首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Transport characteristics of procainamide in the brush-border membrane isolated from rabbit small intestine were studied by a rapid-filtration technique. Procainamide uptake by brush-border membrane vesicles was stimulated by an outward H(+) gradient (pH(in) = 6.0, pH(out) = 7.5) against a concentration gradient (overshoot phenomenon), and this stimulation was reduced when the H(+) gradient was subjected to rapid dissipation by the presence of a protonophore, FCCP. An outward H(+) gradient-dependent procainamide uptake was not caused by H(+) diffusion potential. The initial uptake of procainamide was inhibited by other tertiary amines with N-dimethyl or N-diethyl moieties in their structures, such as triethylamine, dimethylaminoethyl chloride, and diphenhydramine, but not by tetraethylammonium and thiamine. Furthermore, procainamide uptake was stimulated by preloading the vesicles with these tertiary amines (trans-stimulation effect), indicating the existence of a specific transport system for tertiary amines. These findings indicate that procainamide transport in the intestinal brush-border membrane is mediated by the H(+)/tertiary amine antiport system that recognizes N-dimethyl or N-diethyl moieties in the structures of tertiary amines.  相似文献   

2.
3.
While prebiotic substances have attracted considerable attention in terms of their stimulatory effect on intestinal calcium absorption, the potential influence of probiotic bacteria on calcium absorption has received little research emphasis. Therefore, the objective of this study was to investigate the effect of well-characterized probiotics (Lactobacillus salivarius (UCC 118) and Bifidobacterium infantis (UCC 35624)) on calcium uptake and transepithelial calcium transport in human intestinal-like, Caco-2, cells in culture. Cells were seeded onto permeable transport membranes and allowed to differentiate, over 16 d, into intestinal-like cell monolayers. Monolayers (n=12-20/ treatment) were then exposed to E. coli UCC 118, UCC 35624 (10(7) cfu/ml) or no bacteria (control) for 6 or 24 h prior to calcium transport studies. Calcium transport was unaffected by exposure of Caco-2 cells to E. coli, UCC 118 or UCC 35624 for 6 or 24 h. Calcium uptake into Caco-2 cell monolayers after 24 h was unaffected by UCC 35624, but was significantly (P<0.05) or tended (P=0.079) to be increased by UCC 118 and E. coli, respectively, relative to the control. In conclusion, the findings of this study which suggest that bacteria can enhance intestinal calcium uptake, if not calcium transport, highlights the need to undertake further studies in this, to date, vastly underinvestigated area.  相似文献   

4.
We studied formation of domes in cell monolayers of the human colon carcinoma cell line Caco-2 which has been shown to exhibit signs of enterocytic differentiation and transport properties. After a 24 hr incubation with 4 X 10(-8) M ouabain, the number of domes seen on Caco-2 cell monolayers grown on plastic dishes was not significantly altered. After a 90 min preincubation with ouabain, 86rubidium uptake by Caco-2 cells was inhibited by ouabain, indicating that the cells have an ouabain-sensitive Na+, K+-ATPase, while dome formation was unaffected by ouabain. Domes were observed in Caco-2 cell monolayers grown on Nuclepore filters when the pore size was 0.015 micron but not when it was 0.030 micron. Our results suggest that dome formation in the Caco-2 cell line could be independent of Na+, K+-ATPase activity and might be due to accumulation of molecules having an effective hydrodynamic radius comprised between 0.015 and 0.030 micron.  相似文献   

5.
The influence of copper status on Caco-2 cell apical iron uptake and transepithelial transport was examined. Cells grown for 7-8 days in media supplemented with 1 microM CuCl(2) had 10-fold higher cellular levels of copper compared with control. Copper supplementation did not affect the integrity of differentiated Caco-2 cell monolayers grown on microporous membranes. Copper-repleted cells displayed increased uptake of iron as well as increased transport of iron across the cell monolayer. Northern blot analysis revealed that expression of the apical iron transporter divalent metal transporter-1 (DMT1), the basolateral transporter ferroportin-1 (Fpn1), and the putative ferroxidase hephaestin (Heph) was upregulated by copper supplementation, whereas the recently identified ferrireductase duodenal cytochrome b (Dcytb) was not. These results suggest that DMT1, Fpn1, and Heph are involved in the iron uptake process modulated by copper status. Although a clear role for Dcytb was not identified, an apical surface ferrireductase was modulated by copper status, suggesting that its function also contributes to the enhanced iron uptake by copper-repleted cells. A model is proposed wherein copper promotes iron depletion of intestinal Caco-2 cells, creating a deficiency state that induces upregulation of iron transport factors.  相似文献   

