首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Physico-chemical properties of erythrocyte glucose-6-phosphate dehydrogenase including erythrocyte G6PD activity, Michaelis constants, KmG6P and NADP, pH optimum, thermostability and molecular weight were investigated in “brown-howler” monkeys and then compared with the values of human G6PD B(+). The values of Michaelis constants (KmG6P and NADP) pH optimum were the same as the values of human G6PD B(+). The human G6PD has a dimeric form in the assay conditions employed in the present study, monkey enzyme showing great similariy with human one. Otherwise, the thermostability differed from the human G6PD. The simian enzymatic activity was about four times higher than the human G6PD. A comparison of physico-chemical properties of glucose-6-phosphate dehydrogenase among primates is also presented.  相似文献   

2.
Kinetic and electrophoretic properties of 230--300 fold purified preparations of glucose-6-phosphate dehydrogenase (G6PD) from red cells of donors and patients with acute drug hemolytic anemia due to G6PD deficiency were studied. A new abnormal variant of G6PD isolated from red cell of a patient with acute drug hemolytic anemia, which was not described in literature, has been discovered. The abnormal enzyme differs from the normal by decreased Michaelis constant for glucose-6-phosphate and nicotinamide adenine dinucleotide phosphate (NADP), by increased utilization of analogues of substrates--2-deoxy-glucose-6-phosphate and particularly deamino-NADP, by low thermal stability, by the character of pH-dependence, by the appearance of a single band of G6PD activity in polyacrylamide gel electrophoresis.  相似文献   

3.
Prolonged intake of low levels of aluminum from the drinking water has been found to increase the aluminum content in rat brain homogenates and to reduce the activity of hexokinase and glucose-6-phosphate dehydrogenase (G6PD). To determine the interaction of G6PD with aluminum in the brain, we have recently purified two isozymes of G6PD (isozymes I and II) from human and pig brain. Unlike isozyme I, isozyme II also had 6-phosphogluconate dehydrogenase (6-PGD) activity. We report here that G6PD isozymes I and II from human and pig brain purified to apparent homogeneity are inactivated by aluminum. Aluminum did not affect the 6-PGD activity of isozyme II. The aluminum-inactivated enzyme contained 1 mol of aluminum/mol of enzyme subunit. The protein-bound metal ion was not dissociated by exhaustive dialysis at 4 degrees C against 10 mM Tris-HCl (pH 7.0) containing 0.2 mM EDTA. Preincubation of aluminum with citrate, NADP+, EDTA, NaF, ATP, and apotransferrin protected the G6PD isozymes against aluminum inactivation. However, when the G6PD isozymes were completely inactivated by aluminum, only citrate, NaF, and apotransferrin restored the enzyme activity. The dissociation constants for the enzyme-aluminum complex of the isozymes varied from 2 to 4 microM, as measured by using NaF, a known chelator for aluminum. Inhibition of G6PD by low levels of aluminum further strengthens the suggested role of aluminum toxicity in the energy metabolism of the brain.  相似文献   

4.
A new form of cytoplasmic glucose-6-phosphate dehydrogenase (E.C.1.1.1.49) was purified from rat liver by protamine sulfate precipitation, ammonium sulfate fractionation, ion exchange chromatography with diethylaminoethyl cellulose, and affinity chromatography with Cibacron blue agarose and NADP agarose. This form of the enzyme has a specific activity of over 600 units/mg of protein and gives essentially a single band by polyacrylamide gel electrophoresis. The form of the enzyme isolated by this purification method is 3 times more active than the form purified from liver by previously reported procedures. The relative mass of this pure glucose-6-phosphate dehydrogenase enzyme was determined by disc gel electrophoresis to be 269,000. This high activity glucose-6-phosphate dehydrogenase enzyme, after inactivation by reaction with palmityl-CoA, was no longer precipitated by specific rabbit and goat antisera to this purified enzyme. Thus, the possibility still exists that starved fat-refed animals contain glucose-6-phosphate dehydrogenase (G6PD) enzyme protein in an inactivated form no longer detectable by either enzyme activity or immunoprecipitation.  相似文献   

