首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The kinetics of actin unfolding induced by guanidine hydrochloride has been studied. On the basis of obtained experimental data a new kinetic pathway of actin unfolding was proposed. We have shown that the transition from native to inactivated actin induced by guanidine hydrochloride (GdnHCl) passes through essential unfolding of the protein. This means that inactivated actin should be considered as the off-pathway species rather than an intermediate conformation between native and completely unfolded states of actin, as has been assumed earlier. The rate constants of the transitions that give rise to the inactivated actin were determined. At 1.0-2.0 M GdnHCl the value of the rate constant of the transition from native to essentially unfolded actin exceeds that of the following step of inactivated actin formation. It leads to the accumulation of essentially unfolded macromolecules early in the unfolding process, which in turn causes the minimum in the time dependencies of tryptophan fluorescence intensity, parameter A, characterizing the intrinsic fluorescence spectrum position, and tryptophan fluorescence anisotropy.  相似文献   

3.
Although denaturation of ribonuclease by guanidine hydrochloride to a random coil has been considered to be a simple two-state mechanism, the time dependence of our calorimetric data indicate that a cooperative endothermic pretransition may occur near 1.25 M. guanidine hydrochloride (pH 6 and 25°C) without gross unfolding of the protein. Reexamination of other observables as a function of guanidine hydrochloride concentrations as well as activity measurements suggests the possibility of some process other than simple binding occurring in the concentration range below the onset of gross denaturation.  相似文献   

4.
Inhibited subtilisin (Subtilism Carlsberg; Subtilopeptidase A) is unfolded in the presence of 7 M guanidine hydrochloride. The unfolding reaches a maximum in approximately 6 min at 20C at pH 8.0. This is demonstrated by an increase of the mean residue ellipticity at 222 nm from -8.02 x 10-3 to -1.72 x 10-3 deg. cm-2/decimole. The unfolding is partially reversible and this reversibility is favoured by lower concentrations of enzyme. The fact that the refolding process is not complete may be attributed to either the demonstrated self association of the denatured enzyme or to interference of non-covalently bound autolysis peptides.  相似文献   

5.
6.
The reversible unfolding of alpha-lactalbumin by guanidine hydrochloride, was studied at 25.0 degrees C in a relatively low concentration range of the denaturant (0.80-2.00 mol/l) by means of difference spectra and pH-jump measurements. The unfolding was shown to occur between two states, N and D, because apparent rate-constants of the unfolding and the refolding reactions depended only on pH. All curves plotted as the logarithmical equilibrium constant log KD against pH could fall on the same base curve by shifting each curve along the log KD axis. From the dependence of the logarithmic rate constant on pH, master curves could also be made for the forward and the backward reactions. The dependence of these master curves on pH indicates that the groups affecting the pH dependence of the unfolding are three residues with pKN = 3.3 and pKA = pKD = 4.4, one residue with pKN = pKA = 3.8 and pKD = 4.4, and one residue with pKN = 5.8 and pKA = pKD = 6.3, where A indicates the activated state. On the other hand, from the denaturant activity dependence of the shift factors required for making the master curves, the value of the intrinsic binding constant of the denaturant to the protein was found to be similar to that obtained from previous measurements at pH 5.5. Differences between the numbers of the binding sites of the denaturant on the denaturated and the native proteins, and between those on the activated and the native proteins were shown to be 5.3 and 2.1, respectively. The free energy of stabilization in the native-like environment also shows that the protein in the native state is more unstable than lysozyme.  相似文献   

7.
8.
The ligand-modulated kinetics of the autoproteolysis of thermolysin and the high-molecular-weight products of the reaction provide evidence for the conclusion that separation of the two structural domains is most probably the first step on the unfolding pathway of the protein under native conditions.  相似文献   

