首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Organic ion transport across the basolateral membrane of proximal tubules was measured by means of the tissue slice technique in each of the four different stages of Heymann nephritis. Impairment of both organic anion and cation transport was detected early in Stage 2, and became more severe in Stage 3 of Heymann nephritis. The decreased transport function was associated with extensive damage to proximal tubule cells, including loss of brush border microvilli and basal infoldings. Despite these abnormalities of structure and function, oxygen consumption of proximal tubule cells remained essentially normal. Partial recovery of organic cation transport was noted late in Heymann nephritis (Stage 4). Recovery of the cation transport function was associated with a partial restoration of brush border microvilli and basal infoldings to proximal tubule cells. However, organic anion transport remained depressed throughout the entire course of disease. Impairment of organic ion transport in rats with Heymann nephritis appeared to result from damage to basolateral membrane transport elements rather than general deterioration of the metabolic machinery of proximal tubule cells. Decreased organic cation transport appeared to be the consequence of a reduction in the number of carrier sites, a phenomenon that could have resulted from decreased membrane surface area. However, the depression of organic anion transport was associated with decreased substrate affinity of the anion carrier, indicating that qualitative, rather than quantitative changes, were primarily responsible for that defect. Specific antibody-mediated damage to the anion transport elements in basolateral membranes of proximal tubules is postulated to occur in Heymann nephritis.  相似文献   

2.
The present work was carried out to investigate the transport characteristics of gossypol, a toxic weak organic acid (pK = 7.2) contained in cottonseed, into the rabbit renal cortical slice. The uptake of gossypol increased linearly during a 2-hr incubation after which it leveled off with the average slice-to-medium concentration ratio (S/M) slightly above 20. In the presence of metabolic inhibitors, the S/M gossypol leveled off at about 9, suggesting an extensive binding of gossypol to tissue proteins. The uptake of gossypol was significantly inhibited by p-aminohippurate (PAH), probenecid, ouabain, and DIDS, all of which are known inhibitors of renal organic anion transport. However, the gossypol uptake was not affected by tetraethylammonium (TEA), a prototypical organic cation. Kinetic studies indicated that the apparent Km for gossypol transport is 0.28 mM, and also that probenecid inhibits gossypol transport in a competitive manner. It is concluded that gossypol is transported by the renal tubule through the classic organic anion system.  相似文献   

3.
Fatal immune complex glomerulonephritis can be induced in rats by chronic intravenous administration of bovine serum albumin. There are three distinct stages, mild, moderate, and severe, in the development of renal immunopathology and pathophysiology in this model of chronic serum sickness. The work described here was undertaken to evaluate aspects of proximal tubule function in those different stages. Tissue water distribution, oxidative metabolism, and transport of representative organic anions and cations were measured in renal cortical slices. In mild chronic serum sickness all functions were normal except the transport of p-aminohippurate (PAH, organic anion), which was significantly decreased. This decrease appeared to be attributable to immunization with Freund's adjuvant. In the moderate stage of chronic serum sickness, proximal tubule functions and morphology appeared essentially normal. Only Na-K-ATPase activity was somewhat lower than in controls. However, proximal tubule dysfunction was a feature of severe chronic serum sickness. A significant inhibition of anion and cation transport was observed. Reduction in transport functions occurred together with impaired oxidative metabolism and severe reduction in Na-K-ATPase activity. Abnormalities of mitochondrial structure, a decrease in number of mitochondria, and a significant increase in intracellular H2O content provided additional evidence of degenerative changes in proximal tubule cells during the severe stage of chronic serum sickness. It was concluded that decreased transport of organic ions by the basolateral membrane in proximal tubules of rats with severe chronic serum sickness resulted from a breakdown in the metabolic machinery of the tubule epithelium rather than a specific injury to organic ion transport systems.  相似文献   