5.
The subunit molecular weight of glucose-6-phosphate dehydrogenase (G6PD) from baker's yeast has been evaluated. The subunit molecular weight value is shown to be 25,500 daltons by analytical ultracentrifugation, SDS-polyacrylamide gel electrophoresis, and the number of peptides produced by CNBr cleavage. The number of NADP binding sites was determined to be one per 25,500 dalton unit.  相似文献   

6.
Summary Three new glucose-6-phosphate dehydrogenase (G6PD) variants, which showed electrophoretically normal mobility and were associated with chronic nonspherocytic hemolytic anemia, were found in Japan. G6PD Ogikubo, found in a 17-year-old male whose red cells contained 3% of normal enzyme activity, had normal Km G6P, normal Km NADP, normal utilization of deamino-NADP, decreased heat stability, and a normal pH curve. G6PD Yokohama, characterized from a 15-year-old male, had 1.9% of normal enzyme activity, normal Km G6P, normal Km NADP, low Ki NADPH, normal utilizations of both 2-deoxy-G6P and deamino-NADP, decreased heat stability, and normal pH curve. G6PD Akita, characterized from a 56-year-old male, had an undetectably low activity when hemolysate was examined, normal Km G6P, normal Km NADP, normal Ki NADPH, normal utilizations of both 2-deoxy-G6P and deamino-NADP, decreased heat stability, and normal pH curve.The degree of hemolytic anemia was moderate to mild in all three patients.  相似文献   

7.
Glucose 6-phosphate dehydrogenase (D-glucose 6-phosphate: NADP+ oxidoreductase, EC 1.1.1.49; G6PD) was purified from Lake Van fish (Chalcalburnus tarichii pallas, 1811) liver, using a simple and rapid method, and some characteristics of the enzyme were investigated. The purification procedure was composed of two steps: homogenate preparation and 2', 5'-ADP Sepharose 4B affinity gel chromatography, which took 7-8 hours. Thanks to the two consecutive procedures, the enzyme, having specific activity of 38 EU/mg protein, was purified with a yield of 44.39% and 1310 fold. In order to control the enzyme purification SDS polyacrylamide gel electrophoresis (SDS-PAGE) was done. SDS polyacrylamide gel electrophoresis showed a single band for enzyme. Optimal pH, stable pH, optimal temperature, Km and, Vmax values for NADP+ and glucose 6-phosphate (G6P) were also determined for the enzyme. In addition, molecular weight and subunit molecular weights were found by sodium dodecyl sulfate polyacrilamide gel electrophoresis (SDS-PAGE) and gel filtration chromatography respectively.  相似文献   

8.
9 variants of human erythrocyte glucose-6-phosphate dehydrogenase (G6PD) were isolated from erythrocytes of patients with G6PD deficiency and partially purified according to WHO program for stanartization of methods for studying G6PD. The results of physico-chemical study of these enzymes (determination of electrophoretic mobility, kappaM for G6P and NADP, pH optimum and thermostability) permit tu consider 5 of them to be new mutations of G6PD previously not described in literature. The observed high geterogeneity of variants of G6PD in Azerbaijan is discussed.  相似文献   

9.
Erythrocyte glucose-6-phosphate dehydrogenase (G6PD) was characterized in blood samples of 94 male subjects in Sudan having deficient and non-deficient electrophoretic variants. They comprised 44 GdB, 17 GdA, 19 GdB-, 11 GdA- and 3 nondeficient (GdKhartoum) variants. Biochemical characteristics including enzyme activity, electrophoretic mobility, Km for glucose-6-phosphate (G6P) and nicotinamide adenine dinucleotide phosphate (NADP), heat stability and pH optimum of all the common and deficient variants were consistent with the reported characteristics of these variants. The GdKhartoum variant had 90% mobility in TEB buffer and 100% in phosphate buffer, 120% activity, Km of 130 +/- 49 microns for G6P and 0.8 +/- 0.2 microns for NADP, lowered thermostability and an optimum pH of 7.6. This variant was not inhibited by 15 mM maleic acid, 10 mM iodoacetate and dehydro-iso-androsterone. All other variants were inhibited by dehydro-iso-androsterone but uninhibited by maleic acid and iodoacetate.  相似文献   

