首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolation and characterization of a soybean hsp70 gene   总被引:7,自引:0,他引:7  
  相似文献   

2.
Heat shock protein genes, hsp90, hsc70, and hsp19.5, were cloned and sequenced from the diamondback moth, Plutella xylostella (L.) by RT-PCR and RACE method. The cDNA sequence analysis of hsp90 and hsp19.5 revealed open reading frames (ORFs) of 2,151 and 522 bp in length, which encode proteins with calculated molecular weights of 82.4 and 19.5 kDa, respectively. Analysis of cDNA from hsc70 revealed an ORF of 1,878 bp coding a protein with a calculated molecular weight of 69.3 kDa. Furthermore, the analysis of genomic DNA from hsc70 confirmed the presence of introns while no introns were apparent in hsp90 and hsp19.5. Southern blot analysis suggested the presence of multiple copies of each gene family in the DBM genome. Detectable expression of hsp19.5 was observed at the pupal stage while expression of hsp90 and hsc70 was detected at both pupal and adult stages. At adult stage, females showed a higher expression of hsp90 and hsc70 than males. An increased expression was observed in all three genes after exposure to a high temperature in both sexes. These results suggest that in addition to a heat shock response, these HSP genes might be involved in other functions during the course of development in DBM.  相似文献   

3.
When a cell encounters external stressors, such as lack of nutrients, elevated temperatures, changes in pH or other stressful environments, a key set of evolutionarily conserved proteins, the heat shock proteins (hsps), become overexpressed. Hsps are classified into six major families with the hsp90 family being the best understood; an increase in cell stress leads to increased levels of hsp90, which leads to cellular protection. A hallmark of hsp90 inhibitors is that they induce a cell rescue mechanism, the heat shock response. We define the unique molecular profile of a compound (SM145) that regulates hormone receptor protein levels through hsp90 inhibition without inducing the heat shock response. Modulation of the binding event between heat shock protein 90 and the immunophilins/homologs using SM145, leads to a decrease in hormone receptor protein levels. Unlike N-terminal hsp90 inhibitors, this hsp90 inhibitor does not induce a heat shock response. This work is proof of principle that controlling hormone receptor expression can occur by inhibiting hsp90 without inducing pro-survival protein heat shock protein 70 (hsp70) or other proteins associated with the heat shock response. Innovatively, we show that blocking the heat shock response, in addition to hsp90, is key to regulating hsp90-associated pathways.  相似文献   

4.
5.
6.
7.
8.
Heat shock protein hsp27 is a molecular chaperone and identification of hsp27-binding proteins might help to elucidate its functional role in keratinocyte biology. In the present investigation we used a human epidermal cell carcinoma cell line (A431) transfected with hsp27 (A431/16) to study interference between hsp27 protein and other proteins. Immunoprecipitation experiments with anti-hsp27 antibody revealed a multicomponent complex when analysed by silver staining. By immunoblotting analysis we could demonstrate that hsp27 associates with actin, the mutant form of p53, hsp70 and hsp90. Immunofluorescence analysis showed a co-localization between hsp27 and p53, hsp70 and hsp90. To control for the specificity of the observed interactions, immuno-precipitations with antibodies to actin, p53, hsp70 and hsp90 respectively, were performed. All of the tested proteins demonstrated a coimmunoprecipitation with hsp27. We conclude that hsp27, like the other heat shock proteins, is part of a complex system of molecular chaperones in epidermal keratinocytes.  相似文献   