4.
Recently an inhibitory effect of atrial natriuretic factor (ANF) on the adenylate cyclase system has been reported in vascular tissue. In seeking similar affects in renal tissue, we studied the effect of ANF on cyclic AMP levels in single nephron segments and in glomeruli from the rat. Individual nephron segments or glomeruli were incubated in the presence of a phosphodiesterase inhibitor, with or without parathyroid hormone (PTH) or arginine vasopressin (AVP) and varying concentrations of ANF at 37 degrees C for 2 min. The capacity for alpha 2-adrenoceptor inhibition of adenylate cyclase was demonstrated in the proximal convoluted tubule, cortical collecting tubule and in glomeruli. Nevertheless, ANF could not inhibit cAMP formation in any of these nephron segments nor in the glomerulus. Thus, unlike the vasculature, ANF has no inhibitory effect on cAMP formation in these renal tissues.  相似文献   

5.
Summary Cytochemical localization of particulate guanylate cyclase (GC) in rat kidney, after stimulation with atrial natriuretic factor (ANF), was studied by electron microscopy. In the renal corpuscle GC reaction product was localized on podocytes. Other segments of the nephron that showed ultracytochemical evidence of GC activity were the proximal convoluted tubule, the thick ascending limb of the loop of Henle and the collecting tubule. All GC positivity was associated with plasma membranes. Samples incubated in basal conditions (without ANF) did not reveal any GC reaction product. These results indicate that ANF is a strong activator of particulate GC. Our data also suggests that, through the enzyme, ANF acts directly on epithelial cells of tubules where Na+ reabsorption occurs. This is in agreement with the hypothesis that ANF has a direct tubular effect on natriuresis.  相似文献   

6.
Primary cultures of renal proximal tubule have become important tools for examination of the mechanisms and control of transepithelial transport processes. The utility of the culture preparations for study of integrated tissue functions depends upon their accurate expression of in vivo transport processes. Maintenance of differentiation in culture is enhanced by contractible collagen substratum. Epithelial monolayer primary cultures of flounder and chicken proximal tubule, prepared by enzymatic and mechanical maceration with differential centrifugation, exhibit functional properties at the tissue level that generally resemble known properties of the freshly isolated or in vivo proximal tubule. Transepithelial electrical resistances and potential differences are very similar or identical to those of intact tubules. Na+-dependent glucose transport, a hallmark of proximal tubule function, has the same properties in culture as the tissue in vivo. Similarly, where appropriate comparisons are possible, amino acid, uric acid, and organic anion and cation transepithelial transport processes are qualitatively very similar in culture and in vivo. These two non-mammalian primary proximal tubule culture systems adequately reflect in vivo function, and thus provide opportunities for experimental manipulation otherwise not available.  相似文献   

7.
Summary The present study was undertaken to examine the effects of anoxia and/or low pH on active organic ion transport and tissue water and electrolyte distribution in freshly prepared cortical slices from harbor seal and rat kidneys.p-Aminohippurate (PAH) and tetraethylammonium (TEA) were used as a representative organic anion and cation, respectively. The slice uptake of PAH was not influenced by the incubation medium pH over a range of 5.0–7.5 in the harbor seal while it was very sensitive to the medium pH in the rat, decreasing significantly with reductions in pH (Fig. 1). Although the TEA uptake decreased in anoxia in both species, it decreased considerably less in the harbor seal than in the rat (40% vs 74%) (Fig. 2). However, in contrast to the PAH transport system, the TEA uptake decreased significantly at low pH in both species. The magnitudes of increase in intracellular Na and of decrease in intracellular K in anoxia were consistently less in the harbor seal than in the rat, especially at low pH (Fig. 3). However, the pH dependence of Na–K-ATPase activity of the crude renal cortical homogenate was not different between the two species (Fig. 4). These results, together with the previous finding on the anoxic tolerance of the renal organic anion transport system, indicate that (1) the overall anoxic tolerance of active renal transport systems for both organic anions and cations is greater in the harbor seal than in the rat, and (2) the renal organic anion (but not cation) transport system is resistant to low pH in the harbor seal.Abbreviations 2,4-D 2,4-dichlorophenoxyacetate - KRP Krebs-Ringer phosphate buffer - PAH para-aminohippurate - S/M slice to medium concentration ratio - TEA tetraethylammonium  相似文献   

