首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Transformation of synthesized 2',3'-O-isopropylidene adenosine was studied in comparison with adenosine in rat liver homogenates. It is stated that 2',3'-O-isopropylidene adenosine is subjected to deamination similar to adenosine but less intensively. Due to deamination 2',3'-O-isopropylidene inosine is formed from 2',3'-O-isopropylidene adenosine. It is shown that under conditions of the conducted experiments enzymic splitting of the isopropylidene grouping from the preparation does not occur; this substrate contrary to adenosine does not split under the effect of purine nucleoside phosphorylase.  相似文献   

2.
Experiments using a phosphodiesterase-minus mutant of Dictyostelium discoideum indicate that ligand-induced loss of cell surface cyclic adenosine 3':5'-monophosphate binding sites (down regulation) can be evoked with concentrations of cyclic adenosine 3':5'-monophosphate as low as 10(-8) M. The loss of receptor sites is observed after 5 min of cell preincubation with cyclic adenosine 3':5'-monophosphate and can be as extensive as 75 to 80%. This decrease in binding sites is correlated with the appearance of a slowly dissociating cyclic adenosine 3':5'-monophosphate binding component. Radioactive cyclic adenosine 3':5'-monophosphate bound to this form of receptor cannot be competed for by nonradioactive cyclic adenosine 3':5'-monophosphate or adenosine 5'-monophosphate and is not accessible to hydrolysis by cyclic adenosine 3':5'-monophosphate phosphodiesterase. The extent of appearance of this binding component is dependent upon the concentration of cyclic adenosine 3':5'-monophosphate used to elicit the down regulation response and the temperature of the incubation medium.  相似文献   

3.
Transformation and uptake of [8-14C]-adenosine and its synthetic analog 2',3'-O-isopropylideneadenosine was studied in Zajdel hepatoma cells and their homogenates. Uptake and deamination of adenosine and 2',3'-O-isopropylideneadenosine by Zajdel hepatoma cells proceed differently. A small part of adenosine is phosphorylated and then it is included into biosynthesis of polymer substances. The uptake and deamination of 2',3'-O-isopropylideneadenosine by hepatoma cells occurs more intensively than uptake and deamination of adenosine. The formed 2',3'-O-isopropylideneadenosine is not splitted by purine nucleoside phosphorylase and is accumulated in cells in the incubation medium that lead to cell death. The same rate of 2',3'-O-isopropylideneadenosine deamination in cells and their homogenates indicates its high penetrability through plasma membranes. The high uptake of 2',3'-O-isopropylideneadenosine contrary to adenosine leads to deaggregation of cells and their destruction.  相似文献   

4.
The deamination rate of 2',3'-isopropylidene adenosine catalyzed by adenosine deaminase (ADA) from calf intestine and adenylate deaminase (AMPDA) from Aspergillus species has been evaluated and compared with that of the enzymatic reactions of adenosine, to elucidate the influence of the protecting group on enzyme activity.  相似文献   

5.
Effect of adenosine on the level of guanosine 3',5'-monophosphate in guinea pig cerebellar slices was investigated. Adenosine increased the concentration of guanosine 3',5'-monophosphate in the slices 3--4 fold. Upon removal of adenosine from the medium, the concentration of guanosine 3',5'-monophosphate returned to the initial level. AMP, ADP or ATP also increased the guanosine 3',5'-monophosphate level to the same extent as adenosine, while adenine or other nucleosides were not effective. In the absence of Ca2+ in the incubation medium, adenosine did not increase the concentration of guanosine 3',5'-monophosphate in cerebellar slices although level of adenosine 3',5'-monophosphate was elevated by adenosine. Anticholinergic agents, adrenergic blocking agents or antihistaminics did not prevent the increase of guanosine 3',5'-monophosphate by adenosine indicating that the effect of adenosine was not mediated by the release of neurotransmitters. The combination of adenosine with depolarizing agents showed an additive effect on the level of guanosine 3',5'-monophosphate indicating that adenosine increased the level of guanosine 3',5'-monophosphate by a different mechanism from the depolarization.  相似文献   

