首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The quinone-tanning hypothesis for insect cuticle sclerotization proposes that N-acylcatecholamines are oxidized by a phenoloxidase to quinones and quinone methides, which serve as electrophilic cross-linking agents to form covalent cross-links between cuticular proteins. We investigated model reactions for protein cross-linking that occurs during insect cuticle sclerotization using recombinant pupal cuticular proteins from the tobacco hornworm, Manduca sexta, fungal or recombinant hornworm laccase-type phenoloxidase, and the cross-linking agent precursor N-acylcatecholamines, N-beta-alanydopamine (NBAD) or N-acetyldopamine (NADA). Recombinant M. sexta pupal cuticular proteins MsCP36, MsCP20, and MsCP27 were expressed and purified to near homogeneity. Polyclonal antisera to these recombinant proteins recognized the native proteins in crude pharate brown-colored pupal cuticle homogenates. Furthermore, antisera to MsCP36, which contains a type-1 Rebers and Riddiford (RR-1) consensus sequence, also recognized an immunoreactive protein in homogenates of larval head capsule exuviae, indicating the presence of an RR-1 cuticular protein in a very hard, sclerotized and nonpigmented cuticle. All three of the proteins formed small and large oligomers stable to boiling SDS treatment under reducing conditions after reaction with laccase and the N-acylcatecholamines. The optimal reaction conditions for MsCP36 polymerization were 0.3mM MsCP36, 7.4mM NBAD and 1.0U/mul fungal laccase. Approximately 5-10% of the monomer reacted to yield insoluble oligomers and polymers during the reaction, and the monomer also became increasingly insoluble in SDS solution after reaction with the oxidized NBAD. When NADA was used instead of NBAD, less oligomer formation occurred, and most of the protein remained soluble. Radiolabeled NADA became covalently bound to the MsCP36 monomer and oligomers during cross-linking. Recombinant Manduca laccase (MsLac2) also catalyzed the polymerization of MsCP36. These results support the hypothesis that during sclerotization, insect cuticular proteins are oxidatively conjugated with catechols, a posttranslational process termed catecholation, and then become cross-linked, forming oligomers and subsequently polymers.  相似文献   

3.
Proteins were extracted from the cuticle of mid-instar nymphs of locusts, Locusta migratoria, and cockroaches, Blaberus craniifer. Seven proteins were purified from the locust extract and five from the cockroach extract, and their amino acid sequences were determined. Polyacrylamide gel electrophoresis indicates that the proteins are present only in the post-ecdysially deposited layer of the nymphal cuticles. One of the locust and one of the cockroach nymphal proteins contain a 68-residue motif, the RR-2 sequence, which has been reported for several proteins from the solid cuticles of other insect species. Two of the cockroach proteins contain a 75-residue motif, which is also present in a protein from the larval/pupal cuticle of a beetle, Tenebrio molitor, and in proteins from the exoskeletons of a lobster, Homarus americanus, and a spider, Araneus diadematus. The motif contains a variant of the Rebers-Riddiford consensus sequence, and is called the RR-3 motif. One of the locust and three of the cockroach post-ecdysial proteins contain one or more copies of an 18-residue motif, previously reported in a protein from Bombyx mori pupal cuticle. The nymphal post-ecdysial proteins from both species have features in common with pre-ecdysial proteins (pharate proteins) in cuticles destined to be sclerotised; they show little similarity to the post-ecdysial cuticular proteins from adult locusts or to proteins from soft, pliable cuticles. Possible roles for post-ecdysial cuticular proteins are discussed in relation to the reported structures.  相似文献   

