首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
2.
3.
Otx2 and Gbx2 are among the earliest genes expressed in the neuroectoderm, dividing it into anterior and posterior domains with a common border that marks the mid-hindbrain junction. Otx2 is required for development of the forebrain and midbrain, and Gbx2 for the anterior hindbrain. Furthermore, opposing interactions between Otx2 and Gbx2 play an important role in positioning the mid-hindbrain boundary, where an organizer forms that regulates midbrain and cerebellum development. We show that the expression domains of Otx2 and Gbx2 are initially established independently of each other at the early headfold stage, and then their expression rapidly becomes interdependent by the late headfold stage. As we demonstrate that the repression of Otx2 by retinoic acid is dependent on an induction of Gbx2 in the anterior brain, molecules other than retinoic acid must regulate the initial expression of Otx2 in vivo. In contrast to previous suggestions that an interaction between Otx2- and Gbx2-expressing cells may be essential for induction of mid-hindbrain organizer factors such as Fgf8, we find that Fgf8 and other essential mid-hindbrain genes are induced in a correct temporal manner in mouse embryos deficient for both Otx2 and Gbx2. However, expression of these genes is abnormally co-localized in a broad anterior region of the neuroectoderm. Finally, we find that by removing Otx2 function, development of rhombomere 3 is rescued in Gbx2(-/-) embryos, showing that Gbx2 plays a permissive, not instructive, role in rhombomere 3 development. Our results provide new insights into induction and maintenance of the mid-hindbrain genetic cascade by showing that a mid-hindbrain competence region is initially established independent of the division of the neuroectoderm into an anterior Otx2-positive domain and posterior Gbx2-positive domain. Furthermore, Otx2 and Gbx2 are required to suppress hindbrain and midbrain development, respectively, and thus allow establishment of the normal spatial domains of Fgf8 and other genes.  相似文献   

4.
5.
Otx2 is expressed in the mesencephalon and prosencephalon, and Gbx2 is expressed in the rhombencephalon around stage 10. Loss-of-function studies of these genes in mice have revealed that Otx2 is indispensable for the development of the anterior brain segment, and that Gbx2 is required for the development of the isthmus. We carried out gain-of-function experiments of these genes in chick embryos with a newly developed gene transfer system, in ovo electroporation. When Otx2 was ectopically expressed caudally beyond the midbrain-hindbrain boundary (MHB), the alar plate of the metencephalon differentiated into the optic tectum instead of differentiating into the cerebellum. On the other hand, when Gbx2 was ectopically expressed at the mesencephalon, the caudal limit of the tectum shifted rostrally. We looked at the effects of misexpression on the isthmus- and tectum-related molecules. Otx2 and Gbx2 interacted to repress each other's expression. Ectopic Otx2 and Gbx2 repressed endogenous expression of Fgf8 in the isthmus, but induced Fgf8 expression at the interface between Otx2 and Gbx2 expression. Thus, it is suggested that interaction between Otx2 and Gbx2 determines the site of Fgf8 expression and the posterior limit of the tectum.  相似文献   

6.
7.
8.
In vertebrates, the common expression border of two homeobox genes, Otx2 and Gbx2, demarcates the prospective midbrain-hindbrain border (MHB) in the neural plate at the end of gastrulation. The presence of a compartment boundary at the MHB has been demonstrated, but the mechanism and timing of its formation remain unclear. We show by genetic inducible fate mapping using a Gbx2(CreER) knock-in mouse line that descendants of Gbx2(+) cells as early as embryonic day (E) 7.5 do not cross the MHB. Without Gbx2, hindbrain-born cells abnormally populate the entire midbrain, demonstrating that Gbx2 is essential for specifying hindbrain fate. Gbx2(+) and Otx2(+) cells segregate from each other, suggesting that mutually exclusive expression of Otx2 and Gbx2 in midbrain and hindbrain progenitors is responsible for cell sorting in establishing the MHB. The MHB organizer gene Fgf8, which is expressed as a sharp transverse band immediately posterior to the lineage boundary at the MHB, is crucial in maintaining the lineage-restricted boundary after E7.5. Partial deletion of Fgf8 disrupts MHB lineage separation. Activation of FGF pathways has a cell-autonomous effect on cell sorting in midbrain progenitors. Therefore, Fgf8 from the MHB may signal the nearby mesencephalic cells to impart distinct cell surface characteristics or induce local cell-cell signaling, which consequently prevents cell movements across the MHB. Our findings reveal the distinct function of Gbx2 and Fgf8 in a stepwise process in the development of the compartment boundary at the MHB and that Fgf8, in addition to its organizer function, plays a crucial role in maintaining the lineage boundary at the MHB by restricting cell movement.  相似文献   