9.
Summary 1. Altered mRNA levels in postmortem brain tissue from persons with Alzheimer's disease (AD) or other neurological diseases are usually presumed to be characteristic of the disease state, even though both agonal state (the physiological state immediately premortem) and postmortem interval (PMI) (the time between death and harvesting the tissue) have the potential to affect levels of mRNAs measured in postmortem tissue. Although the possible effect of postmortem interval on mRNA levels has been more carefully evaluated than that of agonal state, many studies assume that all mRNAs have similar rates of degradation postmortem.2. To determine the postmortem stability of inducible heat shock protein 70 (hsp70) mRNAs, themselves unstablein vivo at normal body temperature, rats were heat shocked in order to induce synthesis of the hsp70 mRNAs. hsp70 mRNA levels in cerebellum and cortex were then compared to those of their heat shock cognate 70 (hsc70) mRNAs, as well as to levels of 18S rRNAs, at 0 and at 24 hr postmortem.3. Quantiation of northern blots after hybridization with an hsp70 mRNA-specific oligo probe indicated a massive loss of hsp70 mRNA signal in RNAs isolated from 24-hr postmortem brains; quantitation by slot-blot hybridization was 5- to 15-fold more efficient. Even using the latter technique, hsp70 mRNA levels were reduced by 59% in 24-hr-postmortem cerebellum and by 78% in cortex compared to mRNA levels in the same region of 0-hr-postmortem brain. There was little reduction postmortem in levels of the hsp70 mRNAs or of 18S rRNAs in either brain region.4.In situ hybridization analysis indicated that hsp70 mRNAs were less abundant in all major classes of cerebellar cells after 24 hr postmortem and mRNAs had degraded severalfold more rapidly in neurons than in glia. There was no corresponding loss of intracellular 18S rRNA in any cell type.5. We conclude from these results that the effect of postmortem interval on mRNA degradation must be carefully evaluated when analyzing levels of inducible hsp70 mRNAs, and perhaps other short-lived mRNAs, in human brain.  相似文献   

10.
The progressive differentiation of both normal rat osteoblasts and HL-60 promyelocytic leukemia cells involves the sequential expression of specific genes encoding proteins that are characteristic of their respective developing cellular phenotypes. In addition to the selective expression of various phenotype marker genes, several members of the heat shock gene family exhibit differential expression throughout the developmental sequence of these two cell types. As determined by steady state mRNA levels, in both osteoblasts and HL-60 cells expression of hsp27, hsp60, hsp70, hsp89 alpha, and hsp89 beta may be associated with the modifications in gene expression and cellular architecture that occur during differentiation. In both differentiation systems, the expression of hsp27 mRNA shows a 2.5-fold increase with the down-regulation of proliferation while hsp60 mRNA levels are maximal during active proliferation and subsequently decline post-proliferatively. mRNA expression of two members of the hsp90 family decreases with the shutdown of proliferation, with a parallel relationship between hsp89 alpha mRNA levels and proliferation in osteoblasts and a delay in down-regulation of hsp89 alpha mRNA levels in HL-60 cells and of hsp89 beta mRNA in both systems. Hsp70 mRNA rapidly increases, almost twofold, as proliferation decreases in HL-60 cells but during osteoblast growth and differentiation was only minimally detectable and showed no significant changes. Although the presence of the various hsp mRNA species is maintained at some level throughout the developmental sequence of both osteoblasts and HL-60 cells, changes in the extent to which the heat shock genes are expressed occur primarily in association with the decline of proliferative activity. The observed differences in patterns of expression for the various heat shock genes are consistent with involvement in mediating a series of regulatory events functionally related to the control of both cell growth and differentiation.  相似文献   

11.
12.
Certain heat shock proteins are regulated by steroid hormones and are associated with oestrogen receptor function in reproductive tissues, indicating that these proteins have a role during implantation, decidualization and placentation. In the present study, the expression of hsp25, hsp70 and oestrogen receptor alpha were examined by immunohistochemistry in oviducts from rats during neonatal development, the oestrous cycle and during early pregnancy. Oestrogen receptor alpha was the first protein observed in the neonatal oviduct, and its expression preceded that of hsp70 and hsp25. Although these heat shock proteins have been associated with the oestrogen receptor, this study showed that during early development of the oviduct, the receptor protein was not associated with the concomitant expression of hsp25 and hsp70. However, these heat shock proteins were expressed when oviductal cells became differentiated. In the adult oviduct, hsp70 was more abundant than hsp25, moreover, there were no significant modifications in expression of hsp25 during the oestrous cycle. In contrast, the expression of hsp70 was significantly higher in epithelial cells during dioestrus, when the maximum amount of oestrogen receptor alpha was also observed. Therefore, the present study shows that hsp70, but not hsp25, is an oviductal protein modulated by the oestrous cycle and that it is a protein marker for specific phases of the oestrous cycle. In addition, hsp70 was more responsive to the hormonal changes in the infundibulum and ampullar regions of the oviduct. During early pregnancy, hsp25 expression was downregulated (unlike in the endometrium), whereas hsp70 was relatively abundant in the oviduct. hsp70 was observed in all functional segments of the oviduct during pregnancy, indicating that in the oviduct, this protein is modulated by oestrogens and progesterone and possibly by other pregnancy-related hormones.  相似文献   