9.
G R Parr  G G Hammes 《Biochemistry》1975,14(8):1600-1605
The denaturation of rabbit skeletal muscle phosphofructokinase by guanidine hydrochloride has been studied using fluorescence, light scattering, and enzyme activity measurements. The transition from fully active tetramer (0.1 M potassium phosphate (pH 8.0) at 10 and 23 degrees) to unfolded polypeptide chains occurs in two phases as measured by changes in the fluorescence spectrum and light scattering of the protein: dissociation to monomers at low guanidine hydrochloride concentrations (similar to 0.8 M) followed by an unfolding of the polypeptide chains, which presumably results in a random coil state, at high concentrations of denaturant (greater than 3.5 M). The initial transition can be further divided into two distinct stages. The native enzyme is rapidly dissociated to inactive monomers which then undergo a much slower conformational change that alters the fluorescence spectrum of the protein. The dissociation is complete within 2 min and is reversible, but the conformational change requires about 2 hr for completion and is not reversible under a variety of conditions, including the presence of substrates and allosteric effectors. The conformationally altered protomer reaggregates to form a precipitate at 23 degrees, but is stable below 10 degrees. The second major phase of the denaturation is fully reversible. A simple mechanism is proposed to account for the results, and its implications for the corresponding renaturation process are discussed.  相似文献   

10.
The activity and the conformational changes of methanol dehydrogenase (MDH), a quinoprotein containing pyrrolo-quinoline quinone as its prosthetic group, have been studied during denaturation in guanidine hydrochloride (GdnHCl) and urea. The unfolding of MDH was followed using the steady-state and time resolved fluorescence methods. Increasing the denaturant concentration in the denatured system significantly enhanced the inactivation and unfolding of MDH. The enzyme was completely inactivated at 1 M GdnHCl or 6 M urea. The fluorescence emission maximum of the native enzyme was at 332 nm. With increasing denaturant concentrations, the fluorescence emission maximum red-shifted in magnitude to a maximum value (355 nm) at 5 M GdnHCl or 8 M urea. Comparison of inactivation and conformational changes during denaturation showed that in general accord with the suggestion made previously by Tsou, the active sites of MDH are situated in a region more flexible than the molecule as a whole.  相似文献   

11.
B C Hill  K Cook  N C Robinson 《Biochemistry》1988,27(13):4741-4747
The response of cytochrome oxidase to the denaturant guanidine hydrochloride (Gdn.HCl) occurs in two stages. The first stage is a sharp transition centered at 1 M Gdn.HCl, whereas the second stage occurs from 3 to 7 M Gdn.HCl. In the first phase, changes occur in several spectroscopic properties: (1) the tryptophan fluorescence increases from 37% of that of N-acetyltryptophanamide to 85%; (2) the emission maximum shifts from 328 to 333 nm; (3) the circular dichroism (CD) signal at 222 nm diminishes by 30%; and (4) the Soret CD signal at 426 nm is completely abolished. These spectroscopic changes are accompanied by complete loss of the oxidase's steady-state electron-transfer activity. Of the 13 available sulfhydryl residues, 2 are reactive in the isolated enzyme, but this number increases to almost 10 in the first stage of denaturation. Subunits III, VIb, VIc, and VII dissociate from the protein complex at 0.5 M Gdn.HCl, but only subunit VII can be recovered after gel filtration chromatography [nomenclature according to Buse et al. (1985)]. In 2.5 M Gdn.HCl, the heme groups are found with a complex consisting predominantly of subunits I, II, and IV. In the second phase of denaturation, there is further disruption in the structure of the oxidase as indicated by continued decline in the ultraviolet CD signal and shift to longer wavelength of the tryptophan emission spectrum. However, the fluorescence quantum yield and number of reactive sulfhydryl groups decrease as the denaturant level is raised. Gel filtration chromatography reveals that protein and heme form a high molecular weight aggregate at 5 M Gdn.HCl.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
The pH dependence of the reversible guanidine hydrochloride denaturation of the major fraction of ovalbumin (ovalbumin A1) was studied by a viscometric method in the pH range 1-7, at 25 degrees C and at six different denaturant concentrations (1.5-2.6 M). At any denaturant concentrationa reduction in pH favoured the transition from the native to the denatured state. The latter was essentially 'structureless', as revealed by the fact that the reduced viscosity of the acid and guanidine hydrochloride denatured state of ovalbumin A1 (obtained at different denaturant concentrations in acidic solutions) was measured (at a protein concentration of 3.8 mg/ml) to be 29.2 ml/g which is identical to that found in 6 M guanidine hydrochloride wherein the protein behaves as a cross-linked random coil. A quantitative analysis of the results on the pH dependence of the equilibrium constant for the denaturation process showed that on denaturation the intrinsic pK of two carboxyl groups in ovalbumin A1 went up from 3.1 in the native state to 4.4 in the denatured state of the protein.  相似文献   

