首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of auxin (2,4-D), in the culture medium of tobacco (Nicotiana tabacum var Maryland) mesophyll protoplasts is necessary both for cell wall regeneration and for passage of the cells from phase G0 to phase G1 of the cell cycle. Among about 250 proteins synthesized by protoplasts and characterized by their migration in a two-dimensional electrophoresis gel, 2,4-dichlorophenoxyacetic acid affects the synthesis of 11.

Nine proteins are synthesized at a reduced level in the presence of the hormone, of which three are rapidly labeled and short-lived, while the others, which are long-lived, become detectable only after 2 hours of radioactive labeling, suggesting that they undergo slow posttranslational maturation. These nine proteins are proline-rich but the proline radicals are not strongly hydroxylated. The synthesis of these proteins is no longer inhibited by auxin if dichlorobenzonitril, a weed-killer which inhibits cell wall reformation of tobacco protoplasts, is added to the culture medium.

Two proteins are only synthesized if protoplasts are cultivated in an auxin-containing medium. These polypeptides are rapidly labeled, and are long-lived. The inhibition of cell wall reformation by dichlorobenzonitril does not modify their synthesis.

These results suggest that proteins whose synthesis is reduced by auxin are related to cell wall reformation and that they do not play a role in the induction of the cell cycle. In contrast, proteins whose synthesis is stimulated in the presence of auxin are good candidates for a role in the induction of the cell cycle.

  相似文献   

2.
Studies on the role of RNA synthesis in auxin induction of cell enlargement   总被引:4,自引:2,他引:2  
Nooden LD 《Plant physiology》1968,43(2):140-150
Selective inhibitors were used to study the connection between nucleic acid synthesis and indoleacetic acid (IAA) induction of cell enlargement. Actinomycin D (act D) and azaguanine (azaG) almost completely inhibit IAA-induced growth in aged artichoke tuber disks when they are added simultaneously with IAA. In contrast, when they are added 24 hours after the hormone, these inhibitors have little or no effect on the induced growth which continues for 48 hours or more with little or no inhibition. Inhibitors of protein synthesis still stop growth when applied 24 hours after the IAA, thus protein synthesis and presumably supporting metabolism are still essential.

In corn coleoptile sections auxin-induced growth did not show any pronounced tendency to become less sensitive to act D as the IAA treatment progressed. Act D did not completely inhibit the response to IAA unless the sections were pretreated with act D for 6 hours. In contrast to act D, cordycepin produced almost complete inhibition of IAA-induced growth when added with the IAA.

Although IAA has a very large and very rapid stimulatory effect (within 10 min) on incorporation of 32P-orthophosphate into RNA in disks, it did not cause a detectable change in the base composition of the RNA synthesized. Furthermore, the promotive effect could be accounted for through increased uptake of the 32P. That much of the RNA synthesis in these tissues is not necessary for auxin action is indicated by the results with fluorouracil (FU). FU strongly inhibits RNA synthesis, probably acting preferentially on ribosomal RNA synthesis, without inhibiting auxin-induced growth in the disks or coleoptile sections. FU also strongly inhibited respiration in auxin-treated disks indicating that the large promotion of respiration by auxin likewise may not be entirely necessary for growth.

At least in the artichoke disks, RNA synthesis is required for auxin induction of cell enlargement and not for cell enlargement itself.

The possible relationships of auxin induction of cell enlargement and RNA synthesis are discussed.

  相似文献   

3.
This paper shows that the level of 2,4-dichlorophenoxyacetic acid (2,4-D) in the medium determines the level of auxin-binding proteins in the membranes of carrot, Daucus carota, cells grown in suspension. This induction takes slightly more than 2 hours to complete and can be elicited by natural as well as synthetic auxins. The auxin binding sites thus generated, which are pronase-sensitive, bind 2,4-D, indoleacetic acid, and naphthalene-acetic acid (NAA) equally well. However both α- and β-NAA bind, whereas only α-NAA is effective in the inductive process. Cells committed to embryogeny (proembryogenic masses) do not respond to auxin, i.e. their level of auxin-binding proteins remains very low, and they do not seem to synthesize the hormone, as indicated by inhibitor studies. Sensitivity to, and production of, auxin, begins when the embryo becomes polarized, i.e. at postglobular stage.  相似文献   