6.
Two experiments were conducted to investigate the kinetics of manganese (Mn) transport in Caco-2 cell monolayers and the gene expressions of Mn transport carriers in apical (AP) and basolateral (BL) membranes. In experiment 1, the cells were treated with the medium containing 146 μmol/L of Mn (MnSO4·H2O). Both the uptake and transport of Mn from AP–BL or from BL–AP at different time-points were assessed to determine the optimal time for kinetics of Mn transport. The transport of Mn increased linearly with higher efficiency values in AP–BL than in BL–AP direction, however, the uptake of Mn revealed an asymptotic pattern within 120 min. In experiment 2, the kinetics of Mn transport in AP–BL was determined with media containing Mn concentrations from 0 to 2,500 μmol/L at 40 and 120 min, respectively, and mRNA levels of divalent metal transporter 1 (DMT1) and ferroportin (FPN1) were determined in Caco-2 cells treated with the medium containing 0 or 800 μmol/L of Mn for 120 min. The kinetics of Mn transport showed a carrier-mediated process when Mn concentrations were lower than 1,000 μmol/L and a linear increment when Mn concentrations exceeded 1,000 μmol/L at either 40 or 120 min. Mn treatment decreased (P < 0.01) DMT1 mRNA level and increased (P < 0.01) FPN1 mRNA level. The results from the present study suggested that Mn transport in AP–BL fit both carrier-mediated saturable and non-saturable diffusion processes, and Mn transport carriers DMT1 and FPN1 mediate the apical uptake and basolateral exit of Mn in Caco-2 cells.  相似文献   

7.
Fluorescein is a marker-dye customary applied to the evaluation of tight-junctional permeability of epithelial cell monolayers. However, the true mechanism for the permeation has not been elucidated. Transepithelial transport of fluorescein in Caco-2 cell monolayers was therefore examined. Fluorescein transport was dependent on pH, and in a vectorical way in the apical-basolateral direction, but it was independent of the tight-junctional permeability of monolayers of these human intestinal cells. The permeation of fluorescein was concentration-dependent and saturable; the Michaelis constant was 7.7 mM and the maximum velocity was 40.3 nmol min(-1) (mg protein)(-1). Benzoic acid competitively inhibited fluorescein transport, suggesting that fluorescein is transported by a monocarboxylic acid transporter (MCT). Antioxidative polyphenolic compounds such as ferulic acid from dietary sources, competitively inhibited the permeation of fluorescein. These compounds probably share a transport carrier with fluorescein. Measurement of the effects of phenolic acids on fluorescein transport across Caco-2 monolayers would be a useful way to evaluate the intestinal absorption or bioavailability of dietary phenolic acids.  相似文献   

8.
RT-PCR of RNA isolated from monolayers of the human colonic epithelial cell lines T84 and Caco-2 demonstrated the presence of mRNA for the two cloned Na+-independent equilibrative nucleoside transporters, ENT1 and ENT2, but not for the cloned Na+-dependent concentrative nucleoside transporters, CNT1 and CNT2. Uptake of [3H]uridine by cell monolayers in balanced Na+-containing and Na+-free media confirmed the presence of only Na+-independent nucleoside transport mechanisms. This uptake was decreased by 70-75% in the presence of 1 microM nitrobenzylthioinosine, a concentration that completely inhibits ENT1, and was completely blocked by the addition of 10 microM dipyridamole, a concentration that inhibits both ENT1 and ENT2. These findings indicate the presence in T84 and Caco-2 cells of two functional Na+-independent equilibrative nucleoside transporters, ENT1 and ENT2.  相似文献   

