首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Histidine-containing peptide fragments of prion protein are efficient ligands to bind various transition metal ions and they have high selectivity in metal binding. The metal ion affinity follows the order: Pd(II)>Cu(II)>Ni(II)Zn(II)>Cd(II) approximately Co(II)>Mn(II). The high selectivity of metal binding is connected to the involvement of both imidazole and amide nitrogen atoms in metal binding for Pd(II), Cu(II) and Ni(II), while only the monodentate N(im)-coordination is possible with the other metal ions. The stoichiometry and binding mode of palladium(II) complexes show great variety depending on the metal ion to ligand ratio, pH and especially the presence of coordinating donor atoms in the side chains of peptide fragments. It is also clear from our data that the peptide fragments containing histidine outside the octarepeat (His96, His111 and His187) are more efficient ligands than the monomer peptide fragments of the octarepeat domain.  相似文献   

2.
A decapeptide with high affinity toward heavy metal ions (RCHQYHHNRE) has been prepared by Fmoc strategy using TGR resin as solid support. The model peptide provides a simple system that can be used for a systematic study of the impact of different metal ions on peptide secondary structure on a molecular level; histidine residues were incorporated into the peptide in a sequence similar to beta-amyloid peptide (Abeta1-40) to generate possible complexation sites for Cu (2+) ions. The peptide secondary structure, as investigated by circular dichroism, and self-assembled nanostructures were observed to depend strongly on the presence of copper and sodium dodecyl sulfate (SDS). Atomic force microscopy (AFM) revealed also that copper and SDS affected slightly the Abeta1-40 nanostructures. An explanation for the effect of metal ions and SDS on the self-assembly of peptides was proposed. The extensive beta-sheet formation may further promote peptide self-assembly into longer fibers.  相似文献   

3.
A gene coding for a de novo peptide sequence containing a metal binding motif was chemically synthesized and expressed in Escherichia coli as a fusion with the maltose binding protein. Bacterial cells expressing the metal binding peptide fusion demonstrated enhanced binding of Cd2+ and Hg2+ compared to bacterial cells lacking the metal binding peptide. The potential use of genetically engineered bacteria as biosorbents for the removal of heavy metals from wastewaters is discussed.  相似文献   

4.
The bioadsorption of metal ions using microorganisms is an attractive technology for the recovery of rare metal ions as well as removal of toxic heavy metal ions from aqueous solution. In initial attempts, microorganisms with the ability to accumulate metal ions were isolated from nature and intracellular accumulation was enhanced by the overproduction of metal-binding proteins in the cytoplasm. As an alternative, the cell surface design of microorganisms by cell surface engineering is an emerging strategy for bioadsorption and recovery of metal ions. Cell surface engineering was firstly applied to the construction of a bioadsorbent to adsorb heavy metal ions for bioremediation. Cell surface adsorption of metal ions is rapid and reversible. Therefore, adsorbed metal ions can be easily recovered without cell breakage, and the bioadsorbent can be reused or regenerated. These advantages are suitable for the recovery of rare metal ions. Actually, the cell surface display of a molybdate-binding protein on yeast led to the enhanced adsorption of molybdate, one of the rare metal ions. An additional advantage is that the cell surface display system allows high-throughput screening of protein/peptide libraries owing to the direct evaluation of the displayed protein/peptide without purification and concentration. Therefore, the creation of novel metal-binding protein/peptide and engineering of microorganisms towards the recovery of rare metal ions could be simultaneously achieved.  相似文献   

5.
Wang D  Song Y  Li J  Wang C  Li F 《Biochimica et biophysica acta》2011,1808(6):1639-1644
DMT1 is an integral membrane protein with 12 putative transmembrane domains. As a divalent metal ion transporter, it plays an important role in metal ion homeostasis from bacteria to human. Loss-function mutations at the conserved motif DPGN located within the first transmembrane domain (TMD1) of DMT1 indicate the significance of TMD1 in the biological function of the protein. In the present work, we study the structure, topology and metal ion binding of DMT1-TMD1 peptide by nuclear magnetic resonance using sodium dodecyl sulfate and dodecylphosphocholine micelles as membrane mimics. We find that the peptide forms an α-helix-extended segment-α-helix configuration in which the motif DPGN locates at the central flexible region. The N-terminal part of the peptide is deeply embedded in micelles, while the motif section and the C-terminal part are close to the surface of micelles. The peptide can bind to Mn2+ and Co2+ ions by the side chains of the negatively charged residues in the motif section and the C-terminal part of TMD1. The crucial role of the central flexible region and the C-terminal part of TMD1 in metal ion capture is confirmed by the binding of the N-terminal part truncated TMD1 to metal ions.  相似文献   