14.
Dubey VK  Jagannadham MV 《Biochemistry》2003,42(42):12287-12297
The structural and functional aspects along with equilibrium unfolding of procerain, a cysteine protease from Calotropis procera, were studied in solution. The energetic parameters and conformational stability of procerain in different states were also estimated and interpreted. Procerain belongs to the alpha + beta class of proteins. At pH 2.0, procerain exists in a partially unfolded state with characteristics of a molten globule-like state, and the protein is predominantly a beta-sheet conformation and exhibits strong ANS binding. GuHCl and temperature denaturation of procerain in the molten globule-like state is noncooperative, contrary to the cooperativity seen with the native protein, suggesting the presence of two parts in the molecular structure of procerain, possibly domains, with different stability that unfolds in steps. Moreover, tryptophan quenching studies suggested the exposure of aromatic residues to solvent in this state. At lower pH, procerain unfolds to the acid-unfolded state, and a further decrease in the pH drives the protein to the A state. The presence of 0.5 M salt in the solvent composition directs the transition to the A state while bypassing the acid-unfolded state. GuHCl-induced unfolding of procerain at pH 3.0 seen by various methods is cooperative, but the transitions are noncoincidental. Besides, a strong ANS binding to the protein is observed at low concentrations of GuHCl, indicating the presence of an intermediate in the unfolding pathway. On the other hand, even in the presence of urea (8 M), procerain retains all the activity as well as structural parameters at neutral pH. However, the protein is susceptible to unfolding by urea at lower pH, and the transitions are cooperative and coincidental. Further, the properties of the molten globule-like state and the intermediate state are different, but both states have the same conformational stability. This indicates that these intermediates may be located on parallel folding routes of procerain.  相似文献   

15.
The unfolding of bovine thyroglobulin (Tg) in guanidine hydrochloride (GuHCl) solution was studied by following the fluorescence and circular dichroism. With increasing GuHCl concentrations, the emission maximum of the intrinsic fluorescence clearly red-shifted in two stages. At concentrations of GuHCl less than 1.2 M or more than 1.6 M, the red shift showed a cooperative manner. At concentrations of GuHCl between 1.2 and 1.6 M, an unfolding intermediate was observed. It was further characterized by the increased binding of the fluorescence probe 1-anilinonaphthalene-8-sulfonic acid (ANS). No significant changes of the secondary structure were indicated by CD spectra at the concentrations of GuHCl between 1.2 and 1.6 M. The conformation of this state has properties similar to those of a molten globule state which may exist in the folding pathway of the protein. Further changes in fluorescence properties occurred at concentrations of denaturant higher than 1.6 M with a significant red shift of the emission maximum from 340 to 347 nm and a marked decrease in ANS binding. This in vitro study gave a clue to understand the biochemical mechanism for the occurrence of aggregation and molecular chaperone binding during Tg maturation in vivo.  相似文献   

16.
By comparing changes in enzyme activity with changes in spectral features for stem bromelain (EC.3.4.22.32) in the absence and presence of urea, Guanidine hydrochloride and ethanol; four intermediate states could be identified: two activity-enhanced state obtained in the presence of 5 M urea and 2 M GnHCl, termed X and X', respectively, and a third, similarly active state closely resembling the native protein in the presence of 8-9 M urea, termed Y. The enhanced activity of these states is due to local conformational changes accompanied by increased dynamics in the active site. Further, the enzyme does not lose its activity after substantial tertiary structure changes in 8-9 M urea (Y state), suggesting that active site containing domain is more resistant to chemical denaturation than the other structural domain. This makes stem bromelain and in general cysteine proteases an exception to the hypothesis that active site is the most labile part of enzyme.  相似文献   