4.
At the initiation of metamorphosis when exposed to ecdysteroid in the absence of juvenile hormone (JH), the lepidopteran epidermis changes its commitment from one for larval differentiation to one for pupal differentiation. Changes in mRNA populations during this change both in vivo and in vitro were followed by a one-dimensional SDS-gel electrophoretic analysis of translation products made in a mRNA-dependent rabbit reticulocyte lysate system. The larval epidermal cell was found to lose its translatable mRNAs for larval cuticular proteins and the larval-specific pigment insecticyanin during the change in commitment; these never reappeared. For Class I cuticular proteins and for insecticyanin, this loss occurred during the exposure to ecdysteroid, each with a differing time course. By contrast, Class II cuticular mRNAs first increased during this time, then also disappeared by the time the cells were pupally committed. In vitro these mRNAs appeared in only trace amounts in response to 20-hydroxyecdysone (20-HE). The pupally committed cell (late in the wandering stage) contained mRNAs for three low-molecular-weight proteins which were precipitable with the pupal cuticular antiserum. The remainder of the pupal cuticular mRNAs were not translatable until the third day after wandering, a time when pupal cuticle is being deposited in response to a molting surge of ecdysteroid. The pupally committed cell also had at least one new noncuticular mRNA which coded for a 34K protein and which was absent from both larval and pupal epidermal cells making cuticle. Since its appearance in response to 20-HE in vitro is repressed by JH, it is called a pupal commitment-specific protein. Thus, during the change of commitment 20-HE inactivates larval-specific genes irreversibly in a sequential cascade of events. The activation of most pupal-specific genes then requires a subsequent exposure to more ecdysteroid.  相似文献   

5.
Hormonal Control of Epidermal Cell Development   总被引:2,自引:1,他引:1  
SYNOPSIS. During larval life the insect epidermis makes a larvalcuticle and certain pigments due to the presence of juvenilehormone (JH) at critical times during the molt cycle. The presenceof JH also permits growth of imaginal discs and maintains strictlylarval epidermis. At metamorphosis the lepidopteran epidermisresponds to a low level of 20- hydroxyecdysone (20HE) in theabsence of JH by becoming pupally committed, then later it formsa pupal cuticle when more 20HE appears, even though JH is present.During the change of commitment, DNA synthesis occurs but isnot essential, whereas both RN A and protein synthesis are.The major changes in the translatable mRNA population at thistime are threefold: a decline in most larval cuticle mRNAs,a transient increase followed by a disappearance of a few larvalcuticle mRNAs, and an appearance of at least one ‘pupalcommitment’ mRNA and two to three mRNAs for small pupalcuticular proteins. Similar changes are seen in the proteinsynthetic patterns. Thus, a pupally committed cell is one whichcan no longer make larval products but which is not yet ableto make most pupal products. Juvenile hormone prevents the changeto pupal commitment by directing some of both the primary andthe secondary actions of 20HE on the genome.  相似文献   

6.
7.
The largest arthropod cuticular protein family, CPR, has the Rebers and Riddiford (R&R) Consensus that in an extended form confers chitin-binding properties. Two forms of the Consensus, RR-1 and RR-2, have been recognized and initial data suggested that the RR-1 and RR-2 proteins were present in different regions within the cuticle itself. Thus, RR-2 proteins would contribute to exocuticle that becomes sclerotized, while RR-1s would be found in endocuticle that remains soft. An alternative, and more common, suggestion is that RR-1 proteins are used for soft, flexible cuticles such as intersegmental membranes, while RR-2s are associated with hard cuticle such as sclerites and head capsules. We used TEM immunogold detection to localize the position of several RR-1 and RR-2 proteins in the cuticle of Anopheles gambiae. RR-1s were localized in the procuticle of the soft intersegmental membrane except for one protein found in the endocuticle of hard cuticle. RR-2s were consistently found in hard cuticle and not in flexible cuticle. All RR-2 antibodies localized to the exocuticle and four out of six were also found in the endocuticle. Hence the location of RR-1s and RR-2s depends more on properties of individual proteins than on either hypothesis.  相似文献   