8.
Hydrogen peroxide (H2O2) is known to be involved in drug-induced and ischemic proximal tubular damage. The purpose of this study was to elucidate the effects of hydrogen peroxide on organic anion transport mediated by human organic anion transporters 1 and 3 (hOAT1 and hOAT3), which are localized at the basolateral side of the proximal tubule. For this purpose, we established and utilized the second segment of the proximal tubule cells from mice stably expressing hOAT1 or hOAT3 (S2 hOAT1 or S2hOAT3, respectively). H2O2 induced a dose- and a time-dependent decrease in organic anion transport mediated by hOAT1 and hOAT3. Kinetic analysis revealed that H2O2 decreased the Vmax, but not Km of organic anion transport both in S2hOAT1 and S2hOAT3. The effects of gentamicin, known to induce proximal tubular damage via the production of H2O2, on the organic anion transporters were also examined. Gentamicin induced a significant decrease in organic anion transport in S2hOAT1 but not S2hOAT3. H2O2-induced decrease in organic anion transport was significantly inhibited by pretreatment with pyruvate as well as catalase, whereas the gentamicin-induced decrease was significantly inhibited by pretreatment with pyruvate but not with catalase. In conclusion, these results suggest that H2O2, which is produced during tubular injuries, downregulates organic anion transport mediated by both hOAT1 and hOAT3, leading to further modulation of pathophysiology.  相似文献   

9.
Renal tubular actions of ANF.   总被引:1,自引:0,他引:1  
Many of the earliest investigations of the renal effects of atrial natriuretic factor (ANF) pointed to the glomerulus as a major site of the peptide's action. More recently, there have been many reports showing various effects of ANF on renal tubular epithelia, including collecting ducts, thick ascending limbs of Henle's loop, thin limbs of Henle's loops, and proximal tubules. The purpose of this review is to summarize the evidence for renal tubular actions of ANF and analyze it from the perspective of the specialized functions of the individual nephron segments, addressing the question: can renal tubule effects of ANF play a significant role in the precise day-to-day regulation of renal NaCl and water excretion? Based on these considerations, we propose that long-term renal tubular action of ANF may be distinct from its short-term natriuretic effect. The short-term action of ANF to accelerate salt and water excretion may play a role in the overall response to acute volume overload. This action of ANF appears to be largely due to an ANF-mediated increase in glomerular filtration rate accompanied by a blunting of the tubuloglomerular feedback mechanism, perhaps with some contribution from ANF-mediated inhibition of fluid absorption in the proximal tubule. In contrast, contributions of ANF to the precise day-to-day regulation of salt and water excretion are likely to be chiefly due to ANF-mediated inhibition of NaCl and water absorption in collecting ducts, but may also involve actions of ANF on the loop of Henle.  相似文献   

10.
Bahn A  Hagos Y  Rudolph T  Burckhardt G 《Biochimie》2004,86(2):133-136
Protein sequence alignments revealed one amino acid position, where organic cation transporters (OCTs, aspartate (D) at position 475 of rOCT2) and organic anion transporters (OATs, arginine (R) at position 466 of rOAT1) are charged oppositely. To address the impact of this amino acid for protein function we cloned rat organic cation transporter 2 (rOCT2), the renal electrogenic cation transporter of the basolateral side of proximal tubule cells. Site-directed mutagenesis was used to generate rOCT2-D475R (rOCT2-mut). Heterologous expression of rOCT2 wild-type (rOCT2-wt) in A6 cells resulted in a significant uptake of the fluorescent organic cation 4-(4-dimethylaminostyryl)-N-methylpyridinium (ASP(+)). Accordingly, rOCT2-wt-transfected COS 7 cells showed an almost fourfold uptake of 25 microM [(14)C]-TEA, whereas rOCT2-mut did not exhibit any uptake of [(14)C]-TEA. These data indicate that rOCT2 transports both ASP(+) and TEA and that aspartate at position 475 of rOCT2 plays a critical role in transport function.  相似文献   