10.
Glucose-6-phosphate dehydrogenase was purified from human placenta using DEAE-Sepharose fast flow, 2',5'-ADP Sepharose 4B column chromatography, and chromatofocusing on PBE 94 with PB 74. The enzyme was purified with 62% yield and had a specific activity of 87 units per milligram protein. The pH optimum was determined to be 7.8, using zero buffer extrapolation method. The purified placental glucose-6-phosphate dehydrogenase gave two activity bands on native PAGE: one band, constituting about 3--5% of total activity, moved slower than the remaining 95%. Among the activity bands only the faster moving band gave a band on protein staining. The slower moving band, which probably corresponded to the higher polymeric form of the G6PD with high specific activity, was not seen on native PAGE due to insufficient protein for Coomassie brilliant blue staining. The observation of one band on SDS--PAGE with an M(r) of 54 kDa and a specific activity lower than expected, suggests the presence of both forms of the G6PD, the high polymeric form at low concentration and the inactive form at high concentration, in our preparation. Measuring the activities of placental glucose-6-phosphate dehydrogenase between 20 and 50 degrees C, the activation energy, activation enthalpy, and Q(10) were calculated to be 8.16 kcal/mol, 7.55 kcal/mol, and 1.57, respectively. It was found that human placental G6PD obeys Michaelis-Menten kinetics. K(m) values were determined using the concentration ranges of 20--300 microM for G6P and 10--200 microM for NADP(+). The K(m) value for G6P was 40 microM; the K(m) value NADP(+) was found to be 20 microM. Double-reciprocal plots of 1/Vm vs 1/G6P (at constant [NADP(+)]) and of 1/Vm vs 1/NADP(+) (at constant [G6P]) intersected at the same point on the 1/V(m) axis to give V(m) = 87 U/mg protein.  相似文献   

11.
S W Eber  M Gahr  W Schr?ter 《Blut》1985,51(2):109-115
Two new inheritable variants of glucose-6-phosphate dehydrogenase have been found in two unrelated German families. Patients with one variant (G6PD Iserlohn, also referred to as G6PD I) suffered from intermittent hemolytic crises caused by fava beans; patients with the other variant (G6PD Regensburg, G6PD II) disclosed chronic nonspherocytic hemolytic anemia aggravated by drug treatment. Due to their unusual biochemical characteristics, the new variants were designated G6PD Iserlohn and G6PD Regensburg. Both variants showed a reduction of enzyme activity to about 6% of the normal in erythrocytes, normal electrophoretic mobility, increased affinity for glucose-6-phosphate, a reduced affinity for NADP and a pH optimum in the neutral region (7.0 and 7.5). G6PD Iserlohn had a decreased affinity for the inhibitor NADPH; G6PD Regensburg had a normal inhibitor constant. Deamino NADP was utilized at an increased rate by G6PD Regensburg. G6PD Iserlohn was thermostable, G6PD Regensburg mildly instable. G6PD activity in leukocytes was normal in G6PD Iserlohn and reduced to the same degree as in erythrocytets in G6PD Regensburg. The cause of the decreased activity of G6PD Iserlohn appears to be in vivo instability; in G6PD Regensburg further mechanisms might include reduced specific activity or reduced synthesis of the variant enzyme.  相似文献   

12.
Recent studies have shown that glucose-6-phosphate dehydrogenase (G6PD) is an effectual therapeutic target for metabolic disorders, including obesity and diabetes. In this study, we used in silico and conventional screening approaches to identify putative inhibitors of G6PD and found that gallated catechins (EGCG, GCG, ECG, CG), but not ungallated catechins (ECG, GC, EC, C), were NADP(+)-competitive inhibitors of G6PD and other enzymes that employ NADP(+) as a coenzyme, such as IDH and 6PGD.  相似文献   