8.
Cuticular proteins are one of the determinants of the physical properties of cuticle. A common consensus region (extended R&R Consensus) in these proteins binds to chitin, the other major component of cuticle. We previously predicted the preponderance of beta-pleated sheet in the consensus region and proposed its responsibility for the formation of helicoidal cuticle (Iconomidou et al., Insect Biochem. Mol. Biol. 29 (1999) 285). Subsequently, we verified experimentally the abundance of antiparallel beta-pleated sheet in the structure of cuticle proteins (Iconomidou et al., Insect Biochem. Mol. Biol. 31 (2001) 877). Homology modelling of soft (RR-1) cuticular proteins using bovine plasma retinol binding protein (RBP) as a template revealed an antiparallel beta-sheet half-barrel structure as the basic folding motif (Hamodrakas et al., Insect Biochem. Molec. Biol. 32 (2002) 1577). The RR-2 proteins characteristic of hard cuticle, have a far more conserved consensus and frequently more histidine residues. Extension of modelling to this class of consensus, in this work, reveals in detail several unique features of the proposed structural model to serve as a chitin binding structural motif, thus providing the basis for elucidating cuticle's overall architecture and chitin-protein interactions in cuticle.  相似文献   

9.
With the exception of the wing imaginal discs, the imaginal discs of Manduca sexta are not formed until early in the final larval instar. An early step in the development of these late-forming imaginal discs from the imaginal primordia appears to be an irreversible commitment to form pupal cuticle at the next molt. Similar to pupal commitment in other tissues at later stages, activation of broad expression is correlated with pupal commitment in the adult eye primordia. Feeding is required during the final larval instar for activation of broad expression in the eye primordia, and dietary sugar is the specific nutritional cue required. Dietary protein is also necessary during this time to initiate the proliferative program and growth of the eye imaginal disc. Although the hemolymph titer of juvenile hormone normally decreases to low levels early in the final larval instar, eye disc development begins even if the juvenile hormone titer is artificially maintained at high levels. Instead, creation of the late-forming imaginal discs in Manduca appears to be controlled by unidentified endocrine factors whose activation is regulated by the nutritional state of the animal.  相似文献   

10.
Summary An ultrastructural analysis is presented of the cuticular and neural structures formed by the prothoracic leg and wing imaginal discs of maleDrosophila melanogaster larvae during culture in vitro with 0.2 g/ml of -ecdysone. A pupal cuticle, and subsequently an imaginal cuticle with a well-defined epicuticle and a laminated endocuticle is formed. The ultrastructure of the epidermis and of cuticular structures such as bristles, trichomes, apodemes, and tracheoles is very similar to that found in situ. Dendrites and nerve cell bodies are formed in vitro, and sensory axons form nerve bundles similar to those of normal appendages in situ, despite their isolation from the central nervous system. It is concluded that at the ultrastructural level, differentiation in vitro closely parallels the normal course of development.  相似文献   

11.
Summary During the final larval instar the epidermis of the tobacco hornworm,Manduca sexta, synthesizes the larval cuticular proteins and the pigment insecticyanin. Then at the onset of metamorphosis the cells first become pupally-committed, then later produce the pupal cuticle. The changes in the pattern of epidermal protein synthesis during this period were followed by incubating the integument in vitro with either3H-leucine or35S-methionine, then analyzing the proteins by 2-dimensional gel electrophoresis. Precipitation by larval and pupal cuticular antisera and by insecticyanin antibody identified these proteins. Three distinct changes in epidermal protein synthesis were noted: 1) Stage-specific proteins, some of which are larval cuticular proteins, appear just before and during the change of commitment on day 3. (2) By late the following day (wandering stage), synthesis of these and many other proteins including all the identified larval cuticular proteins and insecticyanin was undetectable. Several noncuticular proteins were transiently synthesized by this pupally committed cell during wandering and sometimes the following day. (3) During the production of pupal cuticle a new set of pupal-specific cuticular proteins as well as some common cuticular proteins (precipitated by both antisera) were synthesized. Some of the latter were also synthesized during the period between pupal commitment and pupal cuticle deposition.In spite of an apparent absence of methionine in both larval and pupal cuticle, many cuticular proteins incorporated35S-methionine. Thus they may be synthesized as proproteins.Insecticyanin was shown to have two forms differing in isoelectric point, the cellular form being more acidic than the hemolymph form. Synthesis of the cellular form ceased before that of the hemolymph form.  相似文献   