11.
Renal tubular transport of delta-aminolevulinic acid in rat   总被引:1,自引:0,他引:1  
delta-Aminolevulinic acid (ALA) interferes with cell membrane and metabolic functions in a variety of tissues. To determine if ALA interacts with renal tubular transport functions, we examined concentrative transport of this heme precursor in rat kidneys. ALA was accumulated against a concentration gradient in rat renal cortical slices. Section freeze-dry autoradiography demonstrated selective accumulation in cells of proximal tubules. Concentrative uptake of ALA was inhibited by KCN, probenecid and p-aminohippurate (PAH). ALA inhibited slice uptake of PAH but failed to block slice accumulation of galactose, cycloleucine, lysine, glycine, proline, or alpha-aminoisobutyric acid and did not alter O2 utilization. Massive intraperitoneal injection of ALA did not increase 24 hr fractional excretion of amino acids in vivo. Concentrative transport of ALA in proximal tubules does not lead to generalized renal tubular transport defects but ALA appears to share the organic acid secretory system in rat kidney.  相似文献   

12.
Piperonyl butoxide has been shown to reduce accumulation of cephaloridine in rabbit renal cortex; however, the mechanism responsible for this effect remains unclear. Cephaloridine is a zwitterion and its accumulation in renal cortex has been suggested to be regulated by both organic anion and cation transport systems. Thus, it was of interest to determine the effect of piperonyl butoxide on renal transport of p-aminohippurate (PAH, an organic anion) and tetraethylammonium (TEA, an organic cation). Although pretreatment with piperonyl butoxide markedly inhibited renal cortical uptake of cephaloridine, the same treatment had less inhibitory effect on either PAH or TEA uptake. Efflux of PAH from preloaded renal cortical slices was enhanced by pretreatment with piperonyl butoxide; however, TEA efflux was unaffected. Thus, piperonyl butoxide appears to have effects on renal membrane functions which result in differential effects on PAH, TEA, and cephaloridine transport.  相似文献   

13.
We studied the effect of gentamicin on Na+-dependent D-glucose transport into brush-border membrane vesicles isolated from rabbit kidney outer cortex (early proximal tubule) and outer medulla (late proximal tubule) in vitro. We found the same osmotically active space and nonspecific binding between control and gentamicin-treated brush-border membrane vesicles. There was no difference in the passive permeability properties between control and gentamicin-treated brush-border membrane vesicles. Kinetic analyses of D-glucose transport into 1 mM gentamicin-treated brush-border membrane vesicles demonstrated that gentamicin decreased Vmax in the outer cortical preparation, while it did not affect Vmax in the outer medullary preparation. With regard to Km, there was no effect of gentamicin in any vesicle preparation. When brush-border membrane vesicles were incubated with higher concentrations of gentamicin, Na+-dependent D-glucose transport was inhibited dose-dependently in both outer cortical and outer medullary preparations. Dixon plots yield inhibition constant Ki = 4 mM in the outer cortical preparation and Ki = 7 mM in the outer medullary preparation. These results indicate that the Na+-dependent D-glucose transport system in early proximal tubule is more vulnerable to gentamicin toxicity than that in late proximal tubule.  相似文献   

14.
Abstract

Kidney tissue was collected from 14 pouch young of the brushtailed possum Trichosurus vulpecula. The young were aged from 5 to 143 days postpartum. Histological observation of a 6-day mesonephric kidney revealed a well-defined microvillus brushborder lining the lumen of the proximal tubule. Renal slices from all the pouch young tested, including mesonephric and metanephric tissue, accumulated p-aminohippurate and α- methyl-d-glucoside at rates comparable to adult renal cortical slices. Tissue to medium concentration ratios after 1 h of uptake averaged 3.8 for p-aminohippurate and 1.9 for α-methyl-d-glucoside in the young. It was concluded that proximal nephron morphology and the transport systems involved in organic acid secretion and sugar reabsorption by the kidney were well-developed at all stages of pouch life.  相似文献   