9.
10.
11.
The mouse homeobox gene Gbx2 is first expressed throughout the posterior region of the embryo during gastrulation, and becomes restricted to rhombomeres 1-3 (r1-3) by embryonic day 8.5 (E8.5). Previous studies have shown that r1-3 do not develop in Gbx2 mutants and that there is an early caudal expansion of the midbrain gene Otx2 to the anterior border of r4. Furthermore, expression of Wnt1 and Fgf8, two crucial components of the isthmic organizer, is no longer segregated to adjacent domains in Gbx2 mutants. In this study, we extend the phenotypic analysis of Gbx2 mutants by showing that Gbx2 is not only required for development of r1-3, but also for normal gene expression in r4-6. To determine whether Gbx2 can alter hindbrain development, we generated Hoxb1-Gbx2 (HG) transgenic mice in which Gbx2 is ectopically expressed in r4. We show that Gbx2 is not sufficient to induce r1-3 development in r4. To test whether an Otx2/Gbx2 interface can induce r1-3 development, we introduced the HG transgene onto a Gbx2-null mutant background and recreated a new Otx2/Gbx2 border in the anterior hindbrain. Development of r3, but not r1 and r2, is rescued in Gbx2-/-; HG embryos. In addition, the normal spatial relationship of Wnt1 and Fgf8 is established at the new Otx2/Gbx2 border, demonstrating that an interaction between Otx2 and Gbx2 is sufficient to produce the normal pattern of Wnt1 and Fgf8 expression. However, the expression domains of Fgf8 and Spry1, a downstream target of Fgf8, are greatly reduced in mid/hindbrain junction area of Gbx2-/-; HG embryos and the posterior midbrain is truncated because of abnormal cell death. Interestingly, we show that increased cell death and a partial loss of the midbrain are associated with increased expression of Fgf8 and Spry1 in Gbx2 conditional mutants that lack Gbx2 in r1 after E9.0. These results together suggest that cell survival in the posterior midbrain is positively or negatively regulated by Fgf8, depending on Fgf8 expression level. Our studies provide new insights into the regulatory interactions that maintain isthmic organizer gene expression and the consequences of altered levels of organizer gene expression on cell survival.  相似文献   

12.
Gbx2 is a homeobox gene that plays a crucial role in positioning the mid/hindbrain organizer (isthmus), which regulates midbrain and cerebellar development primarily through the secreted factor FGF8. In Gbx2 null homozygotes, rhombomeres (r) 1-3 fail to develop and the isthmic expression of Fgf8 is reduced and disorganized. These mutants fail to form a cerebellum, as it is derived from r1. Here, we analyze mice homozygous for a Gbx2 hypomorphic allele (Gbx2(neo)). Quantitative RT-PCR and RNA in situ analyses indicate that the presence of a neo-resistance cassette impairs normal Gbx2 splicing thus reducing wild-type Gbx2 mRNA levels to 6-10% of normal levels in all domains and stages examined. In Gbx2 hypomorphic mutants, gene marker and neuronal patterning analyses indicate that reduced Gbx2 expression is sufficient to support the development of r3 but not r2. The posterior region of r1, from which the lateral cerebellum develops, is unaffected in these mutants. However, the anterior region of r1 is converted to an isthmus-like tissue. Hence, instead of expressing r1 markers, this region displays robust expression of Fgf8 and Fgf17, as well as the downstream FGF targets Spry1 and Spry4. Additionally, we demonstrate that the cell division regulator cyclin D2 is downregulated, and that cellular proliferation is reduced in both the normal isthmus and in the mutant anterior r1. As a result of this transformation, the cerebellar midline fails to form. Thus, our studies demonstrate different threshold requirements for the level of Gbx2 gene product in different regions of the hindbrain.  相似文献   