4.
Changes in the pattern of protein synthesis and in the translatable mRNA population have been examined during auxin-induced root development from excised mung bean seedlings. Several proteins, predominantly of low molecular weight and high pI, as shown by two-dimensional polyacrylamide gel electrophoresis, are synthesized specifically by auxin-treated tissue. These auxin-induced proteins appear between 6 and 12 hours of auxin treatment, reach a maximum at 24 hours, and decline at 48 hours. Untreated seedlings (placed in Hoagland solution), known to produce small number of roots at the cut end probably due to endogeneous auxin accumulated at the cut end through basipetal transport, show low level synthesis of auxin-specific proteins. Antiauxin treatment that completely inhibits auxin-induced rooting also prevents the appearance of auxin-induced proteins. The induction of a group of three to four proteins appears to be specific to antiauxin treatment. In vitro translation of mRNA from auxin-treated tissue, but not of mRNA from antiauxin-treated tissue, yields several polypeptides of low molecular weight and high pI. Since the auxin-induced proteins precede root development and are synthesized transitorily, it is likely that they play some regulatory role during the initiation of root development. The result show that auxin-induced root formation involves altered gene expression.  相似文献   

5.
6.
Culture conditions, allowing the unlimited growth and maintenance in shaken suspensions of a kinetin dependent strain of tobacco pith cells, were determined. Cell clusters from 1 to 25 cells were selected from the cultures to study the cell multiplication after addition of specific growth factors to the basal medium. Cell division was found to be strictly dependent upon the presence in the medium of both kinetin and auxin. In complete medium the generation period was 45 to 49 hours. Kinetics of the total protein synthesis in the cell suspensions have been measured either by estimation of protein nitrogen or by 35S incorporation into the proteins. After 3 days of culture, growth was exponential, as expressed by cell number or protein synthesis, which varied proportionally. Evidence was also found that the initial incorporation rate of radioactivity into the proteins was more rapid than expected from the increment of the protein net weight. It seems therefore reasonable to assume that a significant amount of protein turn over does exist during the initial period of growth. This phenomenon was observed even when no cell division occurred. Kinetin significantly activated protein synthesis, whether or not auxin was present in the medium.  相似文献   

7.
Lin LS  Ho TH 《Plant physiology》1986,82(1):289-297
As part of a continuing effort to elucidate the mode of action of abscisic acid (ABA) in barley (Hordeum vulgare L. cv Himalaya) aleurone layers, we have investigated the induction of several polypeptides by ABA in this tissue. There were nine ABA-induced polypeptides as observed by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and considerably more (at least 16 spots) on a two-dimensional gel. These proteins started to show enhanced synthesis 2 to 4 hours after ABA treatment, and their synthesis continued for at least 48 hours. In vitro translation using total RNA isolated from ABA-treated aleurone layers indicated that translatable mRNA levels of these proteins essentially paralleled the levels of in vivo synthesized proteins. The most abundant of the ABA-induced proteins was a 29 kilodalton polypeptide which was also synthesized in tissue incubated without ABA. In vivo synthesis of this protein declined as ABA concentration was decreased, with 1 nanomolar ABA approaching control level. Cell fractionation experiments located the 29 kilodalton major ABA-induced protein in 1,000g and 13,000g pellets; most other induced proteins were in the 80,000g supernatant. The 29 kilodalton protein appeared to be sensitive to degradation by sulfhydryl type proteases. As expected, the induction of these proteins by ABA was suppressed by gibberellic acid. Phaseic acid, the first stable metabolite of ABA, suppressed the gibberellic acid-enhanced α-amylase synthesis but was unable to induce the ABA-induced proteins. None of the ABA-induced proteins were secreted into the incubation medium. A 36 kilodalton ABA-induced protein showed cross-reactivity with antibody against a barley lectin specific for glucosamine, galactosamine, and mannosamine.  相似文献   

