from NRG pre‐implantation embryos generated by in vitro fertilization followed by the CRISPR/CAS9 targeting of the Gata‐2 locus. After injection into morula stage embryos, cells from three tested lines gave rise to chimeric adult mice showing high contribution of the ESCs (70%–100%), assessed by coat color. Moreover, these lines have been successfully targeted using Cas9/CRISPR technology, and the mutant cells have been shown to remain germ line competent. Therefore, these new NRG ESC lines combined with genome editing nucleases bring a powerful genetic tool that facilitates the generation of new NOD‐based mouse models with the aim to improve the existing xenograft models.  相似文献   

12.
Hosaka K  Sato K 《Human cell》2002,15(4):224-229
This study was carried out to transform embryonic stem (ES) cells and to produce the reconstituted embryos derived from transgenic ES cell nuclei. Then, in vitro/vivo developmental potency of transgenic ES cells were compared to that of control ES cells (non-transgenic ES cells) in the reconstituted embryos. Unfertilized B6D2F1 ooplasm at metaphase II (M II) and two kinds of ES cell lines, 129SV and transgenic (tg) 129SV transformed by EGFP gene, were used as nuclear recipients and nuclear donors, respectively. The M II chromosome-spindle complex was aspirated into the pipette with a minimal volume of ooplasm. After enucleation, the ES cell nuclei was injected into the enucleated ooplasm directly. Then, reconstituted embryos were activated in SrCl2, and they were cultured in HTF medium. There was no difference of developmental rate between reconstituted embryos derived from the control (non-transgenic) and the tg ES cells. From this result, we indicated that transgenic ES cells might not change the property of peculiarity of the ES cell by gene transfer. The expression of GFP gene in the embryos was observed by fluorescence microscope at the 4-cell and more stage. As comparison with development of the embryos derived from the control and tg ES cells, the difference of the development could not be confirmed between the two cell groups. When the reconstituted embryos derived from the control and tg ES cells were transferred into oviduct or uterus of pseudopregnant females, fetuses were observed 13.5 days post coitum. However, in all fetuses, developmental arrest and regression were seen 19.5 days post coitum.  相似文献   

13.
Dogma that the regulatory T cell (Treg) prevents catastrophic autoimmunity throughout the lifespan relies on the assumption that the FoxP3 locus is transcribed exclusively in Treg. To test the assumption, we used the Rag2(-/-) and the Rag2(-/-) mice with the Scurfy (sf) mutation (FoxP3(sf/Y) or FoxP3(sf/sf)) to evaluate FoxP3 expression outside of the lymphoid system. Immunohistochemistry and real-time PCR revealed FoxP3 expression in breast epithelial cells, lung respiratory epithelial cells, and prostate epithelial cells, although not in liver, heart, and intestine. The specificity of the assays was confirmed, as the signals were ablated by the Scurfy mutation of the FoxP3 gene. Using mice with a green fluorescence protein open reading frame knocked into the 3' untranslated region of the FoxP3 locus, we showed that the locus is transcribed broadly in epithelial cells of multiple organs. These results refute an essential underlying assumption of the dogma and question the specificity of FoxP3-based Treg depletion.  相似文献   

14.
Therapeutic treatment of large established tumors using immunotherapy has yielded few promising results. We investigated whether adoptive transfer of tumor-specific CD8(+) T cells, together with tumor-specific CD4(+) T cells, would mediate regression of large established B16BL6-D5 melanomas in lymphopenic Rag1(-/-) recipients devoid of regulatory T cells. The combined adoptive transfer of subtherapeutic doses of both TRP1-specific TCR transgenic Rag1(-/-) CD4(+) T cells and gp100-specific TCR transgenic Rag1(-/-) CD8(+) T cells into lymphopenic recipients, who received vaccination, led to regression of large (100-400 mm(2)) melanomas. The same treatment strategy was ineffective in lymphoreplete wild-type mice. Twenty-five percent of mice (15/59) had tumors recur (15-180 d postregression). Recurrent tumors were depigmented and had decreased expression of gp100, the epitope targeted by the CD8(+) T cells. Mice with recurrent melanoma had increased CD4(+)Foxp3(+) TRP1-specific T cells compared with mice that did not show evidence of disease. Importantly, splenocytes from mice with recurrent tumor were able to suppress the in vivo therapeutic efficacy of splenocytes from tumor-free mice. These data demonstrate that large established tumors can be treated by a combination of tumor-specific CD8(+) and CD4(+) T cells. Additionally, recurrent tumors exhibited decreased Ag expression, which was accompanied by conversion of the therapeutic tumor-specific CD4(+) T cell population to a Foxp3(+)CD4(+) regulatory T cell population.  相似文献   

