首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regional expression of six different cytochrome P450 (CYP) forms in rat liver under constitutive and induced conditions was compared using immunological techniques. Immunostaining of consecutive thin sections from control liver revealed that the same hepatocytes, forming a 6-8 cells thick layer surrounding the terminal hepatic venules, were stained for CYP2B1/2, CYP2E1 and CYP3A1. Staining of CYP2A1 extended further into the midzonal region, whereas all cells of the acinus stained for CYPEtOH2. These results were supported by Western blot analysis of cell lysates from the periportal or perivenous region obtained by zone-restricted digitonin treatment during in situ perfusion. The data suggest three distinct patterns of constitutive P450 expression: perivenous-restricted (CYP2B1/2, CYP2E1 and CYP3A1); perivenous-dominated (CYP2A1) and panacinar (CYPEtOH2). Chronic exposure to ethanol caused induction of CYP2E1 in the same cells already being constitutively expressed, whereas CYPEtOH2 was more induced in the periportal area. The relative induction of CYP2B1/2, CYP3A1 and CYPEtOH2 after treatment with phenobarbital was stronger in periportal hepatocytes, resulting in levelling out of the initial perivenous dominance of CYP2B1/2 and CYP3A1, whereas CYPEtOH2 became periportal-dominated. Acetone induced CYP2E1, CYP2C11 and CYP3A1 selectively in the perivenous area. These studies indicate that a particular P450 isozyme is generally induced in the same cells where it is constitutively expressed, and that this regional selectivity is independent of the kind of inducer. The data suggest that, during maturation, the hepatocytes acquire various phenotypes in the periportal and perivenous region, to respond differently to endogenous and exogenous signals in the control of P450 expression.  相似文献   

2.
用大鼠肝脏门静脉或肝静脉周围的肝细胞来研究葡萄糖和酮体生成的区域分布。肝细胞通过毛地黄皂苷-胶原酶灌流技术分离。门静脉周围肝细胞的γ谷氨酰转肽酶的活性比肝静脉周围肝细胞高2.4倍;而谷氨酰胺合成酶的活性则相反,肝静脉周围肝细胞高出56倍。门静脉周围肝细胞的内源性葡萄糖合成比肝静脉周围肝细胞高1.57倍。给予刺激葡萄糖异生的底物,门静脉周围肝细胞的葡萄糖合成则增加1.7-2.1倍。肝静脉周围肝细胞的内源性酮体生成比门静脉周围肝细胞高1.3倍。给予能明显刺激酮体生成的辛酸盐,肝静脉周围肝细胞的酮体生成仅略为增加。我们的结果证实,在基础和刺激的条件下,葡萄糖的异生在门静脉周围肝细胞中优先,而酮体生成仅在肝静脉周围肝细胞占微弱的优势。  相似文献   

3.
4.
The transport of alanine by system A is an important source of carbons for the synthesis of glucose in the liver. Here, we show that the mRNA encoding the ubiquitously expressed isoform of the rat system A transporter (SAT2) is dramatically increased in liver following streptozotocin-induced diabetes. This increase in SAT2 mRNA is intensified in the gluconeogenic periportal hepatocytes and also in hepatocytes surrounding the central vein. SAT3, the more abundant system A mRNA isoform present in liver, is restricted to perivenous hepatocytes and is also increased following this treatment but to a much lesser extent than SAT2 mRNA. SN1, an abundant system N mRNA isoform expressed in both perivenous and periportal hepatocytes, is not affected by streptozotocin treatment. A pharmacological dose of glucagon also increased both SAT2 and SAT3 mRNA levels in liver while SN1 mRNA levels remained unaffected. These results indicate that the increase in system A activity observed in liver following experimentally induced diabetes or glucagon treatment is due to the selective increase in mRNAs encoding system A transporters.  相似文献   