6.
7.
C H Lee 《Journal of bacteriology》1977,132(3):1031-1033
Cyclic adenosine 3',5'-monophosphate isolated from Mycobacterium smegmatis cells was identified by thin-layer chromatography, stepwise conversion to adenosine 5'-monophosphate and adenosine, ultraviolet absorption spectrum, phosphate analysis, and detection by two relatively specific radioisotopic methods.  相似文献   

8.
9.
Analysis of cells of Lactobacillus plantarum, starved or undergoing induction, showed no 3', 5'-cyclic adenosine monophosphate (cAMP). Neither adenyl cyclase nor 3', 5'-cAMP phosphodiesterase was detected in extracts. Extracts of L. plantarum did not inhibit these two enzymes of Escherichia coli K-12, strain W1435. Incubation of adenosine triphosphate (ATP)-U-(14)C with cells or various cell-free fractions of L. plantarum did not produce labeled 3', 5'-cAMP. Of various 3', 5'-cyclic and acyclic nucleotides tested, only 3', 5'-cAMP, ATP, and yeast adenylic acid stimulated l-arabinose isomerase. Yeast adenylic acid was two to four times as effective as 3', 5'-cAMP or ATP. 2', 3'-cAMP was not effective.  相似文献   

10.
Y Sasaki  N Suzuki  T Sowa  R Nozawa  T Yokota 《Biochemistry》1976,15(7):1408-1413
Most of twenty-one 8-substitued adenosine 3',5'-monophosphate derivatives were found to inhibit competitively the hydrolysis of adenosine 3'5'-monophosphate by partially purified high Km (Michaelis-Menten constant) phosphodiesterase from hog brain cortex, which had one active site at high concentration of adenosine 3',5'-monophosphate (0.3 to 4.0 mM). The Ki value for the 8-substituted alkylaminoadenosine 3'5'-monophosphate derivative was found to decrease with increasing unbranched carbon chain of the substituent, and a minimum value was obtained in the case of 8-octylaminoadenosine 3',5'-monophosphate. The Ki value, however, increased gradually as the substituent of derivative became longer than that of 8-octylminoadenosine 3'5'-monophosphate. The similar phenomenon was observed in the 8-substituted alkylthioadenosine 3',5'-monophosphate. The standard affinity for adenosine 3,5'-monophosphate of the high Km phosphodiesterase was 5.0 kcal/mol, which was calculated from Km. The standard affinity for 8-hexylthioadenosine 3',5'-monophosphate, which inhibited most strongly the enzyme activity, was 7.2 kcal/mol. The difference (2.2 kcal/736) between the standard affinity for adenosine 3',5'-monphosphate and that for 8-hexylthioadenosine 3',5'-monophosphate seems to be based on the partial affinity for the substituent (hexylthio group) of the active site on the enzyme or its neighborhood. A characteristic similar interrelation between substituent length of derivatives and their inhibitory effect on the enzyme activity was observed similarly in two different series of derivatives, 8-substituted alkylaminoadenosine 3',5'-monophosphate and alkylthioadenosine 3',5'-monophosphate. The results may indicate the characteristic structure of the active site of the enzyme or its neighborhood.  相似文献   

11.
Addition of insulin to cultured mouse plasma tumor cells (MPC-11) increases the entry of tritiated cyclic adenosine 3',5'-monophosphate (3H-cAMP). No increase of entry of N6-O2-dibutyryl adenosine 3',5' cyclic monophosphate (DBcAMP), 5' adenosine monophosphate (5' AMP) or adenosine was noted in the presence of insulin. The stimulation of cAMP transport by insulin was concentration dependent and inactivated insulin had no effect on nucleotide transport. Intracellular radioactivity after transport of cAMP was largely 5'AMP, while most of the extracellular radioactivity remained as cAMP after incubation.  相似文献   