8.
Walter  M. H.  Hahlbrock  K. 《Planta》1985,166(2):194-200
Cell suspension cultures of parsley (Petroselinum crispum) exhibited an altered pattern of protein synthesis after transfer from complete growth medium to water or medium containing no macronutrients. Similar changes occurred when cultures were grown in the original medium until the nutrients were depleted. The effect was reversible upon transfer to fresh medium and was not observed during regular subculturing of the cells. While total protein synthesis decreased sharply after nutrient depletion, the synthesis of a few characteristic proteins (starvation-related proteins, STPs) increased strongly. The protein labeled at highest rates with [35S]methionine in vivo (STP 62) had an apparent molecular weight of about 62000 and a pI of about 6.3. Although its increased rate of synthesis was therefore easily detected by labeling in vivo, translation of mRNA in vitro did not give comparable results. Thus, regulatory control may be exerted mainly at the level of translation. Synthesis of STP ceased rapidly when heat shock (37° C) was applied under conditions of nutrient depletion, whereas heat-shock proteins were strongly induced.Abbreviations HSP heat-shock protein - STP starvation-related protein  相似文献   

9.
Cotyledons of light-grown soybean (Glycine max L. var Wayne) seedlings were used as a model system to study the possibility that aging requires qualitative changes in protein synthesis. Cotyledons reached a final stage of senescence and then abscised about 22 days after imbibition. Cotyledon senescence was reversed at 20 days after germination by epicotyl removal. Thereafter, the cotyledons regained much of the chlorophyll, RNA, protein, and polyribosomes lost during aging.

Total poly(A)mRNA was extracted from 4-, 12-, 20-day-old, and rejuvenated cotyledons and translated in a wheat germ system. Comparison of translation products on two-dimensional O'Farrell gels showed that many translation products increased in quantity during aging, while roughly half as many decreased. Rejuvenation returned the translation products to approximately 4-day-old levels in roughly half of those products which were diminished with age. Conversely, almost one-third of the products which had increased with age decreased with rejuvenation. None of the translation products were totally lost nor were newly synthesized products detected during aging. Therefore, aging in this system probably does not involve complete gene repression or depression. The observation that epicotyl removal causes a reversal in the levels of various proteins synthesized in vitro was corroborated by similar observations following in vivo labeling of cotyledon sections and analysis by SDS-polyacrylamide gel electrophoresis and fluorography. Densitometric scans of fluorograms revealed a gradual shift in profiles of both in vitro and in vivo translation products during aging. Rejuvenated cotyledon proteins had a profile resembling that of 4-day-old cotyledons. The overall level of [35S]methionine incorporation into protein in vivo declined gradually during aging but was restored to 4-day-old levels within 2 days after epicotyl removal.

  相似文献   

10.
Upon rehydration of the moss Tortula ruralis following desiccation at a rapid or slow rate, there is increasing utilization of newly synthesized-poly(A)+ RNA for protein synthesis. Initially, poly(A)+ RNA conserved in the dry moss is associated with polysomes, but by 2 hours of rehydration there is an overwhelming recruitment of newly synthesized poly(A)+ RNA, at the expense of conserved messages. In rehydrated moss, there is a marked synthesis in vivo of new proteins, which are separable by two-dimensional electrophoresis, and identifiable by fluorography. These new proteins, termed rehydration proteins, are synthesized after both rapid and slow desiccation, but their synthesis persists longer after rapid desiccation. The protein patterns obtained following in vitro translation of bulk RNA from hydrated, desiccated, and rehydrated moss were qualitatively identical. Thus the differences in protein patterns observed in vivo must result from preferential selection of specific mRNAs from the same pool, which is indicative of control of protein synthesis at the translational level. The implications of these observations in relation to the response of the moss to drying in its natural environment are discussed.  相似文献   

11.
Applications of auxin to the tips of intact aged pea Pisum sativum L. var Alaska epicotyls resulted in an increase in the content of polyribosomes and poly(A) and in the capacity of isolated polysomes to support protein synthesis in vitro. Few changes were seen in the two-dimensional gel patterns of silver-stained proteins accumulated (or degraded) in vivo even after 15 hours of auxin treatment. In contrast, substantial changes were evident in the two-dimensional gel fluorographs of polypeptides generated in vitro by total RNA and by polysomal RNA from tissue treated with auxin for only 6 hours. Of the 200 spots resolved by fluorography, total RNA from auxin-treated tissue generated 33 spots with increased intensity and 10 with decreased intensity; polysomal RNA yielded 33 spots which increased and only three that decreased. In general, the polypeptides that increased in intensity were higher molecular weight and those that decreased were lower molecular weight. These changes occurred prior to growth and might be prerequisite for the auxin-induced slow growth response seen in this aged tissue.  相似文献   