5.
A 3-methylcholanthrene-inducible enzyme form of UDP-glucuronosyltransferase has been localized within the liver lobule both immunohistochemically and enzymatically in microdissected centrilobular and periportal liver tissue. Livers of untreated, 3-methylcholanthrene- and phenobarbital-treated rats have been compared. The enzyme was detected in hepatocytes throughout the liver. However both immunohistochemical determination of the enzyme level and biochemical determination of its activity towards 1-naphthol revealed a heterogeneous distribution of the enzyme. In untreated controls and 3-methylcholanthrene-treated rats both enzyme activity and histochemical staining was highest in centrilobular hepatocytes. However, after phenobarbital-treatment enzyme staining and activity was highest in periportal hepatocytes, suggesting that the differentially inducible enzyme activities may be localized in different zones of the liver lobule. The results demonstrate that the 3-methylcholanthrene-inducible UDP-glucuronosyltransferase is preferentially expressed in centrilobular hepatocytes.  相似文献   

6.
Clofibrate induces hypertrophy and hyperplasia and marked changes in the activities of various enzymes in rat liver. We examined the effects of treatment of rats with clofibrate on enzyme induction and on rates of metabolic flux in hepatocytes isolated from the periportal and perivenous zones of the liver. Clofibrate induced the activities of carnitine acetyltransferase (90-fold), carnitine palmitoyltransferase (3-fold) and NADP-linked malic enzyme (3-fold) to the same level in periportal as in perivenous hepatocytes, suggesting that these enzymes were induced uniformly throughout the liver acinus. Increased rates of palmitate metabolism and ketogenesis after clofibrate treatment were associated with: a more oxidised mitochondrial redox state; diminished responsiveness to glucagon and loss of periportal/perivenous zonation. Despite the marked liver enlargement and hyperplasia caused by clofibrate, the normal periportal/perivenous zonation of alanine aminotransferase and gluconeogenesis was preserved in livers of clofibrate-treated rats, indicating that clofibrate-induced hyperplasia does not disrupt the normal acinar zonation of these metabolic functions.  相似文献   

7.
8.
The zonal distribution of GSH metabolism was investigated by comparing hepatocytes obtained from the periportal (zone 1) or perivenous (zone 3) region by digitonin/collagenase perfusion. Freshly isolated periportal and perivenous cells had similar viability (dye exclusion, lactate dehydrogenase leakage and ATP content) and GSH content (2.4 and 2.7 mumol/g respectively). During incubation, periportal cells slowly accumulated GSH (0.35 mumol/h per g), whereas in perivenous cells a decrease occurred (-0.14 mumol/h per g). Also, in the presence of either L-methionine or L-cysteine (0.5 mM) periportal hepatocytes accumulated GSH much faster (3.5 mumol/h per g) than did perivenous cells (1.9 mumol/h per g). These periportal-perivenous differences were also found in cells from fasted rats. Efflux of GSH was faster from perivenous cells than from periportal cells, but this difference only explained 10-20% of the periportal-perivenous difference in accumulation. Furthermore, periportal cells accumulated GSH to a plateau 26-40% higher than in perivenous cells. There was no significant difference in gamma-glutamylcysteine synthetase or glutathione synthetase activity between the periportal and perivenous cell preparations. The periportal-perivenous difference in GSH accumulation was unaffected by inhibition of gamma-glutamyl transpeptidase or by 5 mM-glutamate or -glutamine, but was slightly diminished by 2 mM-L-methionine. This suggests differences between periportal and perivenous cells in their metabolism and/or transport of (sulphur) amino acids. Our results suggest that a lower GSH replenishment capacity of the hepatocytes from the perivenous region may contribute to the greater vulnerability of this region to xenobiotic damage.  相似文献   