9.
Conjugated linoleic acid (CLA) increases paracellular permeability across human intestinal-like Caco-2 cell monolayers, which transport Ca predominantly by the transcellular route. In vivo, however, paracellular Ca transport is the predominant route of Ca transport. Therefore, the objective of this study was to investigate the effect of CLA on transepithelial Ca transport in Caco-2 cells transporting Ca predominantly by the paracellular route. Cells were seeded onto permeable transport membranes and allowed to differentiate, over 14 d, into intestinal-like cell monolayers. Monolayers (n=9/treatment) were exposed to 0 (control) or 80 microM- 18:2, -cis-9, trans-11 CLA or -trans-10, cis-12 CLA for 14 d prior to Ca transport studies. Overall transepithelial Ca transport as well as transcellular and parcellular Ca transport was significantly increased (P<0.001) by exposure of Caco-2 cells to both isomers of CLA, an effect which appeared to be related to altered localization of zona occludens 1 (a tight junction protein).  相似文献   

10.
3,4-methylenedioxymethamphetamine (MDMA) is an illegal amphetamine-type stimulant (ATS) that is abused orally in the form of tablets for recreational purposes. The aim of this work is to investigate the absorption mechanism of MDMA and other related compounds that often occur together in ATS tablets, and to determine whether such tablet components interact with each other in intestinal absorption. The characteristics of MDMA uptake by the human intestinal epithelial Caco-2 cell line were investigated. The Michaelis constant and the maximal uptake velocity at pH 6.0 were 1.11 mM and 13.79 nmol/min/mg protein, respectively, and the transport was electroneutral. The initial uptake rate was regulated by both intra- and extracellular pH. MDMA permeation from the apical to the basolateral side was inferior to that in the reverse direction, and a decrease in apical pH enhanced MDMA permeation from the basolateral to the apical side. These facts indicate that this transport system may be an antiporter of H+. However, under physiological conditions, the proton gradient cannot drive the MDMA uptake because it is inwardly directed. Large concentration differences of MDMA itself drive this antiporter. Various compounds with similar amine moieties inhibited the uptake, but substrates of organic cation transporters (OCT1-3) and an H+-coupled efflux antiporter, MATE, were not recognized.  相似文献   

11.
Pick U  Zeelon O  Weiss M 《Plant physiology》1991,97(3):1226-1233
Amines at alkaline pH induce in cells of the halotolerant alga Dunaliella a transient stress that is manifested by a drop in ATP and an increase of cytoplasmic pH. As much as 300 millimolar NH4+ are taken up by the cells at pH 9. The uptake is not associated with gross changes in volume and is accompanied by K+ efflux. Most of the amine is not metabolized, and can be released by external acidification. Recovery of the cells from the amine-induced stress occurs within 30 to 60 minutes and is accompanied by massive swelling of vacuoles and by release of the fluorescent dye atebrin from these vacuoles, suggesting that amines are compartmentalized into acidic vacuoles. The time course of ammonia uptake into Dunaliella cells is biphasic—a rapid influx, associated with cytoplasmic alkalinization, followed by a temperature-dependent slow uptake phase, which is correlated with recovery of cellular ATP and cytoplasmic pH. The dependence of amine uptake on external pH indicates that it diffuses into the cells in the free amine form. Studies with lysed cell preparations, in which vacuoles become exposed but retain their capacity to accumulate amines, indicate that the permeability of the vacuolar membrane to amines is much higher than that of the plasma membrane. The results can be retionalized by assuming that the initial amine accumulation, which leads to rapid vacuolar alkalinization, activates metabolic reactions that further increase the capacity of the vacuoles to sequester most of the amine from the cytoplasm. The results indicate that acidic vacuoles in Dunaliella serve as a high-capacity buffering system for amines, and as a safeguard against cytoplasmic alkalinization and uncoupling of photosynthesis.  相似文献   