13.
The Mr 90000 heat shock protein (hsp 90) and one of the Mr 70000 heat shock cognate proteins (hsc 70) were localized by immunoelectron microscopy in salavary gland cells of normal and heat-shocked larvae of Chironomus thummi using polyclonal antibodies raised against Drosophila proteins. Immunoblotting after separation of proteins by gel electrophoresis shows that these antibodies cross-react with the corresponding proteins of Chironomus. Hsp 90 was localized both in the cytoplasm and in the nucleus, where it is associated with intrachromosomal and extrachromosomal ribonucleoprotein (RNP) fibrils, as well as with the peripheral region of compact chromatin. After heat shock the concentration of hsp 90 increases in the nucleus. This increase is prevented by actinomycin D administration during the heat shock. Hsp 90 is associated with the chromatin of puffs repressed by heat shock and with the RNP fibrils of actively transcribing heat shock puffs. Hsc 70 is mainly found in RNP fibrils and in the periphery of compact chromatin. During heat shock the concentration of hsc 70 decreases in the cytoplasm while it becomes more abundant in association with chromatin and intrachromosomal and extrachromosomal RNP fibrils. These results suggest a translocation of the existing protein from the cytoplasm toward the nucleus. They are supported by observations of the effect of heat shock carried out in the presence of actinomycin D.by D.P. Bazett-Jones  相似文献   

14.
Heat shock (25° C) of 10° C-acclimated rainbow trout Oncorhynchus mykiss led to increases in heat shock protein 70 (hsp70) mRNA in blood, brain, heart, liver, red and white muscle, with levels in blood being amongst the highest. Hsp30 mRNA also increased with heat shock in all tissues with the exception of blood. When rainbow trout blood was heat shocked in vitro , both hsp70 and hsp30 mRNA increased significantly. In addition, these in vitro experiments demonstrated that blood from fish acclimated to 17° C water had a lower hsp70 mRNA heat shock induction temperature than did 5° C acclimated fish (20 v. 25° C). The hsp30 mRNA induction temperature (25° C), however, was unaffected by thermal acclimation. While increases in hsp70 mRNA levels in blood may serve as an early indicator of temperature stress in fish, tissue type, thermal history and the particular family of hsp must be considered when evaluating stress by these molecular means.  相似文献   

15.
16.
We have examined differences in the spatial and temporal regulation of stress-induced hsp47 and hsp70 gene expression following exposure of zebrafish embryos to heat shock or ethanol. Using Northern blot analysis, we found that levels of hsp47 and hsp70 mRNA were dramatically elevated during heat shock in 2-day-old embryos. In contrast, ethanol exposure resulted in strong upregulation of the hsp47 gene whereas hsp70 mRNA levels increased only slightly following the same treatment. Whole-mount in situ hybridization analysis revealed that hsp47 mRNA was expressed predominantly in precartilagenous cells, as well as several other connective tissue cell populations within the embryo following exposure to either stress. hsp70 mRNA displayed a very different cell-specific distribution. For example, neither stress induced hsp70 mRNA accumulation in precartilagenous cells. However, high levels of hsp70 mRNA were detectable in epithelial cells of the developing epidermis following exposure to heat shock, but not to ethanol. These cells did not express the hsp47 gene following exposure to either of these stresses. The results suggest the presence of different inducible regulatory mechanisms for these genes which operate in a cell- and stress-specific manner in zebrafish embryos. Dev. Genet. 21:123–133, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
We employed whole‐mount in situ hybridization and immunohistochemistry to study the spatial pattern of hsp30 gene expression in normal and heatshocked embryos during Xenopus laevis development. Our findings revealed that hsp30 mRNA accumulation was present constitutively only in the cement gland of early and midtailbud embryos, while hsp30 protein was detected until at least the early tadpole stage. Heat shock‐induced accumulation of hsp30 mRNA and protein was first observed in early and midtailbud embryos with preferential enrichment in the cement gland, somitic region, lens placode, and proctodeum. In contrast, cytoskeletal actin mRNA displayed a more generalized pattern of accumulation which did not change following heat shock. In heat shocked midtailbud embryos the enrichment of hsp30 mRNA in lens placode and somitic region was first detectable after 15 min of a 33°C heatshock. The lowest temperature capable of inducing this pattern was 30°C. Placement of embryos at 22°C following a 1‐h 33°C heat shock resulted in decreased hsp30 mRNA in all regions with time, although enhanced hsp30 mRNA accumulation still persisted in the cement gland after 11 h compared to control. In late tailbud embryos the basic midtailbud pattern of hsp30 mRNA accumulation was enhanced with additional localization to the spinal cord as well as enrichment across the embryo surface. These studies demonstrate that hsp30 gene expression can be detected constitutively in the cement gland of tailbud embryos and that heat shock results in a preferential accumulation of hsp30 mRNA and protein in certain tissues. Dev. Genet. 25:365–374, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

