首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
In trypanosomatid protozoa the biogenesis of mature mRNA involves addition of the spliced leader (SL) sequence from the SL RNA to polycistronic pre-mRNA via trans-splicing. Here we present a mutational analysis of the trypanosomatid Leptomonas collosoma SL RNA to further our understanding of its functional domains important for trans-splicing utilization. Mutant SL RNAs were analyzed for defects in modification of the hypermethylated cap structure (cap 4) characteristic of trypanosomatid SL RNAs, for defects in the first step of the reaction and overall utilization in trans-splicing. Single substitution of the cap 4 nucleotides led to undermethylation of the cap 4 structure, and these mutants were all impaired in their utilization in trans-splicing. Abrogation of the sequence of the Sm-like site and sequences downstream to it also showed cap modification and trans-splicing defects, thus providing further support for a functional linkage between cap modifications and trans-splicing. Further, we report that in L. collosoma both the exon and intron of the SL RNA contribute information for efficient function of the SL RNA in trans-splicing. This study, however, did not provide support for the putative SL RNA-U6 small nuclear RNA (snRNA) interaction at the Sm site like in the nematodes, suggesting differences in the bridging role of U6 in the two trans-splicing systems.  相似文献   

6.
7.
8.
9.
10.
Most nuclear pre-mRNAs in nematodes are processed by both cis- and trans-splicing. In trans-splicing, the 5' terminal exon, the spliced leader sequence (SL), is derived from a trans-splicing specific Sm snRNP, the SL RNP. Because U snRNPs are required cofactors for trans-splicing, and because this processing reaction proceeds via a two-step reaction pathway identical to that of cis-splicing, it has long been assumed that trans-splicing is catalyzed in a complex analogous to the cis-spliceosome. However, similarities or differences between cis- and trans-spliceosomes have not been established. In particular, the role of U5 snRNP in trans-splicing has been unclear. Here, we have used affinity selection to analyze the U snRNA constituents of nematode cis- and trans-spliceosomes. We find that U5 snRNP is an integral component of the trans-spliceosome and, using site-specific crosslinking, we show that U5 snRNP establishes specific Interactions with the SL RNA exon. We also identify two novel Sm snRNPs that are enriched in both cis- and trans-spliceosomes. Finally, we provide evidence that a SL RNP-containing multi-snRNP (SL, U4, U5, and U6 RNPs) may be a functional precursor in trans-spliceosome assembly.  相似文献   

11.
12.
In Caenorhabditis elegans, pre-mRNAs of many genes are trans-spliced to one of two spliced leaders, SL1 or SL2. Some of those that receive exclusively SL1 have been characterized as having at their 5' ends outrons, AU-rich sequences similar to introns followed by conventional 3' splice sites. Comparison of outrons from many different SL1-specific C. elegans genes has not revealed the presence of any consensus sequence that might encode SL1-specificity. In order to determine what parameters influence the splicing of SL1, we performed in vivo experiments with synthetic splice sites. Synthetic AU-rich RNA, 51 nt or longer, placed upstream of a consensus 3' splice site resulted in efficient trans-splicing. With all sequences tested, this trans-splicing was specifically to SL1. Thus, no information beyond the presence of AU-rich RNA at least as long as the minimum-length C. elegans intron, followed by a 3' splice site, is required to specify trans-splicing or for strict SL1 specificity.  相似文献   

13.
The process of trans splicing is essential to the maturation of all mRNAs in the Trypanosomatidae, a family of protozoan parasites, and to specific mRNAs in several species of nematode. In Trypanosoma brucei, a 39-nucleotide (nt) leader sequence originating from a small, 139-nt donor RNA (the spliced leader [SL] RNA) is spliced to the 5' end of mRNAs. An intermediate in this trans-splicing process is a Y structure which contains the 3' 100 nt of the SL RNA covalently linked to the pre-mRNA via a 2'-5' phosphodiester bond at the branch point residue. We mapped the branch points in T. brucei alpha- and beta-tubulin pre-mRNAs. The primary branch acceptors for the alpha- and beta-tubulins are 44 and 56 nt upstream of the 3' splice sites, respectively, and are A residues. Minor branch acceptors were detected 42 and 49 nt upstream of the alpha-tubulin splice site and 58 nt upstream of the splice site in beta-tubulin. The regions surrounding these branch points lack homology to the consensus sequences determined for mammalian cells and yeasts; there is also no conservation among the sequences themselves. Thus, the identified sequences suggest that the mechanism of branch point recognition in T. brucei differs from the mechanism of recognition by U2 RNA that has been proposed for other eucaryotes.  相似文献   