12.
Summary The recent demonstration that the human colon adenocarcinoma cell line Caco-2 was susceptible to spontaneous enterocytic differentiation led us to consider the question as to whether Caco-2 cells would exhibit sodium-coupled transport of sugars. This problem was investigated using isotopic tracer flux measurements of the nonmetabolizable sugar analog -methylglucoside (AMG). AMG accumulation in confluent monolayers was inhibited to the same extent by sodium replacement, 200 m phlorizin, 1mm phloretin, and 25mm d-glucose, but was not inhibited further in the presence of both phlorizin and phloretin. Kinetic studies were compatible with the presence of both a simple diffusive process and a single, Na+-dependent, phlorizin-and phloretin-sensitive AMG transport system. These results also ruled out any interaction between AMG and a Na+-independent, phloretin-sensitive, facilitated diffusion pathway. The brush-border membrane localization of the Na+-dependent system was inferred from the observations that its functional differentiation was synchronous with the development of brush-border membrane enzyme activities and that phlorizin and phloretin addition 1 hr after initiating sugar transport produced immediate inhibition of AMG uptake as compared to ouabain. Finally, it was shown that brush-border membrane vesicles isolated from the human fetal colonic mucosa do possess a Na+-dependent transport pathway(s) ford-glucose which was inhibited by AMG and both phlorizin and phloretin. Caco-2 cells thus appear as a valuable cell culture model to study the mechanisms involved in the differentiation and regulation of intestinal transport functions.  相似文献   

13.
Mechanisms of transport of 5-hydroxytryptamine in the pancreatic B-cell were investigated by using cell suspensions and secretory granules prepared from a transplantable rat insulinoma. (1) Cells incubated with 5-hydroxy[G-3H]tryptamine at concentrations ranging from 0.1 microM to 5 mM accumulated the radioisotope principally by a simple diffusion process. The incorporated radioactivity was recovered principally as the parent molecule and was recovered predominantly in soluble protein and secretory-granule fractions prepared from the tissue. (2) Isolated granules incubated in buffered iso-osmotic medium without ATP accumulated the amine to concentrations up to 38-fold that of the medium. This process was insensitive to reserpine and occurred over a wide range of 5-hydroxytryptamine concentrations (0.075 microM-25 mM). Above 5 mM, 5-hydroxytryptamine accumulation decreased in parallel with the breakdown of the delta pH across the granule membrane. Uptake was favoured by alkaline media and was reduced by the addition of (NH4)2SO4. In both cases a close correlation was observed between uptake and the transmembrane delta pH, a finding that suggested that 5-hydroxytryptamine permeated the membrane as the free base and equilibrated across the membrane with the delta pH. Binding of 5-hydroxytryptamine to granule constituents also played a part in this process. ATP caused a further doubling of granule 5-hydroxytryptamine uptake by a process that was sensitive to reserpine (0.5 microM). Inhibitor studies suggested that amine transport in this instance was linked to the activity of the granule membrane proton-translocating ATPase. (3) It was concluded that the uptake of amines driven by proton gradients across the insulin-granule membrane could account for the accumulation in vivo of amines in the B-cell.  相似文献   

14.
The transport of the orally absorbed cephalosporin, cephalexin, was examined in the human epithelial cell line, Caco-2 that possesses intestinal enterocyte-like properties when cultured. In sodium-free buffer, the cells accumulated 1 mM D-[9-14C]cephalexin against a concentration gradient and obtained a distribution ratio of 3.5 within 180 min. Drug uptake was maximal when the extracellular pH was 6.0. Uptake was reduced by metabolic inhibitors and by protonophores indicating that uptake was energy- and proton-dependent. Kinetic analysis of the concentration dependence of the rate of cephalexin uptake showed that a non-saturable component (Kd of 0.18 +/- 0.01 nmol/min per mg protein per mM) and a transport system with a Km of 7.5 +/- 2.8 mM and a Vmax of 6.5 +/- 0.9 nmol/min per mg protein were responsible for drug uptake. Uptake was competitively inhibited by dipeptides. The transport carrier exhibited stereospecificity for the L-isomer of cephalexin. Drug uptake was not affected by the presence of amino acids, organic anions, 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid or 4,4'-diisothiocyano-2,2'-disulfonic stilbene. Therefore, Caco-2 cells take up cephalexin by a proton-dependent dipeptide transport carrier that closely resembles the transporter present in the intestine. Caco-2 cells represent a cellular model for future studies of the dipeptide transporter.  相似文献   