18.
Heat shock proteins (hsp(s)) have been postulated to interact with APCs through specific receptors, although the receptors are yet to be identified. Specificity, saturation, and competition are the three defining attributes of a receptor-ligand interaction. We demonstrate here that the interaction of the heat shock proteins gp96 and hsp90 with CD11b+ cells is specific and saturable and that gp96 can compete with itself in gp96-macrophage interaction. Interestingly, the phylogenetically related hsp90 also competes quite effectively with gp96 for binding to macrophages, whereas the unrelated hsp70 does so relatively poorly, although it binds CD11b+ cells just as effectively. These data provide evidence that the heat shock proteins interact with APCs with specificity and for the existence of at least two distinct receptors, one for gp96 and hsp90 and the other for hsp70.  相似文献   

19.
Eukaryotic organisms respond to various stresses with the synthesis of heat shock proteins (HSPs). HSP110 is a large molecular mass HSP that is part of the HSP70/DnaK superfamily. In this study, we have examined, for the first time, the expression of the hsp110 gene in Xenopus laevis cultured cells and embryos. Sequence analysis revealed that the protein encoded by the hsp110 cDNA exhibited 74% identity with its counterparts in mammals and only 27-29% with members of the Xenopus HSP70 family. Hsp110 mRNA and/or protein was detected constitutively in A6 kidney epithelial cells and was inducible by heat shock, sodium arsenite, and cadmium chloride. However, treatment with ethanol or copper sulfate had no detectable effect on hsp110 mRNA levels. Similar results were obtained for hsp70 mRNA except that it was inducible with ethanol. In Xenopus embryos, hsp110 mRNA was present constitutively during development. Heat shock-inducible accumulation of hsp110 mRNA occurred only after the midblastula stage. Whole mount in situ hybridization analysis revealed that hsp110 mRNA accumulation in control and heat shocked embryos was enriched in selected tissues. These studies demonstrate that Xenopus hsp110 gene expression is constitutive and stress inducible in cultured cells and developmentally- and tissue specifically-regulated during early embryogenesis.  相似文献   

20.
Background. To investigate whether the Helicobacter pylori status influences levels of antibodies against mycobacterial heat shock protein (hsp) 65 and human hsp60 in systemic autoimmune diseases and to study the concentration of anti‐H. pylori antibodies in autoimmune patients and healthy controls. Materials and Methods. Antibodies against human heat‐shock protein hsp60, mycobacterial heat‐shock protein hsp65 were analyzed by ELISA. Anti‐Helicobacter antibodies were determined by enzyme immunoassay. Results. There was a markedly higher prevalence of H. pylori infection in undifferentiated connective tissue disease (82%) (n = 33) and systemic sclerosis (78%) (n = 55) but not in systemic lupus erythematosus (n = 49), polymyositis/dermatomyositis (n = 14), rheumatoid arthritis (n = 21) or primary Raynaud's syndrome (n = 26) compared with controls (59%) (n = 349). In autoimmune diseases H. pylori infection was associated with elevated levels of antihsp65 (p = .008) but not of antihsp60. Anti‐hsp65 levels were significantly higher in H. pylori‐infected (n = 129) than in uninfected patients (n = 69) (p = .0007). Conclusions. These findings indicate that in autoimmune diseases the infection with the H. pylori bacterium is associated with increased concentration of antimycobacterial hsp65.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号