12.
The pattern of cuticular protein synthesis by the epidermis of the tobacco hornworm larva changes during the final day of feeding, leading to an alteration in cuticular structure and a stiffening of the cuticle. We have isolated a small multigene family which codes for at least three of the new cuticular proteins made at this time. The five genes which were isolated from this family map to two different genomic regions. Sequencing shows that one of the genes is 1.9 kb and consists of three exons coding for a 12.2-kDa acidic (pI = 5.26) protein that is predominantly hydrophilic. The deduced amino acid sequence shows regions of similarity to proteins from flexible lepidopteran cuticles and from Drosophila larval and pupal cuticles, but not to proteins found in highly sclerotized cuticles. This gene family is first expressed late on the penultimate day (Day 2) of feeding in the final larval instar and ceases expression 2 days later when metamorphosis begins. In situ hybridization shows that this gene family is expressed in all the epidermal cells of Day 3 larvae except the bristle cells and those at the muscle attachment site. Expression can be induced in Day 1 epidermis by exposure to 50 ng/ml 20-hydroxyecdysone in vitro, but only if juvenile hormone is absent. Its developmental expression, tissue specificity, and hormonal regulation strongly suggest that this multigene family is involved in the structural changes that occur in the larval cuticle just prior to the onset of metamorphosis.  相似文献   

13.
We investigated the synthesis and localization of Drosophila pupal cuticle proteins by immunochemical techniques using both a complex antiserum and monoclonal antibodies. A set of low molecular weight (15,000-25,000) pupal cuticle proteins are synthesized by the imaginal disk epithelium before pupation. After pupation, synthesis of the low molecular weight proteins ceases and a set of unrelated high molecular weight proteins (40,000-82,000) are synthesized and incorporated into the pupal cuticle. Ultrastructural changes in the cuticle deposited before and after pupation correlate with the switch in cuticle protein synthesis. A similar biphasic accumulation of low and high molecular weight pupal cuticle proteins is also seen in imaginal discs cultured in vitro. The low molecular weight pupal cuticle proteins accumulate in response to a pulse of the insect steroid hormone 20-hydroxyecdysone and begin to appear 6 h after the withdrawal of the hormone from the culture medium. The high molecular weight pupal cuticle proteins accumulate later in culture; a second pulse of hormone appears to be necessary for the accumulation of two of these proteins.  相似文献   

14.
When final (5th) instar larvae of Precis coenia were treated with the juvenile hormone analog (JHA) methoprene, they underwent a supernumerary larval molt, except for certain regions of their imaginal disks, which deposited a normal pupal cuticle. Evidently those regions had already become irreversibly committed to pupal development at the time JHA was applied. By applying JHA at successively later times in the instar, the progression of pupal commitment could be studied. Pupal commitment in the proboscis, antenna, eye, leg and wing imaginal disks occurred in disk-specific patterns. In each imaginal disk there were distinct initiation sites where pupal commitment began during the first few hours of the final larval instar, and from which commitment spread across the remainder of the disk over a 2- to 3-day period. The initiation sites were not always located in homologous regions of the various disks. As a rule, pupal commitment also spread from imaginal disk tissue to surrounding epidermal tissue. The regions of pupal commitment in all disks except those of the wings, coincided with the regions of growth of the disk. Only portions of the disk that had undergone cell division and growth underwent pupal commitment. Shortening the growth period did not prevent pupal commitment in the wing imaginal disk, indicating that, in this disk at least, a normal number of cell divisions was not crucial in reprogramming of disk cells for pupal cuticle synthesis. The apparent growth spurt of imaginal disks that occurs during the last part of the final larval instar is merely the final stage of normal and constant exponential growth. Juvenile hormone (JH) and ecdysteroids appeared to play little role in the regulation of normal imaginal disk growth. Instead, growth of the disks may be under intrinsic control. Interestingly, even though endogenous fluctuation in JH titers do not affect imaginal disk growth, exogenous JHA proved able to inhibit both pupal commitment, cell movement, and growth of the disks during the last larval instar. This function of JH could be important under certain adverse conditions, such as when metamorphosis is delayed in favor of a supernumerary larval molt.  相似文献   