15.
Phenolic acids such as p-coumaric acid and microbial metabolites of poorly absorbed polyphenols are absorbed by the monocarboxylic acid transporter (MCT)-mediated transport system which is identical to the fluorescein/H(+) cotransport system. We focus here on the physiological impact of MCT-mediated absorption and distribution. We examined whether MCT1, the best-characterized isoform found in almost all tissues, is involved in this MCT-mediated transport system. The induction of MCT1 expression in Caco-2 cells by a treatment with sodium butyrate (NaBut) did not increase the fluorescein permeability. Moreover, the transfection of Caco-2 cells with an expression vector encoding MCT1 caused no increase in either the permeability or uptake of fluorescein. Furthermore, in the MCT1-expressing oocytes, no increase of p-coumaric acid uptake was apparent, whereas the uptake of salicylic acid, a substrate of MCT1, nearly doubled. Our data therefore establish that MCT1 was not involved in the MCT-mediated transport of phenolic acids.  相似文献   

16.
3,4-Methylenedioxymethamphetamine (MDMA) is an illegal amphetamine-type stimulant (ATS) that is abused orally in the form of tablets for recreational purposes. The aim of this work is to investigate the absorption mechanism of MDMA and other related compounds that often occur together in ATS tablets, and to determine whether such tablet components interact with each other in intestinal absorption. The characteristics of MDMA uptake by the human intestinal epithelial Caco-2 cell line were investigated. The Michaelis constant and the maximal uptake velocity at pH 6.0 were 1.11 mM and 13.79 nmol/min/mg protein, respectively, and the transport was electroneutral. The initial uptake rate was regulated by both intra- and extracellular pH. MDMA permeation from the apical to the basolateral side was inferior to that in the reverse direction, and a decrease in apical pH enhanced MDMA permeation from the basolateral to the apical side. These facts indicate that this transport system may be an antiporter of H+. However, under physiological conditions, the proton gradient cannot drive the MDMA uptake because it is inwardly directed. Large concentration differences of MDMA itself drive this antiporter. Various compounds with similar amine moieties inhibited the uptake, but substrates of organic cation transporters (OCT1-3) and an H+-coupled efflux antiporter, MATE, were not recognized.  相似文献   

17.
Liu Z  Wang C  Liu Q  Meng Q  Cang J  Mei L  Kaku T  Liu K 《Peptides》2011,32(4):747-754
Cyclo-trans-4-l-hydroxyprolyl-l-serine (JBP485) is a dipeptide with anti-hepatitis activity that has been chemically synthesized. Previous experiments in rats showed that JBP485 was well absorbed by the intestine after oral administration. The human peptide transporter (PEPT1) is expressed in the intestine and recognizes compounds such as dipeptides and tripeptides. The purposes of this study were to determine if JBP485 acted as a substrate for intestinal PEPT1, and to investigate the characteristics of JBP485 uptake and transepithelial transport by PEPT1. The uptake of JBP485 was pH dependent in human intestinal epithelial cells Caco-2. And JBP485 uptake was also significantly inhibited by glycylsarcosine (Gly-Sar, a typical substrate for PEPT1 transporters), JBP923 (a derivative of JBP485), and cephalexin (CEX, a β-lactam antibiotic and a known substrate of PEPT1) in Caco-2 cells. The rate of apical-to-basolateral transepithelial transport of JBP485 was 1.84 times higher than that for basolateral-to-apical transport. JBP485 transport was obviously inhibited by Gly-Sar, JBP923 and CEX in Caco-2 cells. The uptake of JBP485 was increased by verapamil but not by cyclosporin A (CsA) and inhibited by the presence of Zn2+ or the toxic metabolite of ethanol, acetaldehyde (AcH) in Caco-2 cells. The in vivo uptake of JBP485 was increased by verapamil and decreased by ethanol in vivo, which was consisted with the in vitro study. PEPT1 mRNA levels were enhanced after exposure of the cells to JBP485 for 24 h, compared to control. In conclusion, JBP485 was actively transported by the intestinal oligopeptide transporter PEPT1. This mechanism is likely to contribute to the rapid absorption of JBP485 by the gastrointestinal tract after oral administration.  相似文献   