13.
D C Crans  S M Schelble 《Biochemistry》1990,29(28):6698-6706
Vanadate dimer and tetramer inhibit glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides. The inhibition by a vanadate mixture containing vanadate monomer, dimer, tetramer, and pentamer was determined by measuring the rates of glucose 6-phosphate oxidation and reduction of NAD (or NADP) catalyzed by glucose-6-phosphate dehydrogenase. The inhibition by vanadate is competitive with respect to NAD or NADP and noncompetitive (a mixed type) with respect to glucose 6-phosphate (G6P) when NAD or NADP are cofactors. This inhibition pattern varies from that observed with phosphate and thus suggests vanadate interacts differently than a phosphate analogue with the enzyme. 51V NMR spectroscopy was used to directly correlate the inhibition of vanadate solutions to the vanadate dimer and/or tetramer, respectively. The activity of the vanadate oligomer varied depending on the cofactor and which substrate was being varied. The vanadate dimer was the major inhibiting species with respect to NADP. This is in contrast to the vanadate tetramer, which was the major inhibiting species with respect to G6P and with respect to NAD. The inhibition by vanadate when G6P was varied was weak. The competitive inhibition pattern with respect to NAD and NADP suggests the possibility that vanadate oligomers may also inhibit catalysis of other NAD- or NADP-requiring dehydrogenases. Significant concentrations of vanadate dimer and tetramer are only found at fairly high vanadate concentrations, so these species are not likely to represent vanadium species present under normal physiological conditions. It is however possible the vanadate dimer and/or tetramer represent toxic vanadate species.  相似文献   

14.
A simple screening procedure for the detection of adenilate kinase (AK), hexokinase (Hx) or glucose-6-phosphate dehydrogenase (G6PD) deficiencies in blood, is described. It consists of two assays : in the first, the ATP formed by blood AK is coupled to Hx and G6PD, and in the second, the glucose-6-phosphate formed by blood Hx is coupled to G6PD. The enzyme activities are visually estimated by the reduction of NADP+ (non-fluorescent) to NADH (fluorescent). The appearance of fluorescence in the first assay indicates that the three enzyme activities are present. The absence of fluorescence could be due to the deficiency of any one of the three enzymes; in this case the second assay used in combination with the Beutler's screening test for G6PD permits the detection of the specific enzymatic deficiency.  相似文献   

15.
光还原的硫氧还蛋白对6—磷酸葡萄糖脱氢酶的钝化作用   总被引:1,自引:0,他引:1  
测定了豌豆(Pisum sativum)幼苗的重组叶绿体中光还原的硫氧还蛋白(Td)对6-磷酸葡萄糖脱氢酶(G6PDH)的钝化作用.结果表明,Td在叶绿体G6PDH的光抑制和暗激活中均起重要的调节作用.在其绿色叶片和黄化组织中,G6PDH都存在着两种同工酶,但二硫苏糖醇(DTT)和Td对黄化幼苗中G6PDH活性的影响与叶绿体的明显不同,DTT对黄化幼苗G6PDH的钝化作用和氧化Td的活化作用均低于对叶绿体中的这两种作用.  相似文献   

16.
The activity of glucose-6-phosphate dehydrogenase (G6PDH, E. C. 1.1.1.49) in a reconsituted pea chloroplast system was assayed spectrophotometrically by the reduction of NADP, ming glucose-6-phosphate as substrate. Deactivation of G6PDH could be intensified by adding lightreduced thioredoxin (Td) into the reconstituted chloroplast system. The experimental results presented suggest that Td plays an important role not only in the dark activation, but also in the light deactivation of G6PDH in chloroplasts. There were two isozymes of G6PDH in green and in etiolated pea seedlings. The effects of dithiothreitol (DTT) and Td on G6PDH in etiolated seedlings were different from that in chloroplasts. The light regulation of G6PDH in chloroplasts is mediated through Td.  相似文献   

17.
以鲫鱼和金鱼为材料,用葡萄糖-6-磷酸脱氢酶(G6PD)、乳酸脱氢酶(LDH)和苹果酸脱氢酶(MDH)同工酶体系作为基因标志,从检测同工酶的多重组合形式来研究基因的加倍与演化。对彩鲫与金鱼G6PD和LDH同工酶的分析结果表明,它们均具有与四倍体鱼类相应的谱带。因而说明了金鱼的G6PD和LDH同工酶基因座位的加倍与染色体的多倍性有关,为金鱼是四倍体的假说提供了证据。而对MDH同工酶的分析却得到了与二倍体鱼类相同的谱带数。这可能与加倍基因发生突变而不表达有关。  相似文献   