12.
The effect of adenosine on the mouse thymocyte adenylate cyclase-adenosine 3':5'-monophosphate (cyclic AMP) system was examined. Adenosine, like prostaglandin E1, can cause 5-fold or greater increases in thymocyte cyclic AMP content in the presence but not in the absence of certain cyclic phosphodiesterase inhibitors. Two non-methylxanthine inhibitors potentiated the prostaglandin E1 and adenosine responses, while methylxanthines selectively inhibited the adenosine response. Adenosine increased cyclic AMP content significantly within 1 min and was maximal by 10 to 20 min with approx. 2 and 10 muM adenosine being minimal and half-maximal effective doses, respectively. Combinations of prostaglandin E1, isoproterenol and adenosine were near additive and not synergistic. Of the adenosine analogues tested, only 2-chloro- and 2-fluoroadenosine significantly increased cyclic AMP. Thymocytes prelabeled with [14C]adenine exhibited dramatic increases in cyclic [14C]AMP 10 min after addition of adenosine or prostaglandin E1 which corresponded to simultaneously determined increases in total cyclic AMP. Using [14C]adenosine, the percent of total cyclic AMP increase due to adenosine was only 16%. Adenosine was also shown to elicit a 40% increase in particulate thymocyte adenylate cyclase activity. Therefore, the increased content of cyclic AMP seen in mouse thymocytes after incubation with adenosine was due primarily to stimulation of adenylate cyclase and only partially to conversion of adenosine to cyclic AMP. The increased cellular content of cyclic AMP may be, in part, responsible for various immunosuppressive effects of adenosine.  相似文献   

13.
Inducibility of histidase (histidine ammonia-lyase, EC 4.3.1.3) in Pseudomonas putida and Pseudomonas aeruginosa was observed to be strongly affected by succinate-provoked catabolite repression, but this did not occur as a consequence of reduced intracellular cyclic adenosine 3',5'-monophosphate levels, and repression could not be alleviated by exogenously added cyclic adenosine 3,'5'-monophosphate. Milder repression of histidase by lactate was also not reversed by the addition of cyclic adenosine 3',5'-monophosphate. These results, along with data showing intracellular cyclic adenosine 3',5'-monophosphate levels remained essentially constant during growth on such diverse carbon sources as histidine, acetamide, glucose, and succinate, indicated that catabolite repression of histidase synthesis by efficient carbon sources was not mediated through variations in internal cyclic adenosine 3,'5'-monophosphate.  相似文献   

14.
In response to nutritional stress conditions, Bacillus brevis produces the cyclodecapeptide antibiotic tyrocidine via tyrocidine synthetase, a multifunctional non-ribosomal peptide synthetase. The apo-form of tyrocidine synthetase 1 forms adenosine (5')tetraphospho(5')adenosine, when incubated with MgATP(2-), amino acid and inorganic pyrophosphatase. The synthesis is an intrinsic property of the adenylation domain, is strictly dependent upon the amino acid, and proceeds from a reverse reaction of adenylate formation involving a second ATP molecule. In the presence of tri- or tetrapolyphosphate preferential synthesis of adenosine 5'-tetraphosphate and adenosine 5'-pentaphosphate occurs, respectively. A potential involvement of adenosine (5')-n-phospho(5')adenosine in the regulation of the biosynthetic process has been suggested.  相似文献   

15.
Inhibition of adenosine and thymidylate kinases by bisubstrate analogs   总被引:3,自引:0,他引:3  
Potential bisubstrate analogs, in which the 5'-hydroxyl group of adenosine was joined to the phosphoryl group acceptor by polyphosphoryl bridges of varying length (ApnX, where n is the number of phosphoryl groups and X is the nucleoside moiety of the acceptor), were tested as inhibitors of human liver adenosine kinase and of thymidylate kinase from peripheral blast cells of patients with acute myelocytic leukemia. Adenosine kinase was most strongly inhibited by P1,P4-(diadenosine 5')-tetraphosphate (Kd = 30 nM) and P1,P5-(diadenosine 5')-pentaphosphate (Kd = 73 nM). Thymidylate kinase was most strongly inhibited by P1-(adenosine 5')-P5-(thymidine 5')-pentaphosphate (Kd = 120 nM) and by P1(adenosine 5')-P6-(thymidine 5')-hexaphosphate (Kd = 43 nM). In these enzymes, as in adenylate and thymidylate kinases, strongest inhibition was achieved in compounds containing one or two more phosphoryl groups than the substrates combined. These results support the view that nucleoside and nucleotide kinases mediate direct transfer of phosphoryl groups from ATP to acceptors, rather than acting by a double displacement mechanism.  相似文献   