15.
16.
At the beginning of the final larval (fifth) instar of Manduca sexta, imaginal precursors including wing discs and eye primordia initiate metamorphic changes, such as pupal commitment, patterning and cell proliferation. Juvenile hormone (JH) prevents these changes in earlier instars and in starved final instar larvae, but nutrient intake overcomes this effect of JH in the latter. In this study, we show that a molecular marker of pupal commitment, broad, is up-regulated in the wing discs by feeding on sucrose or by bovine insulin or Manduca bombyxin in starved final instar larvae. This effect of insulin could not be prevented by JH. In vitro insulin had no effect on broad expression but relieved the suppression of broad expression by JH. This effect of insulin was directly on the disc as shown by its reduction in the presence of insulin receptor dsRNA. In starved penultimate fourth instar larvae, broad expression in the wing disc was not up-regulated by insulin. The discs became responsive to this action of insulin during the molt to the fifth instar together with the ability to become pupally committed in response to 20-hydroxyecdysone. Thus, the Manduca bombyxin acts as a metamorphosis-initiating factor in the imaginal precursors.  相似文献   

17.
Summary Imaginal wing discs ofPieris brassicae can be cultured in vitro for extended periods. Their ultrastructural development was investigated after culture in the presence of various concentrations of ecdysone and ecdysterone. When ecdysone or low concentrations of ecdysterone (2×10–7 M) were added to culture media, larval discs secreted a pupal cuticle and they subsequently differentiated scales; prepupal discs completed their imaginal development. With a higher concentration of ecdysterone (2×10–6 M), all discs produced abundant but fragmentary cuticular material.Prepupal discs were able to metabolize both hormones in vitro. Ecdysterone was mainly converted into a polar compound detectable after a short period of incubation. Ecdysone was transformed, at a slower rate, forming a polar compound and 26-hydroxyecdysone but no ecdysterone.  相似文献   

18.
The development of Drosophila imaginal discs serves as a model system to understand how genes determine the shape and size of an organ. The identification of genes involved in this process is an important step towards this goal. Here we describe a P-element based enhancer trap screen for genes expressed in the larval imaginal discs. Our aim was to establish a large collection of enhancer trap lines each showing expression of Gal4 in imaginal discs. To this end, we improved the well established P-element vector pGawB in order to obtain higher in vivo transposition frequencies. In addition we chose an F1-screening approach using UAS-GFP as a reporter gene. This system permits the efficient screening of larval and pupal stages of living animals and the detection of imaginal gene expression patterns through the transparent cuticle. The procedure has been optimized for high-throughput. 2'000 P-element insertions have been established which exhibit expression in imaginal discs.  相似文献   

19.
Maxwell PH  Belote JM  Levis RW 《Gene》2008,415(1-2):32-39
The TART, HeT-A, and TAHRE families of Drosophila non-LTR retrotransposons specifically retrotranspose to telomeres to maintain telomeric DNA. Recent evidence indicates that an RNA interference mechanism is likely to regulate TART, HeT-A, and TAHRE retrotransposition, but the developmental and tissue-specific expression of telomeric retrotransposon proteins has not previously been investigated. We have generated antisera against TART ORF1 protein (ORF1p) and used these antisera to examine the pattern of TART ORF1p expression in Drosophila melanogaster. We detected TART ORF1p throughout most of development and observed particularly high levels of protein in late larval and pupal stages. In late-stage larvae, ORF1p accumulates in brain and imaginal discs tissues, rather than in terminally differentiated larval tissues. Accumulation of ORF1p in imaginal discs is intriguing, since TART antisense RNA has previously been detected in imaginal discs, and we discuss the implications of these findings for TART regulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号