17.
The denaturation of lysozyme and ribonuclease A by guanidine hydrochloride was followed in the presence and absence of glycerol and sorbitol by means of circular dichroism measurements at 25 degrees C. The protein-solvent interactions in the presence of these polyols were also studied by means of density measurements, for discussion of the mechanism of protein stabilization by polyols in terms of the multicomponent thermodynamic theory. The free energy of denaturation depends linearly on the molarity of guanidine hydrochloride at a given polyol concentration, without modification of the cooperativity of the transition. The free energy of denaturation at an infinite dilution of guanidine hydrochloride increases in proportion to the polyol concentration. These results indicate the competing solvent effects of polyols and guanidine hydrochloride on the structures of proteins. In water-protein-polyol systems, protein is preferentially hydrated to elevate its chemical potential, predominantly due to the unfavorable interaction of polyols with the exposed nonpolar amino acid residues. By linkage with the free energy of denaturation, it was quantitatively determined that the chemical potential of denatured protein is more extensively elevated by addition of polyols than that of native protein. These results demonstrate that polyols stabilize the protein structure through strengthening of the hydrophobic interaction, competing with the effect of guanidine hydrochloride.  相似文献   

18.
Reversible unfolding of ovomucoid by guanidine hydrochloride, as followed by viscosity and difference-spectral measurements at 25°C, pH6, occurred in two distinct steps involving at least three major conformational states, namely the native, intermediate and completely denatured states, occurring respectively in 60mm-sodium phosphate buffer, 3.5m-guanidine hydrochloride and 6m-guanidine hydrochloride. The overall native conformation of ovomucoid, as indicated by its intrinsic viscosity (5.24ml/g) and gel-filtration behaviour, differs significantly from that of a typical globular protein. Exposures of tyrosine residues in native ovomucoid measured by difference spectroscopy following perturbation with glycerol, ethylene glycol and dimethyl sulphoxide were, respectively, 0.42, 0.56 and 0.57. Of the exposed phenolic groups only one titrated normally (pKint., 9.91, electrostatic-interaction factor, w, 0.04). Results on difference spectra, solvent perturbation, phenolic titration and intrinsic viscosity (7.4ml/g) taken together showed that, although ovomucoid in 3.5m-guanidine hydrochloride was significantly unfolded, it retained a degree of native structure, removable with 6m-guanidine hydrochloride. In the latter, all the six tyrosine residues were available for titration, and the intrinsic viscosity of ovomucoid increased to 9.4ml/g. Furthermore, the characteristic fine structures in circular-dichrosim spectra of ovomucoid, associated with the elements of native structure, were abolished in 6m-guanidine hydrochloride, suggesting that the completely denatured state is structureless and presumably behaves as a cross-linked random coil. The latter state has been shown by analysis of the results on guanidine hydrochloride-dependence of the transition, intermediatedenatured, to be less stable than the intermediate state under native conditions by about 46kJ/mol at 25°C. Attempts have been made to interpret the above results in the light of available information on the amino acid sequence of ovomucoid.  相似文献   

19.
20.
The guanidine hydrochloride denaturation of light meromyosins (LMMs) of fish (carp, sardine and greenling) and rabbit was investigated to determine their structural stability quantitatively. The circular dichroism (CD) and fluorescence spectroscopies were applied to monitor denaturation. The CD results indicate that the LMM α-helix undergoes a two-step unfolding. The free energy of denaturation was calculated based on the linear extrapolation method and the denaturant binding model. Total free energies of the two-step unfolding of the α-helix are related to the water temperatures in which the fish live and the body temperature of rabbit. The stability of α-helical structure of LMM was in the following descending order: rabbit>carp>sardine>greenling. The free energies of denaturation obtained by tryptophan fluorescence differ from the free energies of the unfolding α-helix. The data from the two spectroscopic measurements are discussed along with the conformational changes of LMMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号