16.
In fat cells isolated from the parametrial adipose tissue of rats, the addition of purified adenosine deaminase increased lipolysis and cyclic adenosine 3':5'-monophosphate (cyclic AMP) accumulation. Adenosine deaminase markedly potentiated cyclic AMP accumulation due to norepinephrine. The increase in cyclic AMP due to adenosine deaminase was as rapid as that of theophylline with near maximal effects seen after only a 20-sec incubation. The increases in cyclic AMP due to crystalline adenosine deaminase from intestinal mucosa were seen at concentrations as low as 0.05 mug per ml. Further purification of the crystalline enzyme preparation by Sephadex G-100 chromatography increased both adenosine deaminase activity and cyclic AMP accumulation by fat cells. The effects of adenosine deaminase on fat cell metabolism were reversed by the addition of low concentrations of N6-(phenylisopropyl)adenosine, an analog of adenosine which is not deaminated. The effects of adenosine deaminase on cyclic AMP accumulation were blocked by coformycin which is a potent inhibitor of the enzyme. These findings suggest that deamination of adenosine is responsible for the observed effects of adenosine deaminase preparations. Protein kinase activity of fat cell homogenates was unaffected by adenosine or N6-(phenylisopropyl)adenosine. Norepinephrine-activated adenylate cyclase activity of fat cell ghosts was not inhibited by N6-(phenylisopropyl)adenosine. Adenosine deaminase did not alter basal or norepinephrine-activated adenylate cyclase activity. Cyclic AMP phosphodiesterase activity of fat cell ghosts was also unaffected by adenosine deaminase. Basal and insulin-stimulated glucose oxidation were little affected by adenosine deaminase. However, the addition of adenosine deaminase to fat cells incubated with 1.5 muM norepinephrine abolished the antilipolytic action of insulin and markedly reduced the increase in glucose oxidation due to insulin. These effects were reversed by N6-(phenylisopropyl)adenosine. Phenylisopropyl adenosine did not affect insulin action during a 1-hour incubation. If fat cells were incubated for 2 hours with phenylisopropyl adenosine prior to the addition of insulin for 1 hour there was a marked potentiation of insulin action. The potentiation of insulin action by prior incubation with phenylisopropyl adenosine was not unique as prostaglandin E1, and nicotinic acid had similar effects.  相似文献   

17.
A method using ion-pairing liquid chromatography-mass spectrometry (MS) was developed for analyzing adenosine 5(')-monophosphate (AMP), adenosine 5(')-diphosphate (ADP), and adenosine 5(')-triphosphate (ATP) in cellular extracts. Dimethylhexylamine (DMHA) was used as ion-pairing agent to retain and separate the analytes on a reversed-phase microbore column with a gradient program. Positive-ion electrospray ionization-MS was applied for the detection because of the use of the ion-pairing agent. Adduct ions of DMHA with AMP, ADP, and ATP were found to be the most intensive peaks and thus selected as quantitative ions. An external calibration method with linear ranges from 0.1 to 20 microM for AMP, 2 to 20 microM for ADP, and 2.5 to 20 microM for ATP was used for the quantitation. The method was applied to determine concentrations of AMP, ADP, and ATP in extracts of cultured rat C6 glioma cells that were pretreated with various concentrations of Zn. The detected levels of the adenosine nucleotides have been used to calculate total adenosine nucleotide and energy charge potential. Changes in cellular energy status upon exposure to increasing concentration of Zn in the culture medium were analyzed. The results indicated that the addition of Zn in a range of 40 to 120 microg/ml cause a gradual increased in energy charge potential of the cells.  相似文献   