6.
Most Cys2His2 zinc finger proteins contain tandem arrays of metal binding domains. The tandem nature of these arrays suggests that metal binding by these domains may not be independent but rather that metal binding may occur in a cooperative manner. This is especially true in light of the crystal structure of a three zinc finger array bound to DNA that revealed several types of interactions between domains. To address this question, peptides containing two tandem domains have been prepared. While metal binding studies do show that the two finger peptide has a metal ion affinity about threefold higher than that for a single domain peptide with the same sequence, additional studies reveal that this behavior is due to increased single site affinities in the context of the two domain peptide rather than to cooperativity. These studies indicate that domains of this type are independent of one another with regard to metal binding, at least in the absence of DNA. This observation has implications with regard to the question of whether the activities of proteins of this class might be modulated by available zinc concentrations.  相似文献   

7.
Cap43 protein has been tested for metal binding domains. The protein, specifically induced by nickel compounds in cultured human cells, had a new mono-histidinic motif consisting of 10 amino acids repeated three times in the C-terminus. The 20-Ac-TRSRSHTSEG-TRSRSHTSEG (Thr(341)-Arg-Ser-Arg-Ser-His(346)-Thr-Ser-Glu-Gly-Thr-Arg-Ser-Arg-Ser-His(356)-Thr-Ser-Glu-Gly(360) - peptide 1) and the 30-Ac-TRSRSHTSEG-TRSRSHTSEG-TRSRSHTSEG (Thr(341)-Arg-Ser-Arg-Ser-His(346)-Thr-Ser-Glu-Gly-Thr-Arg-Ser-Arg-Ser-His(356)-Thr-Ser-Glu-Gly-Thr-Arg-Ser-Arg-Ser-His(366)-Thr-Ser-Glu-Gly(370) - peptide 2) amino acids sequence has been analyzed as a site for Ni(II) binding. A combined pH-metric and spectroscopic (UV-visible, CD, NMR) studies of Ni(II) binding to both fragments were performed. The 20-amino acid peptide can bind one and two metal ions while the 30-amino acid fragment one, two and three metal ions. At physiological pH, depending on the metal to ligand molar ratio, peptide 1 forms the Ni(2)L species while peptide 2 the NiL, Ni(2)L and Ni(3)L complexes where each metal ion is coordinated to the imidazole nitrogen atom of the histidine residue of the 10-amino acid fragment. Octahedral complexes at pH 8-9 and planar 4N complexes with (N(Im), 3N(-)) bonding mode at pH above 9, are formed. This work supports the existence of an interesting binding site at the COOH-terminal domain of the Cap43 protein.  相似文献   

8.
A 34-amino-acid peptide has been chemically synthesized based on a sequence from human alpha-fetoprotein. The purified peptide is active in anti-growth assays when freshly prepared in pH 7.4 buffer at 0.20 g/l, but this peptide slowly becomes inactive. This functional change is proven by mass spectrometry to be triggered by the formation of an intrapeptide disulfide bond between the two cysteine residues on the peptide. Interpeptide cross-linking does not occur. The active and inactive forms of the peptide have almost identical secondary structures as shown by circular dichroism (CD). Zinc ions bind to the active peptide and completely prevents formation of the inactive form. Cobalt(II) ions also bind to the peptide, and the UV-Vis absorption spectrum of the cobalt-peptide complex shows that: (1) a near-UV sulfur-to-metal-ion charge-transfer band had a molar extinction coefficient consistent with two thiolate bonds to Co(II); (2) the lowest-energy visible d-d transition maximum at 659 nm, also, demonstrated that the two cysteine residues are ligands for the metal ion; (3) the d-d molar extinction coefficient showed that the metal ion-ligand complex was in a distorted tetrahedral symmetry. The peptide has two cysteines, and it is speculated that the other two metal ion ligands might be the two histidines. The Zn(II)- and Co(II)-peptide complexes had similar peptide conformations as indicated by their ultraviolet CD spectra, which differed very slightly from that of the free peptide. Surprisingly, the cobalt ions acted in the reverse of the zinc ions in that, instead of stabilizing anti-growth form of the peptide, they catalyzed its loss. Metal ion control of peptide function is a saliently interesting concept. Calcium ions, in the conditions studied, apparently do not bind to the peptide. Trifluoroethanol and temperature (60 degrees C) affected the secondary structure of the peptide, and the peptide was found capable of assuming various conformations in solution. This conformational flexibility may possibly be related to the biological activity of the peptide.  相似文献   

