共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Izaurralde E 《European journal of cell biology》2002,81(11):577-584
Fully processed mRNAs are exported to the cytoplasm where they direct protein synthesis. A general feature of mRNA export is that it is an active, receptor-mediated process. The mRNA export receptors are thought to recognize and bind to the mRNA-export cargoes either directly or indirectly (via adaptor proteins) and facilitate their translocation across the central channel of the nuclear pore complex (NPC). On the cytoplasmic side of the NPC, the exported mRNA is released and the receptor returns to the nucleoplasm, without the cargo, to initiate additional rounds of export. Recent, studies in yeast and in higher eukaryotes have led to the elucidation of an evolutionarily conserved pathway for the export of bulk mRNA to the cytoplasm. 相似文献
3.
George Simos 《Protoplasma》1999,209(3-4):173-180
Summary Exit of tRNA from the nucleus was shown, long time ago, to be a saturable and carrier-mediated process. Nevertheless, only recently, progress in the field of nucleocytoplasmic transport gave first insight into the mechanism of tRNA nuclear export. A nuclear export receptor for tRNA (Los1p/Xpo-t), belonging to the importin (karyopherin) family, has been characterized in yeast and mammalian cells. Mature tRNA molecules can associate with Los1p/ Xpo-t and the GTP-bound form of the small GTPase Ran to form an export complex in the nucleus. This complex translocates through the nuclear-pore complexes and dissociates upon GTP hydrolysis in the cytoplasm. Genetic studies in yeast have, however, shown thatLOS1 is not essential, unless additional steps in the tRNA biogenesis pathway are impaired, suggesting the existence of additional tRNA nuclear export routes. Furthermore, modification and aminoacylation of tRNA may also be important for efficient transport of tRNA into the cytoplasm. 相似文献
4.
5.
6.
Nicolas Viphakone Thamar B van Dijk Sjaak Philipsen Stuart A Wilson 《The EMBO journal》2013,32(3):473-486
The TREX complex couples nuclear pre‐mRNA processing with mRNA export and contains multiple protein components, including Uap56, Alyref, Cip29 and the multi‐subunit THO complex. Here, we have identified Chtop as a novel TREX component. We show that both Chtop and Alyref activate the ATPase and RNA helicase activities of Uap56 and that Uap56 functions to recruit both Alyref and Chtop onto mRNA. As observed with the THO complex subunit Thoc5, Chtop binds to the NTF2‐like domain of Nxf1, and this interaction requires arginine methylation of Chtop. Using RNAi, we show that co‐knockdown of Alyref and Chtop results in a potent mRNA export block. Chtop binds to Uap56 in a mutually exclusive manner with Alyref, and Chtop binds to Nxf1 in a mutually exclusive manner with Thoc5. However, Chtop, Thoc5 and Nxf1 exist in a single complex in vivo. Together, our data indicate that TREX and Nxf1 undergo dynamic remodelling, driven by the ATPase cycle of Uap56 and post‐translational modifications of Chtop. 相似文献
7.
Export of mRNA from the nucleus to the cytoplasm is a critical process for all eukaryotic gene expression. As mRNA is synthesized, it is packaged with a myriad of RNA‐binding proteins to form ribonucleoprotein particles (mRNPs). For each step in the processes of maturation and export, mRNPs must have the correct complement of proteins. Much of the mRNA export pathway revolves around the heterodimeric export receptor yeast Mex67?Mtr2/human NXF1?NXT1, which is recruited to signal the completion of nuclear mRNP assembly, mediates mRNP targeting/translocation through the nuclear pore complex (NPC), and is displaced at the cytoplasmic side of the NPC to release the mRNP into the cytoplasm. Directionality of the transport is governed by at least two DEAD‐box ATPases, yeast Sub2/human UAP56 in the nucleus and yeast Dbp5/human DDX19 at the cytoplasmic side of the NPC, which respectively mediate the association and dissociation of Mex67?Mtr2/NXF1?NXT1 onto the mRNP. Here we review recent progress from structural studies of key constituents in different steps of nuclear mRNA export. These findings have laid the foundation for further studies to obtain a comprehensive mechanistic view of the mRNA export pathway. 相似文献
8.
The nuclear export of large ribonucleoparticles is complex and requires specific transport factors. Messenger RNAs are exported through the RNA-binding protein Npl3 and the interacting export receptor Mex67. Export of large ribosomal subunits also requires Mex67; however, in this case, Mex67 binds directly to the 5S ribosomal RNA (rRNA) and does not require the Npl3 adaptor. Here, we have discovered a new function of Npl3 in mediating the export of pre-60S ribosomal subunit independently of Mex67. Npl3 interacts with the 25S rRNA, ribosomal and ribosome-associated proteins, as well as with the nuclear pore complex. Mutations in NPL3 lead to export defects of the large subunit and genetic interactions with other pre-60S export factors. 相似文献
9.
10.
11.
Nuclear export and cytoplasmic maturation of ribosomal subunits 总被引:3,自引:0,他引:3
Based on the characterization of ribosome precursor particles and associated trans-acting factors, a biogenesis pathway for the 40S and 60S subunits has emerged. After nuclear synthesis and assembly steps, pre-ribosomal subunits are exported through the nuclear pore complex in a Crm1- and RanGTP-dependent manner. Subsequent cytoplasmic biogenesis steps of pre-60S particles include the facilitated release of several non-ribosomal proteins, yielding fully functional 60S subunits. Cytoplasmic maturation of 40S subunit precursors includes rRNA dimethylation and pre-rRNA cleavage, allowing 40S subunits to achieve translation competence. We review current knowledge of nuclear export and cytoplasmic maturation of ribosomal subunits. 相似文献
12.
13.
14.
15.
16.
17.
18.
Nuclear mRNA export: insights from virology 总被引:13,自引:0,他引:13
Cullen BR 《Trends in biochemical sciences》2003,28(8):419-424
19.