15.
EBV-induced gene 3 (EBI3)-encoded protein can form heterodimers with IL-27P28 and IL-12P35 to form IL-27 and IL-35. IL-27 and IL-35 may influence autoimmunity by inhibiting Th17 differentiation and facilitating the inhibitory roles of Foxp3(+) regulatory T (Treg) cells, respectively. In this study, we have evaluated the development of experimental autoimmune encephalomyelitis (EAE) in EBI3-deficient mice that lack both IL-27 and IL-35. We found that myelin oligodendrocyte glycoprotein peptide immunization resulted in marginally enhanced EAE development in EBI3-deficient C57BL6 and 2D2 TCR-transgenic mice. EBI3 deficiency resulted in significantly increased Th17 and Th1 responses in the CNS and increased T cell production of IL-2 and IL-17 in the peripheral lymphoid organs. EBI3-deficient and -sufficient 2D2 T cells had equal ability in inducing EAE in Rag1(-/-) mice; however, more severe disease was induced in EBI3(-/-)Rag1(-/-) mice than in Rag1(-/-) mice by 2D2 T cells. EBI3-deficient mice had increased numbers of CD4(+)Foxp3(+) Treg cells in peripheral lymphoid organs. More strikingly, EBI3-deficient Treg cells had more potent suppressive functions in vitro and in vivo. Thus, our data support an inhibitory role for EBI3 in Th17, Th1, IL-2, and Treg responses. Although these observations are consistent with the known functions of IL-27, the IL-35 contribution to the suppressive functions of Treg cells is not evident in this model. Increased Treg responses in EBI3(-/-) mice may explain why the EAE development is only modestly enhanced compared with wild-type mice.  相似文献   

16.
In order to evaluate the usefulness of a cloning technique to produce gene-manipulated mice for the field of laboratory animal science, we produced mice cloned from gene-targeted embryonic stem (ES) cells and examined the vertical transmission of a targeted gene to their progeny. Of 1257 eggs constructed by nuclear transfer using M-phase ES donor cells targeted with an oviduct-specific glycoprotein (OGP) gene, 990 formed a pseudo-pronucleus and a polar body after activation. Of 504 cloned embryos transferred into recipients, 20 live cloned pups (2%) were recovered by Caesarean section at 19.5 days of gestation. Fourteen of these cloned mice were studied. Genotyping of the OGP locus and 20 microsatellite loci showed that they were genetically identical to the OGP gene-targeted TT2 cells. Eight cloned pups grew into adults, of which 7 were male and 1 was female (missing the Y chromosome). Mating experiments using the cloned mice were carried out. Of 89 F1 mice produced from the mating of cloned and C57BL/6J mice, 50 had the targeted OGP gene heterozygously. Thirty-seven F2 mice from 4 pairs of the OGP-/+ mice were composed of 9 OGP-/-, 18 OGP-/+, and 10 OGP+/+. Moreover, 26 offspring of one pair of the cloned mice were composed of 10 OGP-/-, 12 OGP-/+, and 4 OGP+/+. These offspring were fertile and transmitted the mutant OGP gene to the next generation. Comparison of these results with those of germline chimeric mice indicates that gene-targeted mice can be produced at least one generation earlier by nuclear transfer than by the conventional methods. In addition, the targeted OGP gene was constantly transmitted to the progeny of the gene-targeted mice. Cloning techniques are potentially a more efficient way to generate gene-manipulated mice for laboratory animal science, although such techniques include many unresolved problems, such as low production efficiency, and selection of a cell source for gene manipulation among others.  相似文献   

17.
Mouse cloning with nucleus donor cells of different age and type   总被引:14,自引:0,他引:14  
We have tested different cell types as sources for nucleus donors to determine differences in cloning efficiency. When donor nuclei were isolated from cumulus cells and injected into recipient oocytes from adult hybrid mice (B6D2F1 and B6C3F1), the success rate of cloning was 1.5-1.9%. When cumulus cell donor nuclei were isolated from adult inbred mice (C57BL/6, C3H/He, DBA/2, 129/SvJ, and 129/SvEvTac), reconstructed oocytes did not develop to full term or resulted in a very low success rate (0-0.3%) with the exception of 129 strains which yielded 0.7-1.4% live young. When fetal (13.5-15.5 dpc), ovarian, and testicular cells were used as nucleus donors, 2.2 and 1.0% of reconstructed oocytes developed into live offspring, respectively. When various types of adult somatic cells (fibroblasts, thymocytes, spleen cells, and macrophages) were used, oocytes receiving thymocyte nuclei never developed beyond implantation, whereas those receiving the nuclei of other cell types did. These results indicate that adult somatic cells are not necessarily inferior to younger cells (fetal and ES cells) in the context of mouse cloning. Although fetal cells are believed to have less genetic damage than adult somatic cells, the success rate of cloning using any cell types were very low. This may largely be due to technical problems and/or problems of genomic reprogramming by oocytes rather than the accumulation of mutational damage in adult somatic cells.  相似文献   