15.
Tubular transport of oxalate is thought to be an energy-mediated process which may contribute to the renal deposition of calcium oxalate in a variety of pathologic states. In order to examine this possibility, the renal handling of oxalate was investigated in rat renal cortical slices in vitro. Slices incubated in vitro with 1 microM [14C]oxalate in Krebs-Ringer bicarbonate buffer at 25 degrees C for 180 min achieved a mean slice to medium ratio of 2.8 +/- 0.08 (SEM) and a mean tissue concentration of 7.7 +/- 0.2 mumol/kg dry wt (N = 64). Section freeze-dry autoradiographs demonstrated maximum uptake within proximal tubule cells but no crystals were evident. Substituting N2 for O2, adding KCN, or removing Ca2+ increased uptake of 14C-oxalate. Dinitrophenol (DNP) and iodoacetamide (IoAc), however, significantly decreased, and O degrees C eliminated slice uptake. Slices incubated with 100 microM [14C]oxalate showed a further increase in tissue accumulation and the appearance of [14C]oxalate crystals. Crystals formed in vitro were deposited throughout the tissue. Oxalic acid did not appear to share the organic acid by renal cortical slices in vitro is largely independent of energy-mediated mechanisms.  相似文献   

16.
Takeda M  Sekine T  Endou H 《Life sciences》2000,67(9):1087-1093
The organic anion transporter 3 (rOAT3) is a multispecific OAT localized at the basolateral membrane of the proximal tubule. The purpose of this study was to elucidate the role of protein kinase C (PKC) in the regulation of organic anion transport driven by rOAT3 and its mechanism of action. For this purpose, we established and utilized cells derived from the second segment of proximal tubule from mice stably expressing rOAT3 (S2 rOAT3). Phorbol 12-myristate 13-acetate (PMA), a PKC stimulator, attenuated the cellular uptake of estrone sulfate (ES), a prototype organic anion for rOAT3, in a dose- and time-dependent manner. PMA treatment resulted in a decrease in the Vmax, but not the Km of uptake of ES in S2 rOAT3. Treatment of S2 rOAT3 with other PKC stimulators or diacylglycerols also inhibited the uptake of ES, whereas that with an inactive phorbol ester did not. Chelerythrine chloride, a PKC inhibitor, reversed the PMA-induced decrease in uptake of ES in S2 rOAT3. These results suggest that PKC activation downregulates rOAT3-mediated organic anion transport. This down-regulation may be due to the inhibition of translocation or internalization of the rOAT3 protein, resulting in the decrease in the Vmax of rOAT3-mediated organic anion transport.  相似文献   

17.
The organic anion transport system in the proximal tubule of the kidney is of major importance for the excretion of a variety of endogenous and potentially toxic exogenous substances. Furthermore, the clearance of model substrates (e.g. para-aminohippurate) of this system is used for the determination of renal blood flow. We investigated regulation of organic anion secretion in a way that allowed us to examine simultaneously regulation of overall transepithelial secretion and to estimate the separate contributions of regulation of the basolateral and apical transport steps to this overall regulation. The data were verified by measurement of initial basolateral uptake rate and initial apical efflux rate. Opossum kidney cells were used as a suitable model system for proximal tubule cells, and [14C]para-aminohippurate was utilized as an organic anion. Stimulation of protein kinase C inhibited transepithelial secretion because of inhibition of both apical efflux and basolateral uptake. Inhibition of the mitogen-activated protein kinase (MAPK) kinase MEK reduced transepithelial secretion via inhibition of basolateral uptake and apical efflux. Epidermal growth factor (EGF) enhanced transepithelial secretion via stimulation of basolateral uptake but did not affect apical efflux. EGF induced stimulation of basolateral uptake was abolished by inhibition of MEK. EGF led to phosphorylation of ERK1/2, which was also abolished by inhibition of MEK. Thus, EGF stimulated basolateral uptake of organic anions via MAPKs. Transepithelial organic anion secretion can be regulated at two sites, at least: basolateral uptake and apical efflux. Both steps are under control of protein kinase C and MAPK. The pathophysiologically relevant growth factor EGF enhances transepithelial secretion via stimulation of basolateral uptake. EGF stimulates basolateral uptake via MEK and ERK1/2. Thus, renal organic anion extraction may be modulated, especially under pathophysiological conditions.  相似文献   