9.
10.
Glycogen synthesis in hepatocyte cultures is dependent on: (1) the nutritional state of the donor rat, (2) the acinar origin of the hepatocytes, (3) the concentrations of glucose and gluconeogenic precursors, and (4) insulin. High concentrations of glucose (15-25 mM) and gluconeogenic precursors (10 mM-lactate and 1 mM-pyruvate) had a synergistic effect on glycogen deposition in both periportal and perivenous hepatocytes. When hepatocytes were challenged with glucose, lactate and pyruvate in the absence of insulin, glycogen was deposited at a linear rate for 2 h and then reached a plateau. However, in the presence of insulin, the initial rate of glycogen deposition was increased (20-40%) and glycogen deposition continued for more than 4 h. Consequently, insulin had a more marked effect on the glycogen accumulated in the cell after 4 h (100-200% increase) than on the initial rate of glycogen deposition. Glycogen accumulation in hepatocyte cultures prepared from rats that were fasted for 24 h and then re-fed for 3 h before liver perfusion was 2-fold higher than in hepatocytes from rats fed ad libitum and 4-fold higher than in hepatocytes from fasted rats. The incorporation of [14C]lactate into glycogen was 2-4-fold higher in periportal than in perivenous hepatocytes in both the absence and the presence of insulin, whereas the incorporation of [14C]glucose into glycogen was similar in periportal and perivenous hepatocytes in the absence of insulin, but higher in perivenous hepatocytes in the presence of insulin. Rates of glycogen deposition in the combined presence of glucose and gluconeogenic precursors were similar in periportal and perivenous hepatocytes, whereas in the presence of glucose alone, rates of glycogen deposition paralleled the incorporation of [14C]glucose into glycogen and were higher in perivenous hepatocytes in the presence of insulin. It is concluded that periportal and perivenous hepatocytes utilize different substrates for glycogen synthesis, but differences between the two cell populations in the relative utilization of glucose and gluconeogenic precursors are dependent on the presence of insulin and on the nutritional state of the rat.  相似文献   

11.
Hepatocytes isolated from the periportal or perivenous zones of livers of fed rats were used to study the long-term (14 h) and short-term (2 h) effects of glucagon on gluconeogenesis and ketogenesis. Long-term culture with glucagon (100 nM) resulted in a greater increase (P less than 0.01) in gluconeogenesis in periportal than in perivenous cells (93 +/- 16 versus 30 +/- 14 nmol/h per mg of protein; 72% versus 30% increase), but short-term incubation (2 h) with glucagon resulted in similar stimulation in the two cell populations. Rates of ketogenesis (acetoacetate and D-3-hydroxybutyrate production) were not significantly higher in periportal cells cultured without glucagon, compared with perivenous cells. However, after long-term culture with glucagon, the periportal cells had a significantly higher rate of ketogenesis (from either palmitate or octanoate as substrate), but a lower 3-hydroxybutyrate/acetoacetate production ratio, suggesting a more oxidized mitochondrial NADH/NAD+ redox state despite the higher rate of beta-oxidation. Periportal hepatocytes had a higher activity of carnitine palmitoyltransferase but a lower activity of citrate synthase than did perivenous cells. These findings suggest that: (i) glucagon elicits greater long-term stimulation of gluconeogenesis in periportal than in perivenous hepatocytes maintained in culture; (ii) after culture with glucagon, the rates of ketogenesis and the mitochondrial redox state differ in periportal and perivenous hepatocytes.  相似文献   