13.
We have studied the neuromeric organisation of the mesencephalic-metencephalic (mes-met) territory of the avian neural tube using chick/quail transplantation experiments and analysing the expression of various regulatory genes in chimeric and normal embryos. Homotopic grafts demonstrate the presence of an interneuromeric boundary separating the mesencephalic and cerebellar territories (the mes-met or midbrain/hindbrain boundary). This boundary is characterised from HH10 onwards by the confrontation of the Otx2-Wnt1 and Gbx2-Fgf8 expressing domains, while En2 and Pax2 genes are expressed at both sides of the mes-met boundary. The evolution of the position of the Otx2/Gbx2 boundary with respect to the vesicles and constriction observed within the mes-met domain between stages HH10 and HH20, allows us to redefine the fate map of this region and to propose a new nomenclature for HH10. Transplantation between the prosencephalic neuroepithelium and the mes-met domain shows the possibility of inducing a mes-met phenotype within the two caudal-most prosomeres, preceded by its characteristic genetic cascade. The induction selectively takes place along the boundary between the graft (Otx2 positive) and the host cerebellar territory (expressing high levels of Gbx2); this includes the induction inside the graft of a new Otx2/Gbx2 boundary. Conversely, no induction is ever observed when the graft is confronted to the host Otx2 expressing domain. Although Fgf8 may be involved in the inductive events, our data strongly suggest that confrontation between Otx2 and Gbx2 is essential as an organiser of the mes-met domain.  相似文献   

14.
We report the cloning of a cDNA encoding the complete mouse Gbx1 coding region as well as a comparative expression analysis of Gbx1 and Gbx2 during murine development. Gbx1 is expressed first during gastrulation and later in a dynamic pattern in the central nervous system, including rhombomeres 3 and 5, optic vesicles, and the medial ganglionic eminence. Gbx1 expression is not upregulated in Gbx2 null homozygotes. Therefore, the only regions of potential genetic redundancy are where Gbx1 and 2 are normally coexpressed: the primitive streak, regions of the ventricular zone of the neural tube and the medial ganglionic eminence. Finally, we demonstrate that neither Gbx1 nor Gbx2 require FGF8 for expression during gastrulation, contrary to previous published reports.  相似文献   

15.
Studies on expression and function of key developmental control genes suggest that the embryonic vertebrate brain has a tripartite ground plan that consists of a forebrain/midbrain, a hindbrain and an intervening midbrain/hindbrain boundary region, which are characterized by the specific expression of the Otx, Hox and Pax2/5/8 genes, respectively. We show that the embryonic brain of the fruitfly Drosophila melanogaster expresses all three sets of homologous genes in a similar tripartite pattern. Thus, a Pax2/5/8 expression domain is located at the interface of brain-specific otd/Otx2 and unpg/Gbx2 expression domains anterior to Hox expression regions. We identify this territory as the deutocerebral/tritocerebral boundary region in the embryonic Drosophila brain. Mutational inactivation of otd/Otx2 and unpg/Gbx2 result in the loss or misplacement of the brain-specific expression domains of Pax2/5/8 and Hox genes. In addition, otd/Otx2 and unpg/Gbx2 appear to negatively regulate each other at the interface of their brain-specific expression domains. Our studies demonstrate that the deutocerebral/tritocerebral boundary region in the embryonic Drosophila brain displays developmental genetic features similar to those observed for the midbrain/hindbrain boundary region in vertebrate brain development. This suggests that a tripartite organization of the embryonic brain was already established in the last common urbilaterian ancestor of protostomes and deuterostomes.  相似文献   