18.
M Shima  Y Seino  S Torikai  M Imai 《Life sciences》1988,43(4):357-363
Using isolated glomeruli and nephron segments obtained from collagenase treated rabbit kidneys, we examined the in vitro degradation of alpha-human atrial natriuretic polypeptide (alpha-hANP). The ANP-degrading activity was measured by the amount of immunoreactive ANP remaining after incubation of about 50 fmoles alpha-hANP with each tissue preparation for 7.5 min. The sequence of degrading activity among isolated nephron segments was as follows: proximal straight tubule greater than proximal convoluted tubule greater than cortical collecting tubule greater than distal convoluted tubule greater than cortical thick ascending limb. A single glomerulus exhibited the degrading activity which was comparable to approximately 50% of the activity of 1 mm proximal convoluted tubule. Phosphoramidon, an inhibitor of endopeptidase, prevented the degradation of ANP in proximal convoluted tubule and glomerulus by 68% and 89%, respectively, but not in cortical thick ascending limb and cortical collecting tubule. From these results, we conclude that the degradation of ANP by endopeptidase occurs mainly in the proximal tubule and glomerulus.  相似文献   

19.
A novel transport protein with the properties of voltage-driven organic anion transport was isolated from pig kidney cortex by expression cloning in Xenopus laevis oocytes. A cDNA library was constructed from size-fractionated poly(A)+ RNA and screened for p-aminohippurate (PAH) transport in high potassium medium. A 1856-base pair cDNA encoding a 467-amino acid peptide designated as OATV1 (voltage-driven organic anion transporter 1) was isolated. The predicted amino acid sequence of OATV1 exhibited 60-65% identity to those of human, rat, rabbit, and mouse sodium-dependent phosphate cotransporter type 1 (NPT1), although OATV1 did not transport phosphate. The homology of this transporter to known members of the organic anion transporter family (OAT family) was about 25-30%. OATV1-mediated PAH transport was affected by the changes in membrane potential. The transport was Na+-independent and enhanced at high concentrations of extracellular potassium and low concentrations of extracellular chloride. Under the voltage clamp condition, extracellularly applied PAH induced outward currents in oocytes expressing OATV1. The current showed steep voltage dependence, consistent with the voltage-driven transport of PAH by OATV1. The PAH transport was inhibited by various organic anions but not by organic cations, indicating the multispecific nature of OATV1 for anionic compounds. This transport protein is localized at the apical membrane of renal proximal tubule, consistent with the proposed localization of a voltage-driven organic anion transporter. Therefore, it is proposed that OATV1 plays an important role to excrete drugs, xenobiotics, and their metabolites driven by membrane voltage through the apical membrane of the tubular epithelial cells into the urine.  相似文献   

20.
Liver X receptors (LXRs) play an important role in the regulation of cholesterol by regulating several transporters. In this study, we investigated the role of LXRs in the regulation of human organic anion transporter 1 (hOAT1), a major transporter localized in the basolateral membrane of the renal proximal tubule. Exposure of renal S2 cells expressing hOAT1 to LXR agonists (TO901317 and GW3965) and their endogenous ligand [22(R)-hydroxycholesterol] led to the inhibition of hOAT1-mediated [(14)C]PAH uptake. This inhibition was abolished by coincubation of the above agonists with 22(S)-hydroxycholesterol, an LXR antagonist. Moreover, it was found that the effect of LXR agonists was not mediated by changes in intracellular cholesterol levels. Interestingly, the inhibitory effect of LXRs was enhanced in the presence of 9-cis retinoic acid, a retinoic X receptor agonist. Kinetic analysis revealed that LXR activation decreased the maximum rate of PAH transport (J(max)) but had no effect on the affinity of the transporter (K(t)). This result correlated well with data from Western blot analysis, which showed the decrease in hOAT1 expression following LXR activation. Similarly, TO901317 inhibited [(14)C]PAH uptake by the renal cortical slices as well as decreasing mOAT1 protein expression in mouse kidney. Our findings indicated for the first time that hOAT1 was downregulated by LXR activation in the renal proximal tubule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号