18.
Summary A total of 3000 men living in Yamaguchi were screened for glucose-6-phosphate dehydrogenase (G6PD) deficiency using Beutler's spot test and three types of starch gel electrophoresis. These electrophoresis used a phosphate buffer system at pH 7.0, a TRIS-EDTA-borate buffer system at pH 8.6, and a TRIS-hydrochloride buffer system at pH 8.8. Fifteen G6PD-deficient variants were found at the rate of 0.5% and classified into four groups. As new variants, G6PD Konan, Kamiube, and Kiwa were identified. These three variants had a mild to moderate G6PD deficiency and were not associated with any clinical signs. G6PD Konan had fast electrophoretic mobility as compared with normal levels, G6PD Kiwa had slightly elevated electrophoretic mobility, and G6PD Kamiube had normal electrophoretic mobility. These three variants had normal levels of Km G6P, Km NADP, and Ki NADPH, normal utilizations of both 2-deoxy-G6P and deamino-NAPD, normal heat stability, and a normal pH curve. The other variant was G6PD Ube, which we had previously found in Yamaguchi (Nakashima et al., 1977). One boy with G6PD Ube was Korean.  相似文献   

19.
Glucose-6-phosphate dehydrogenase (G6PD) catalyses the first step of the pentose phosphate pathway which generates NADPH for anabolic pathways and protection systems in liver. G6PD was purified from dog liver with a specific activity of 130 U x mg(-1) and a yield of 18%. PAGE showed two bands on protein staining; only the slower moving band had G6PD activity. The observation of one band on SDS/PAGE with M(r) of 52.5 kDa suggested the faster moving band on native protein staining was the monomeric form of the enzyme.Dog liver G6PD had a pH optimum of 7.8. The activation energy, activation enthalpy, and Q10, for the enzymatic reaction were calculated to be 8.96, 8.34 kcal x mol(-1), and 1.62, respectively.The enzyme obeyed "Rapid Equilibrium Random Bi Bi" kinetic model with Km values of 122 +/- 18 microM for glucose-6-phosphate (G6P) and 10 +/- 1 microM for NADP. G6P and 2-deoxyglucose-6-phosphate were used with catalytic efficiencies (kcat/Km) of 1.86 x 10(6) and 5.55 x 10(6) M(-1) x s(-1), respectively. The intrinsic Km value for 2-deoxyglucose-6-phosphate was 24 +/- 4mM. Deamino-NADP (d-NADP) could replace NADP as coenzyme. With G6P as cosubstrate, Km d-ANADP was 23 +/- 3mM; Km for G6P remained the same as with NADP as coenzyme (122 +/- 18 microM). The catalytic efficiencies of NADP and d-ANADP (G6P as substrate) were 2.28 x 10(7) and 6.76 x 10(6) M(-1) x s(-1), respectively. Dog liver G6PD was inhibited competitively by NADPH (K(i)=12.0 +/- 7.0 microM). Low K(i) indicates tight enzyme:NADPH binding and the importance of NADPH in the regulation of the pentose phosphate pathway.  相似文献   

20.
Summary Analysis of electrophoretic loci shows that at least four differences exist in isozymes of long- and short-lived populations ofD. melanogaster, descended by selection from a common ancestral stock. Adults of longlived populations differ in gene dosage of phosphoglucomutase (PGM), NAD malate dehydrogenase (MHD), NADP malic enzyme (ME) and by additional mobility variants of glucose-6-phosphate dehydrogenase (G6PD). Larvae, however, differ only by variants of G6PD. The differences in these enzymes, considered together with the greater flight endurance that long-lived populations have shown elsewhere, suggest that increased glycogen synthesis plays a significant role in the improved life span of selected populations. Adaptation to selection for increased life span may, therefore, derive from an improved ability to use dietary sucrose in the media provided. The distribution of electrophoretic loci agrees with the results of a study indicating the position of genetic elements contributing to life span.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号