9.
Conantokin-G (con-G) and conantokin-T (con-T) are naturally occurring gamma-carboxyglutamate (Gla)-containing peptides that interact with multivalent cations in functionally relevant manners. Selective 13C-enrichment of Cgamma and Cdelta in each of the Gla residues has allowed metal binding affinities to be measured at individual side chains. Con-T possesses two metal binding sites, one with high affinity at Gla10/Gla14 and another with weak binding at Gla3/Gla4. Con-G contains two sites of comparable low affinity for Ca2+. Analysis of the 13C line-widths of con-G in the presence of Mg2+ allowed the order of metal binding to be determined, with Gla10/Gla14 loading before the Gla3/Gla4/Gla7 cluster. While the variant peptide, apo-con-T[Lys7Gla], was shown to have a very low alpha-helical content, this peptide binds a second metal with much greater affinity than wild-type con-T. This provides additional evidence that Gla7 in con-G is primarily responsible for destabilizing the apo-form, but is an important ligand for metal chelation. The residue-specific alpha-helical stabilities of con-G and con-T in their metal-free and metal-loaded states were estimated by determining rates of proton exchange from backbone peptide bond amides with deuterium atoms from 2H20-containing solvents. For both peptides, the lifetimes of protons on several peptide bond amides increased as metals of higher affinity were bound to the peptides, with the longest half-lives found in the region of the alpha-helical turn stabilized by the Gla10/Gla14 metal coordination site. We propose that Gla10 and Gla14 constitute the primary tight metal ion binding site in both peptides. This detailed analysis with physiologically relevant metal cations is crucial for deciphering the roles of critical amino acids in the bioactivity of the conantokin peptides.  相似文献   

10.
The beta-sheet plaques that are the most obvious pathological feature of Alzheimer's disease are composed of amyloid-beta peptides and are highly enriched in the metal ions Zn, Fe and Cu. The interaction of the full-length amyloid peptide, A beta(1-42), with phospholipid lipid bilayers was studied in the presence of the metal-chelating drug, Clioquinol (CQ). The effect of cholesterol and metal ions was also determined using solid-state 31P and 2H NMR. CQ modulated the effect of metal ions on the integrity of the bilayer and although CQ perturbed the phospholipid membrane, the bilayer integrity was maintained. Model membranes enriched in cholesterol were studied under conditions of peptide association and incorporation. Solid-state NMR showed that the bilayer integrity was preserved in cholesterol-enriched membranes in comparison to phosphatidylcholine-phosphatidylserine bilayers. Changes in peptide structure, consistent with an increase in beta-sheet, were observed using specifically 13C-labelled A beta(1-42) by magic angle spinning NMR. Results using aligned phosphatidylcholine bilayers and completely 15N-labelled peptide indicated that the peptide aggregated. The results are consistent with oligomeric beta-sheet structured peptides only partially penetrating the bilayer and cholesterol reducing the membrane disruption.  相似文献   

11.
江年  茆灿泉 《生物信息学》2009,7(4):284-287,291
金属离子与金属结合肽(蛋白)的相互作用与应用研究,一直是生物无机化学的重点和热点,也是分子间相互作用研究领域的难点。本研究利用ClustalX、BLAST等生物信息技术与方法对大量已知的重金属结合肽进行分析与数据挖掘。确定筛选获得的重金属结合肽常富含His,无Cys,无金属结合肽模式序列,进化不保守;部分氨基酸序列结构(如六肽)可在蛋白数据库中找到相似序列。序列特征主要为Zn^2+相关的转录因子。本研究为重金属结合蛋白-重金属离子的相互作用分析简化为重金属结合肽-重金属离子的结构模拟与分析提供了重要的理论基础和研究手段。  相似文献   