18.
IL-15 plays many important roles within the immune system. IL-15 signals in lymphocytes via trans presentation, where accessory cells such as macrophages and dendritic cells present IL-15 bound to IL-15Rα in trans to NK cells and CD8(+) memory T cells expressing IL-15/IL-2Rβ and common γ chain (γ(c)). Previously, we showed that the prophylactic delivery of IL-15 to Rag2(-/-)γ(c)(-/-) mice (mature T, B, and NK cell negative) afforded protection against a lethal HSV-2 challenge and metastasis of B16/F10 melanoma cells. In this study, we demonstrated that in vivo delivery of an adenoviral construct optimized for the secretion of human IL-15 to Rag2(-/-)γ(c)(-/-) mice resulted in significant increases in spleen size and cell number, leading us to hypothesize that IL-15 signals differently in myeloid immune cells compared with lymphocytes, for which IL-15/IL-2Rβ and γ(c) expression are essential. Furthermore, treatment with IL-15 induced RANTES production by Rag2(-/-)γ(c)(-/-) bone marrow cells, but the presence of γ(c) did not increase bone marrow cell sensitivity to IL-15. This IL-15-mediated RANTES production by Rag2(-/-)γ(c)(-/-) bone marrow cells occurred independently of the IL-15/IL-2Rβ and Jak/STAT pathways and instead required IL-15Rα signaling as well as activation of JNK and NF-κB. Importantly, we also showed that the trans presentation of IL-15 by IL-15Rα boosts IL-15-mediated IFN-γ production by NK cells but reduces IL-15-mediated RANTES production by Rag2(-/-)γ(c)(-/-) myeloid bone marrow cells. Our data clearly show that IL-15 signaling in NK cells is different from that of myeloid immune cells. Additional insights into IL-15 biology may lead to novel therapies aimed at bolstering targeted immune responses against cancer and infectious disease.  相似文献   

19.
Hematopoietic stem cells (HSC) have provided a model for the isolation, enrichment and transplantation of stem cells. Gene targeting studies in mice have shown that expression of the thrombopoietin receptor (TpoR) is linked to the accumulation of HSCs capable to generate long-term blood repopulation when injected into irradiated mice. The powerful increase in vivo in HSC numbers by retrovirally transduced HOX4B, a homeotic gene, along with the role of the TpoR, suggested that stem cell fate, renewal, differentiation and number can be controlled. The discovery of the precise region of the mouse embryo where HSCs originate and the isolation of supporting stromal cell lines open the possibility of identifying the precise signals required for HSC choice of fate. The completion of human genome sequencing coupled with advances in gene expression profiling using DNA microarrays will enable the identification of key genes deciding the fate of stem cells. Downstream from HSCs, multipotent hematopoietic progenitor cells appear to co-express a multiplicity of genes characteristic of different blood lineages. Genomic approaches will permit the identification of the select group of genes consolidated by the commitment of these multipotent progenitors towards one or the other of the blood lineages. Studies with neural stem cells pointed to the unexpected plastic nature of these cells. Isolation of stem cells from multiple tissues may suggest that, providing the appropriate environment/ signal, tissues could be regenerated in the laboratory and used for transplantation. A spectacular example of influence of the environment on cell fate was revealed decades ago by using mouse embryonic stem cells (ES). Injected into blastocysts, ES cells contribute to the formation of all adult tissues. Injected into adult mice, ES cells become cancer cells. After multiple passages as ascites, when injected back into the blastocyst environment, ES- derived cancer cells behaved again as ES cells. More recently, the successful cloning of mammals and reprogramming of transferred nuclei by factors in the cytoplasm of oocytes turned back the clock by showing that differentiated nuclei can be "re-booted" to generate again the stem cells for different tissues.  相似文献   

20.
The demonstration that mouse somatic cells can be reprogrammed following fusion with embryonic stem (ES) cells may provide an alternative to somatic cell nuclear transfer (therapeutic cloning) to generate autologous stem cells. In an attempt to produce cells with an increased pool of reprogramming factors, tetraploid ES cells were produced by polyethylene glycol mediated fusion of two ES cell lines transfected with plasmids carrying puromycin or neomycin resistance cassettes, respectively, followed by double antibiotic selection. Tetraploid ES cells retain properties characteristic of diploid ES cells, including the expression of pluripotent gene markers Oct4 and Rex1. On injection into the testis capsule of severe combined immunodeficient (SCID) mice, tetraploid ES cells are able to form teratomas containing cells representative of all three germ layers. Further, these cells demonstrated the ability to integrate into the inner cell mass of blastocysts. This study indicates that tetraploid ES cells are promising candidates as cytoplasm donors for reprogramming studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号