18.
In 1985 an analysis of the Escherichia coli 16 S rRNA covariation-based structure model revealed a strong bias for unpaired adenosines. The same analysis revealed that the majority of the G, C, and U bases were paired. These biases are (now) consistent with the high percentage of unpaired adenosine nucleotides in several structure motifs.An analysis of a larger set of bacterial comparative 16 S and 23 S rRNA structure models has substantiated this initial finding and revealed new biases in the distribution of adenosine nucleotides in loop regions. The majority of the adenosine nucleotides are unpaired, while the majority of the G, C, and U bases are paired in the covariation-based structure model. The unpaired adenosine nucleotides predominate in the middle and at the 3' end of loops, and are the second most frequent nucleotide type at the 5' end of loops (G is the most common nucleotide). There are additional biases for unpaired adenosine nucleotides at the 3' end of loops and adjacent to a G at the 5' end of the helix. The most prevalent consecutive nucleotides are GG, GA, AG, and AA. A total of 70 % of the GG sequences are within helices, while more than 70 % of the AA sequences are unpaired. Nearly 50 % of the GA sequences are unpaired, and approximately one-third of the AG sequences are within helices while another third are at the 3' loop.5' helix junction. Unpaired positions with an adenosine nucleotide in more than 50 % of the sequences at the 3' end of 16 S and 23 S rRNA loops were identified and arranged into the A-motif categories XAZ, AAZ, XAG, AAG, and AAG:U, where G or Z is paired, G:U is a base-pair, and X is not an A and Z is not a G in more than 50 % of the sequences. These sequence motifs were associated with several structural motifs, such as adenosine platforms, E and E-like loops, A:A and A:G pairings at the end of helices, G:A tandem base-pairs, GNRA tetraloop hairpins, and U-turns.  相似文献   

19.
A series of adenosine cyclic 3',5'-phosphate (cAMP) derivatives containing modifications or substitutions in either the 2',3',4', or 5' position or the phosphate were examined for their abilities to activate type I isozymes of cAMP-dependent protein kinase (PK I) from rabbit or porcine skeletal muscle and type II isozymes of cAMP-dependent protein kinase (PK II) from bovine brain and heart. The studies revealed that the activation of both PK I and PK II isozymes requires a 2'-hydroxyl group in the ribo configuration, a 3' oxygen in the ribo configuration, and a charged cyclic phosphate. The two isozymes appeared to differ in those portions of their respective cAMP-binding sites that are adjacent to the 4' position of the ribose ring and the 3' position, 5' position, and phosphate portion of the cyclic phosphate ring.  相似文献   

20.
Considerable evidence implicates cyclic 3', 5' adenosine monophosphate (AMP) in the maintenance of meiotic arrest of mammalian oocytes. Since this laboratory previously found that adenosine augmented follicle-stimulating hormone (FSH)-stimulated accumulation of cyclic AMP in oocyte-cumulus-complexes (OCC), in the present studies we investigated the possibility that adenosine inhibits maturation of oocytes. In rat OCC cultured in the presence of FSH, adenosine markedly inhibited oocyte maturation in a dose-dependent and biphasic manner. Maximum inhibition of oocyte maturation was seen with 1-30 microM adenosine in the presence of FSH, and half-maximal inhibition occurred with less than 0.3 microM adenosine. High levels of adenosine (100 microM) did not inhibit oocyte maturation in the presence of FSH. In the absence of FSH, adenosine showed little effect on oocyte maturation in the present studies, but increased the maximum inhibition of oocyte maturation produced by FSH approximately twofold. Like adenosine, adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine 5'-monophosphate (AMP) also inhibited oocyte maturation; whereas adenine, guanosine, inosine, and hypoxanthine were inactive at equivalent levels. The metabolism-resistant adenosine analog (2-chloroadenosine) was as active an inhibitor as adenosine. Inhibition produced by the adenine nucleotides may have been direct or due to conversion to adenosine by extracellular nucleotidases. The concentration dependence and purine specificity for inhibition of oocyte maturation are characteristic of an adenosine receptor-mediated process, but direct evidence for such a mechanism was not shown. The effective concentration of adenosine for inhibition of oocyte maturation is within the range of reported levels of adenosine in biological tissues and fluids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号