12.
Gluconeogenesis from fructose was studied in periportal and pericentral regions of the liver lobule in perfused livers from fasted, phenobarbital-treated rats. When fructose was infused in increasing concentrations from 0.25 to 4 mM, corresponding stepwise increases in glucose formation by the perfused liver were observed as expected. Rates of glucose and lactate production from 4 mM fructose were around 100 and 75 mumol/g/h, respectively. Rates of fructose uptake were around 190 mumol/g/h when 4 mM fructose was infused. 3-Mercaptopicolinate, an inhibitor of phosphoenolpyruvate carboxykinase, decreased glucose formation from fructose maximally by 20% suggesting that a fraction of the lactate formed from fructose is used for glucose synthesis. A good correlation (r = 0.92) between extra oxygen consumed and glucose produced from fructose was observed. At low fructose concentrations (less than 0.5 mM), the extra oxygen uptake was much greater than could be accounted for by glucose synthesis possibly reflecting fructose 1-phosphate accumulation. Furthermore, fructose diminished ATP/ADP ratios from about 4.0 to 2.0 in periportal and pericentral regions of the liver lobule indicating that the initial phosphorylation of fructose via fructokinase occurs in both regions of the liver lobule. Basal rates of oxygen uptake measured with miniature oxygen electrodes were 2- to 3-fold higher in periportal than in pericentral regions of the liver lobule during perfusions in the anterograde direction. Infusion of fructose increased oxygen uptake by 65 mumol/g/h in periportal areas but had no effect in pericentral regions of the liver lobule indicating higher local rates of gluconeogenesis in hepatocytes located around the portal vein. When perfusion was in the retrograde direction, however, glucose was synthesized nearly exclusively from fructose in upstream, pericentral regions. Thus, gluconeogenesis from fructose is confined to oxygen-rich upstream regions of the liver lobule in the perfused liver.  相似文献   

13.
Perivenous and periportal hepatocytes were isolated by the digitonin/collagenase perfusion technique. The specific activity of phosphate-activated glutaminase was 2.33-fold higher in periportal cells than in perivenous cells. Similarly, the relative abundance of glutaminase mRNA was 2.6-fold higher in samples from periportal cells. The distribution of glutaminase activity and mRNA was compared with those for glutamine synthetase (predominantly perivenous) and phosphoenolpyruvate carboxykinase (predominantly periportal). The results suggest that phosphate-activated glutaminase is predominantly expressed in the periportal zone of the liver acinus.  相似文献   

14.
Periportal and perivenous hepatocytes were isolated by microdissection from lyophilized liver slices (16 micrometer) from fed and fasted rats and from a human patient. NADP/NADPH cycling was used to determine fructose-1,6-bisphosphatase activity in the isolated hepatocytes (10 ng dry weight). The periportal hepatocytes contain 3 times as much fructose-1,6-bisphosphatase activity as the perivenous hepatocytes. A 24 h fast led to two-fold increase in the activity in the periportal hepatocytes and a four-fold increase in the perivenous hepatocytes. Fructose-1,6-bisphosphatase parallels closely with the key enzyme phosphoenolpyruvate carboxykinase, and therefore can be considered a suitable marker for gluconeogenic capacity.  相似文献   

15.
16.
1. Isolated periportal (PP) and perivenous (PV) hepatocytes from normal and inducer-treated rat livers were used to examine the following: intralobular localization of cytochrome P-450IA, P-450IIB, P-450IIE and P-450IIIA dependent monooxygenase activities and effects of phenobarbital (PB), beta-naphthoflavone (BNF) and pregnenolone-16 alpha-carbonitrile (PCN) on the zonal induction of these monooxygenases. 2. 7-Ethoxyresorufin O-deethylase (7EROD), 7-pentoxyresorufin O-dealkylase (7PROD) and N-nitrosodimethylamine N-demethylase (NAND) activities of PP hepatocytes were not significantly different from those of PV hepatocytes. 3. Ethylmorphine N-demethylase (EMND) activity was significantly higher in PV hepatocytes than in PP hepatocytes of normal rats. 4. EMND activity was induced by PCN and PB treatments. The response of EMND activity to PCN treatment was higher in PP hepatocytes than that in PV hepatocytes, and as a result the PV dominance disappeared following PCN treatment. 5. Extents of the response of this activity to PB treatment were similar in PP and PV hepatocytes, and PV dominance remained unchanged even after induction.  相似文献   

17.
Stimulation of DNA synthesis by EGF was compared in cultured periportal and perivenous hepatocyte populations. Periportal hepatocytes responded to EGF more sensitive (IC50-values 20 vs 75 ng/ml) and with a higher maximal stimulation (420 vs 290%) than perivenous hepatocytes with respect to both [3H]thymidine incorporation and labeling index. The glutamine synthetase-positive hepatocytes responded much less to EGF than did the perivenous cells in general. The simultaneous presence of insulin increased the sensitivity for EGF predominantly in the periportal hepatocytes. These inherent differences in the growth potential of hepatocytes from different acinar localizations may contribute to different growth patterns across the lobules in normal and regenerating liver.  相似文献   