14.
15.
The 5' exon donor in nematode trans-splicing, the SL RNA, is a small (approximately 100 nt) RNA that resembles cis-spliceosomal U snRNAs. Extensive analyses of the RNA sequence requirements for SL RNA function have revealed four essential elements, the core Sm binding site, three nucleotides immediately downstream of this site, a region of Stem-loop II, and a 5' splice site. Although these elements are necessary and sufficient for SL RNA function in vitro, their respective roles in promoting SL RNA activity have not been elucidated. Furthermore, although it has been shown that assembly of the SL RNA into an Sm RNP is a prerequisite for function, the protein composition of the SL RNP has not been determined. Here, we have used oligoribonucleotide affinity to purify the SL RNP and find that it contains core Sm proteins as well as four specific proteins (175, 40, 30, and 28 kDa). Using in vitro assembly assays; we show that association of the 175- and 30-kDa SL-specific proteins correlates with SL RNP function in trans-splicing. Binding of these proteins depends upon the sequence of the core Sm binding site; SL RNAs containing the U1 snRNA Sm binding site assemble into Sm RNPs that contain core, but not SL-specific proteins. Furthermore, mutational and thiophosphate interference approaches reveal that both the primary nucleotide sequence and a specific phosphate oxygen within a segment of Stemloop II of the SL RNA are required for function. Finally, mutational activation of an unusual cryptic 5' splice site within the SL sequence itself suggests that U5 snRNA may play a primary role in selecting and specifying the 5' splice site in SL addition trans-splicing.  相似文献   

16.
Polycistronic pre-mRNAs from Caenohabditis elegans operons are processed by internal cleavage and polyadenylation to create 3' ends of mature mRNAs. This is accompanied by trans-splicing with SL2 approximately 100 nucleotides downstream of the 3' end formation sites to create the 5' ends of downstream mRNAs. SL2 trans-splicing depends on a U-rich element (Ur), located approximately 70 nucleotides upstream of the trans-splice site in the intercistronic region (ICR), as well as a functional 3' end formation signal. Here we report the existence of a novel gene-length RNA, the Ur-RNA, starting just upstream of the Ur element. The expression of Ur-RNA is dependent on 3' end formation as well as on the presence of the Ur element, but does not require a trans-splice site. The Ur-RNA is not capped, and alteration of the location of the Ur element in either the 5' or 3' direction alters the location of the 5' end of the Ur-RNA. We propose that a 5' to 3' exonuclease degrades the precursor RNA following cleavage at the poly(A) site, stopping when it reaches the Ur element, presumably attributable to a bound protein. Part of the function of this protein can be performed by the MS2 coat protein. Recruitment of coat protein to the ICR in the absence of the Ur element results in accumulation of an RNA equivalent to Ur-RNA, and restores trans-splicing. Only SL1, however, is used. Therefore, coat protein is sufficient for blocking the exonuclease and thereby allowing formation of a substrate for trans-splicing, but it lacks the ability to recruit the SL2 snRNP. Our results also demonstrate that MS2 coat protein can be used as an in vivo block to an exonuclease, which should have utility in mRNA stability studies.  相似文献   

17.
18.
Some pre-mRNAs in nematodes are processed by trans-splicing. In this reaction, a 22-nt 5' terminal exon (the spliced leader, SL) and its associated 2,2,7-trimethylguanosine cap are acquired from a specialized Sm snRNP, the SL RNP. Although it has been evident for many years that not all nematode mRNAs contain the SL sequence, the prevalence of trans-spliced mRNAs has, with the exception of Caenorhabditis elegans, not been determined. To address this question in an organism amenable to biochemical analysis, we have prepared a message-dependent protein synthesis system from developing embryos of the parasitic nematode, Ascaris lumbricoides. Using this system, we have used both hybrid-arrest and hybrid-selection approaches to show that the vast majority (80-90%) of A. lumbricoides mRNAs contain the SL sequence and therefore are processed by trans-splicing. Furthermore, to examine the effect of SL addition on translation, we have measured levels of protein synthesis in extracts programmed with a variety of synthetic mRNAs. We find that the SL sequence itself and its associated hypermethylated cap functionally collaborate to enhance translational efficiency, presumably at the level of initiation of protein synthesis. These results indicate that trans-splicing plays a larger role in nematode gene expression than previously suspected.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号