12.
Copper(II) complexes of the peptide fragment (Dpl122-130) encompassing the sequence 122-130 of human doppel protein were characterized by potentiometric, UV-Visible, CD and EPR spectroscopic methods. An analogous peptide, in which the aspartate residue was substituted by an asparagine amino acid, was synthesized in order to provide evidence on the possible role of carboxylate group in copper(II) coordination. It was found that the carboxylic group is directly involved in copper(II) coordination at acidic pH, forming the CuLH2 species with Dpl122-130. This copper(II) complex displayed EPR parameters very similar to those of the analogous complex with the whole doppel protein. At pH higher than 7, the complexes showed magnetic parameters similar to those of the major species of protein formed in the pH range 7-8, with the metal coordination environment consisting of one imidazole and three amide nitrogen atoms. The comparison of Cu-Dpl122-130 binding constant values with those of the prion peptide fragments (PrP106-114), showed that doppel peptide had a higher metal binding affinity at acidic pH whereas the prion peptide fragment binds the metal tightly at physiological pH.  相似文献   

13.
The accumulation of senile plaques composed primarily of aggregated amyloid β-peptide (Aβ), is the major characteristic of Alzheimer’s disease. Many studies correlate plaque accumulation and the presence of metal ions, particularly copper and zinc. The metal binding sites of the amyloid Aβ peptide of Alzheimer’s disease are located in the N-terminal region of the full-length peptide. In this work, the interactions with metals of a model peptide comprising the first 16 amino acid residues of the amyloid Aβ peptide, Aβ(1–16), were studied. The effect of Cu2+ and Zn2+ binding to Aβ(1–16) on peptide structure and oligomerisation are reported. The results of ESI-MS, gel filtration chromatography and NMR spectroscopy demonstrated formation of oligomeric complexes of the peptide in the presence of the metal ions and revealed the stoichiometry of Cu2+ and Zn2+ binding to Aβ(1–16), with Cu2+ showing a higher affinity for binding the peptide than Zn2+.  相似文献   

14.
Summary Conductometry, circular dichroism and fluorescence spectroscopy are the techniques employed to investigate the effect of added calcium ions and other monovalent and divalent metal ions on aqueous solutions of nonionic peptide aggregates, Boc-Leu-Asn-OEt (1). It is observed that among all the metal ions studied, Ca2+ ions facilitate the aggregation of the peptide. The interior dielectric constant of the micelles (ε) was found to depend upon the proportion of Ca2+ complexed peptide with the peptide mononers in the micelles. When Ca2+ ion becomes 1/4th of the peptide concentration, there is a structural transition leading to drastic change in the interior of the micro dielectric constant (ɛ m).  相似文献   

15.
Biologically active metals such as copper, zinc and iron are fundamental for sustaining life in different organisms with the regulation of cellular metal homeostasis tightly controlled through proteins that coordinate metal uptake, efflux and detoxification. Many of the proteins involved in either uptake or efflux of metals are localised and function on the plasma membrane, traffic between intracellular compartments depending upon the cellular metal environment and can undergo recycling via the endosomal pathway. The biogenesis of exosomes also occurs within the endosomal system, with several major neurodegenerative disease proteins shown to be released in association with these vesicles, including the amyloid‐β (Aβ) peptide in Alzheimer's disease and the infectious prion protein involved in Prion diseases. Aβ peptide and the prion protein also bind biologically active metals and are postulated to play important roles in metal homeostasis. In this review, we will discuss the role of extracellular vesicles in Alzheimer's and Prion diseases and explore their potential contribution to metal homeostasis.  相似文献   

16.
P Chakrabarti 《Biochemistry》1990,29(3):651-658
An analysis of the geometry of metal binding by peptide carbonyl groups in proteins is presented. Such metal ions are predominantly calcium in known protein structures. Cations tend to be located in the peptide plane, near the C = O bond direction. This distribution differs from that observed for water molecules bound to carbonyl oxygens. Most metal ions are bound to carbonyl oxygens of peptides in turns or in regions with no regular secondary structure. More infrequent binding interactions occur at the C-terminal end of alpha-helices or at the edges and sides of beta-sheets, where the geometrical preferences of the metal-carbonyl interaction may be satisfied. In many proteins carbonyl groups that are one, two, or three residues apart along the polypeptide chain bind to the same cation; these structures show a limited number of main-chain conformations around the metal center.  相似文献   