16.
17.
18.
Prior studies have shown that kreisler mutants display early inner ear defects that are related to abnormal hindbrain development and signaling. These defects in kreisler mice have been linked to mutation of the kr/mafB gene. To investigate potential relevance of kr/mafB and abnormal hindbrain development in inner ear patterning, we analyzed the ear morphogenesis in kreisler mice using a paint-fill technique. We also examined the expression patterns of a battery of genes important for normal inner ear patterning and development. Our results indicate that the loss of dorsal otic structures such as the endolymphatic duct and sac is attributable to the downregulation of Gbx2, Dlx5 and Wnt2b in the dorsal region of the otocyst. In contrast, the expanded expression domain of Otx2 in the ventral otic region likely contributes to the cochlear phenotype seen in kreisler mutants. Sensory organ development is also markedly disrupted in kreisler mutants. This pattern of defects and gene expression changes is remarkably similar to that observed in Gbx2 mutants. Taken together, the data show an important role for hindbrain cues, and indirectly, kr/mafB, in guiding inner ear morphogenesis. The data also identify Gbx2, Dlx5, Wnt2b and Otx2 as key otic genes ultimately affected by perturbation of the kr/mafB-hindbrain pathway.  相似文献   

19.
Using a degenerate RT-PCR-based screening method, we isolated the homeobox gene, Gbx1, from the shank skin of 13-day-old chick embryos. By in situ hybridization analysis we showed that the Gbx1 was expressed in the epidermis of the skin and the mucous epithelium of the intestine, and that among many homeobox genes isolated, expression of the Gbx1 strongly increased in the epidermis when the skin was cultured with 20 microM retinol, which induces epidermal mucous metaplasia. The Gbx1 expression in the epidermis was increased by interaction with the retinol-pretreated dermal fibroblasts, resulting in mucous metaplasia. These results suggest that the Gbx1 regulates the differentiation and transdifferentiation of the epithelium and controls the morphology of the epithelium. We isolated the chick Gbx1 cDNA clones. The amino acid sequences in homeodomain and its downstream encoded by human and chick Gbx1 cDNA were almost the same, but those upstream of the homeodomain were rather different.  相似文献   

20.
The mid/hindbrain junction region, which expresses Fgf8, can act as an organizer to transform caudal forebrain or hindbrain tissue into midbrain or cerebellar structures, respectively. FGF8-soaked beads placed in the chick forebrain can similarly induce ectopic expression of mid/hindbrain genes and development of midbrain structures (Crossley, P. H., Martinez, S. and Martin, G. R. (1996) Nature 380, 66-68). In contrast, ectopic expression of Fgf8a in the mouse midbrain and caudal forebrain using a Wnt1 regulatory element produced no apparent patterning defects in the embryos examined (Lee, S. M., Danielian, P. S., Fritzsch, B. and McMahon, A. P. (1997) Development 124, 959-969). We show here that FGF8b-soaked beads can not only induce expression of the mid/hindbrain genes En1, En2 and Pax5 in mouse embryonic day 9.5 (E9.5) caudal forebrain explants, but also can induce the hindbrain gene Gbx2 and alter the expression of Wnt1 in both midbrain and caudal forebrain explants. We also show that FGF8b-soaked beads can repress Otx2 in midbrain explants. Furthermore, Wnt1-Fgf8b transgenic embryos in which the same Wnt1 regulatory element is used to express Fgf8b, have ectopic expression of En1, En2, Pax5 and Gbx2 in the dorsal hindbrain and spinal cord at E10.5, as well as exencephaly and abnormal spinal cord morphology. More strikingly, Fgf8b expression in more rostral brain regions appears to transform the midbrain and caudal forebrain into an anterior hindbrain fate through expansion of the Gbx2 domain and repression of Otx2 as early as the 7-somite stage. These findings suggest that normal Fgf8 expression in the anterior hindbrain not only functions to maintain development of the entire mid/hindbrain by regulating genes like En1, En2 and Pax5, but also might function to maintain a metencephalic identity by regulating Gbx2 and Otx2 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号