18.
Hepatocytes of the periportal and perivenous zones of the liver lobule show marked differences in the contents and activities of many enzymes and other proteins. Previous studies from our and other groups have pointed towards an important role of beta-catenin-dependent signaling in the regulation of expression of genes encoding proteins with preferential perivenous localization, whereas, in contrast, signaling through Ras-dependent pathway(s) may induce a 'periportal' phenotype. We have now conducted a series of experiments to further investigate this hypothesis. In transgenic mice with scattered expression of an activated Ha-ras (Ha-ras(G12V)) mutant in liver, expression of the perivenous markers glutamine synthetase and two cytochrome P450 isoforms was completely abolished in those hepatocytes demonstrating constitutively activated extracellular signal-regulated kinase activity, even though they were located directly adjacent to central veins. Similarly, incubation of primary hepatocytes or hepatoma cells with increasing amounts of serum caused a concentration-dependent attenuation of expression of perivenous marker mRNAs, whereas the expression of periportal markers was increased. The inhibitory effect of high amounts of serum on the expression of perivenous markers was also observed if their expression was stimulated by activation of beta-catenin signaling, and comparable inhibitory effects were seen in cells stably transfected with a T-cell factor/lymphoid-enhancing factor-driven luciferase reporter. Epidermal growth factor could partly mimic serum effects in hepatoma cells, and its effect could be blocked by an inhibitor of extracellular signal-regulated kinase activity. These data suggest that activation of the Ras/mitogen-activated protein kinase (extracellular signal-regulated kinase) pathway favors periportal gene expression while simultaneously antagonizing a perivenous phenotype of hepatocytes.  相似文献   

19.
Methods for the study of liver cell heterogeneity   总被引:2,自引:0,他引:2  
A large number of histological, histochemical and biochemical techniques are available for studying liver cell heterogeneity. Structural differences are recognized by morphometric analyses of electron micrographs. The zonal heterogeneity of enzyme activities can be demonstrated by histochemistry and more precisely by ultramicrobiochemical assays in microdissected periportal and perivenous tissue. Immunohistochemistry is useful for quantifying and localizing proteins, especially isoenzymes, without depending on their biological activity. The zonal quantification of specific mRNA can be achieved by in situ hybridization. The different structural and enzymic equipment of periportal and perivenous tissue found by these techniques has led to the concept of metabolic zonation. This hypothesis can be confirmed by determination of metabolic rates in perfused liver after selective zonal damage, in separated periportal and perivenous hepatocytes as well as in periportal and perivenous tissue of perfused liver by non-invasive techniques.  相似文献   

20.
To examine variations in immunoreactivity of angiotensinogen and cathepsins B and H in hepatocytes over 24 hr, rat liver was examined immunohistochemically. Immunoreactivity of angiotensinogen and cathepsins B and H in periportal and perivenous hepatocytes varied significantly over 24 hr, when analyzed by an image analyzer. In periportal and perivenous hepatocytes, immunoreactivity of angiotensinogen was highest at 0800 hr and lowest at 2000 hr or 0000 hr, whereas that of cathepsins B and H was maximal at 1600 hr and minimal at 0400 hr or 0800 hr. Proteolytic activities of cathepsins B and H in liver extracts varied in parallel to the variations in immunoreactivity of these enzymes. Localization of angiotensinogen in the liver acinus was inversely correlated to that of cathepsins B and H; angiotensinogen was predominantly localized in periportal hepatocytes, but cathepsins B and H were in perivenous hepatocytes at each time point examined. These results suggest that angiotensinogen in hepatocytes is actively synthesized and secreted early in the light period, whereas proteolytic activities in lysosomes of hepatocytes are augmented late in the light period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号