17.
Metal selective fluorescent peptide probes (dansyl-Cys-X-Gly-His-X-Gly-Glu-NH2, X = Pro or Gly) were developed by synthesizing peptides containing His, Cys, and Glu residues with Pro-Gly sequence to stabilize a turn structure and Gly-Gly sequence to adopt a random coil. The probe containing two Gly-Gly sequences exhibited marked selectivity only for Cu2+ over 13 metal ions including competitive transition and Group I and II metal ions under physiological buffer condition. In contrast, the probe containing double Pro-Gly sequences showed high selectivity for Zn2+. The peptide probe containing one Pro-Gly sequence exhibited selectivity for Zn2+ and Cu2+. CD spectra indicated that the secondary structure of the probes played an important role in the selective metal monitoring and a pre-organized secondary structure is not required for the selective detection of Cu2+ ion, but is required for the detection of Zn2+. We investigated and characterized the binding affinity, binding stoichiometry, reversibility, and pH sensitivity of the peptide probes.  相似文献   

18.
The stoichiometries and the affinity toward simple and paired metal ions of synthetic amyloid-β(1-40) peptide (Aβ1-40) were investigated by electrospray ion trap mass spectrometry (ESI-MS), circular dichroism (CD), and atomic force microscopy (AFM). The results lead to the working hypothesis that pH-dependent metal binding to Aβ1-40 may induce conformational changes, which affect the affinity toward other metals. A significant copper and zinc binding to Aβ1-40 peptide at pH 5.5 was found, whereas nickel ions commonly bind to each molecule of β-amyloid peptide. Some complexes of Aβ1-40 with more than one nickel ion were identified by ESI-MS. In addition, nickel ions proved to enhance Aβ oligomerization. On increasing pH, up to 12 ions of zinc may bind to a single Aβ molecule. Under the same pH and concentration conditions, the binding pattern of the independent copper and silver ions to Aβ1-40 was different from that of the equimolecular mixture of the two metal ions. One might assume that some conformational changes due to water loss altered the capacity of Aβ peptide to bind certain heavy metal ions. As a consequence, copper–silver interaction with the binding process to Aβ1-40 became highly complex. A competition between silver and nickel ions for Aβ1-40 binding sites at high pH was also observed. New strategies were proposed to identify the characteristic signals for some important metal ion–peptide complexes in the spectra recorded at high pH or high concentrations of metal ions. To explain the formation of such a large number of high metal ion–Aβ complexes, we took into consideration the participation of both histidine residues and free amino groups as well as carboxylate ones in the binding process. Finally, CD and AFM studies supported the mass spectrometric data.  相似文献   

19.
A unique peptide sequence of HGGHHG screening from a combinatorial synthetic peptide library showed a good chelating ability to bind a transition metal on a chip better than hexa-His peptide. It was directly conjugated with a His-Tagged proteins onto a chip in a mild aqueous solution and can be used this chip as a high throughput technique for protein array in order to detect and purify the His-Tagged proteins.  相似文献   

20.
High-performance immobilized metal ion affinity chromatography was utilized to evaluate the adsorption properties of 67 synthetic, biologically active, peptides ranging in size from 5 to 42 residues. The metal ions, Cu(II), Ni(II) and Zn(II), were immobilized by iminodiacetic acid (IDA) coupled to TSK gel 5PW (10 microns). Two types of gradient elution (imidazole and pH) were used to evaluate peptide retention by the metal ions. A decreasing pH gradient and an increasing imidazole gradient eluted the peptides in similar order. IDA-Cu(II) and IDA-Zn(II) showed very similar selectivities for the peptides analyzed; however, IDA-Zn(II) displayed a weaker affinity for the peptides. IDA-Ni(II) showed a slightly different pattern of selectivity. Peptide adsorption effects contributed by the metal-free gel matrix were found to be relatively minor. The concentration and type of salt included in the mobile phase could affect the relative affinities of the peptides for the immobilized metal ions. Retention coefficients were assigned to individual amino acid residues by multiple linear regression analysis. Histidine showed the largest positive correlation with retention, followed by aromatic amino acid residues. Modified N-terminal residues resulted in negative contributions to retention. Analyses of peptide amino acid composition alone allowed prediction of peptide retention behavior on immobilized metal ion affinity columns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号