18.
The influence of docosahexaenoic acid (DHA)- and eicosapentaenoic acid (EPA)-enriched phosphatidylcholine (PC) on the permeability, transport and uptake of phospholipids was evaluated in Caco-2 cells. The cells were grown on permeable polycarbonate transwell filters, thus allowing separate access to the apical and basolateral chambers. The monolayers of the cells were used to measure lucifer yellow permeability and transepithelial electrical resistance (TEER). Transcellular transportation of diphenylhexatriene (DPH) labeled-PC small unilamellar vesicles (SUV) from the apical to basolateral chamber, and uptake of the same SUV was monitored in the cell monolayers. Cell-membrane perturbation was evaluated to measure the release of lactate dehydrogenase and to determine the cell viability with sodium 2-(4-iodophenyl)-3-(4-nitrophenyl) -5-(2, 4-disulfophenyl)-2H-tetrazolium dye reduction assay. The lucifer yellow flux was 1.0 and 1.5 nmol/h/cm2 with 50 μM PC, and 17.0 and 23.0 nmol/h/cm2 with 100 μM PC when monolayers of Caco-2 cells were treated with DHA- and EPA-enriched PC, respectively. TEER decreased to 24 and 27% with 50 and 100 μM DHA-enriched PC, and to 25 and 30% with 50 and 100 μM EPA-enriched PC, respectively. Our results show that DHA- and EPA-enriched PC increases tight junction permeability across the Caco-2 cell monolayer whereas soy PC has no effect on tight junction permeability. Transportation and uptake of DHA- and EPA-enriched PC SUV differed significantly (P < 0.01) from those of soy PC SUV at all doses. We found that PC SUV transported across Caco-2 monolayer and was taken up by Caco-2 cells with very slight injury of the cell membrane up to 100 μM PC. Lactate dehydrogenase release and cell viability did not differ significantly between the treatment and control, emphasizing that injury was minimal. Our results suggest that DHA- and EPA-enriched PC enhance the permeability, transport and uptake of PC SUV across monolayers of Caco-2 cells. (Mol Cell Biochem xxx: 1–9, 2005)  相似文献   

19.
The Caco-2 cell line was used as a model to determine if the type of fatty acid, unsaturated versus saturated, differentially altered the uptake and transport of iron in the human intestine and if the changes were the result of alterations in monolayer integrity and paracellular transport. Cells were cultured in either a lower-iron or normal-iron medium and incubated with a bovine serum albumin control, linoleate, oleate, palmatate, or stearate. Oleate, palmatate, and stearate enhanced (p<0.05) iron uptake in cells grown in lower iron. The fatty acid effect on iron uptake by cells grown in normal iron was not as pronounced. Iron transport was not affected (p>0.05) by an interaction between the type of medium (iron concentration) and the type of fatty acid. Iron transport was enhanced (p<0.05) with palmatate and stearate. Various indicators of monolayer integrity and paracellular transport were also affected by the fatty acids, thus impacting iron uptake and transport. These results indicate that oleate, palmatate, and stearic can enhance iron uptake and transport; however, this enhancement may be the result of alterations in the integrity of the intestine. A portion of the data was presented at Experimental Biology 96 as a poster session. E. A. Droke, L. K. Johnson, and H. C. Lukaski. Fatty acids affect iron uptake and transport in Caco-2 cells. FASEB J. 10, 1431 (1996).  相似文献   

20.
The short-chain fatty acid butyrate was readily taken up by Caco-2 cells. Transport exhibited saturation kinetics, was enhanced by low extracellular pH, and was Na(+) independent. Butyrate uptake was unaffected by DIDS; however, alpha-cyano-4-hydroxycinnamate and the butyrate analogs propionate and L-lactate significantly inhibited uptake. These results suggest that butyrate transport by Caco-2 cells is mediated by a transporter belonging to the monocarboxylate transporter family. We identified five isoforms of this transporter, MCT1, MCT3, MCT4, MCT5, and MCT6, in Caco-2 cells by PCR, and MCT1 was found to be the most abundant isoform by RNase protection assay. Transient transfection of MCT1, in the antisense orientation, resulted in significant inhibition of butyrate uptake. The cells fully recovered from this inhibition by 5 days after transfection. In conclusion, our data showed that the MCT1 transporter may play a major role in the transport of butyrate into Caco-2 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号