12.
We proposed that a group of genes whose expression is enhanced by polyamines at the level of translation in Escherichia coli and mammalian cells be referred to as a “polyamine modulon”. In Saccharomyces cerevisiae, proteins whose synthesis is enhanced by polyamines at the level of translation were searched for using a polyamine-requiring mutant of S. cerevisiae deficient in ornithine decarboxylase (YPH499 Δspe1). Addition of spermidine to the medium recovered the spermidine content and enhanced cell growth of the YPH499 Δspe1 mutant by 3–5-fold. Under these conditions, synthesis of COX4, one of the subunits of cytochrome C oxidase (complex IV), was enhanced by polyamines about 2.5-fold at the level of translation. Accordingly, the COX4 gene is the first member of a polyamine modulon in yeast. Polyamines enhanced COX4 synthesis through stimulation of the ribosome shunting of the stem–loop structures (hairpin structures) during the scanning of the 5′-untranslated region (5′-UTR) of COX4 mRNA by 40S ribosomal subunit-Met-tRNAi complex.  相似文献   

13.
The competence of pedicel explants of tobacco (Nicotiana tabacum L. cv Samsun) to regenerate flower buds in response to auxin was manipulated by preincubating excised tissues in the absence of auxin. When exposed to 1 micromolar 1-naphthaleneacetic acid, these tissues formed fewer buds than controls that were not preincubated. The number of buds eventually formed correlated with the 1-naphthaleneacetic acid concentration in the tissue 6 hours after the start of hormone application. The internal concentrations in pretreated explants were lower than in tissues that were not pretreated due to diminished uptake per milligram fresh weight and increased hormone conjugation. The change in the developmental state induced by auxin deprivation had a dual effect on bud regeneration: (a) the pretreatment caused fewer buds to be formed at any 1-naphthaleneacetic acid concentration tested, and (b) a higher auxin concentration in the medium was required to get a maximum bud number on precultured explants. An increase of the 1-naphthaleneacetic acid concentration in the medium led to an elevated hormone level in freshly cut as well as in preincubated tissues. It was concluded that the developmental state of the tissue directly affects the maximum number of buds that can be regenerated. Apart from that there is an indirect effect exerted via modulation of the ratio between external and internal auxin concentration. The change in this ratio can be compensated for by an adjustment of the auxin concentration in the medium.  相似文献   

14.
15.
In vitro translation products of polyadenylated RNA from untreated and auxin-treated elongating sections of soybean (Glycine max var. Wayne) hypocotyl were analyzed by two-dimensional polyacrylamide gel electrophoresis. The levels of translatable messenger RNA for at least ten in vitro translation products are increased by auxin treatment. The induction by auxin occurs rapidly (within 15 minutes), and the amounts of the induced in vitro translation products increase with time of auxin treatment. Indoleacetic acid has the same effect on the population of translatable messenger RNA as 2,4-dichlorophenoxyacetic acid. The auxin-induced in vitro translation products disappear rapidly when Actinomycin D is present during the last two hours of a three-hour auxin treatment.  相似文献   

16.
One hour following administration of physiological concentrations of the steroid hormone antheridiol to a male strain of the water mold, Achlyaambisexualis, the rate of total cellular protein synthesis is increased. Further analysis revealed a sequential increase in the rate of syntheses for three classes of proteins following hormone stimulation. The rate of ribosomal protein synthesis increased as early as 20–30 minutes, followed by ribosomal salt wash proteins (40–60 minutes) and total soluble proteins after 60 minutes. Patterns of total cellular proteins, resolved by two-dimensional gel electrophoresis, during the first four hours after hormone treatment demonstrated the appearance of two newly synthesized peptides beginning at approximately 40 minutes followed by an increased rate of synthesis of three peptides after one hour. The synthesis of two peptides totally decreased after three hours of hormone induction.  相似文献   

17.
Ecdysterone added in vitro to wing tissue from diapausing Antheraea polyphemus pupae induced the synthesis of several epidermal cell proteins. This is one of few instances in which any steroid hormone in physiological concentrations has been able to induce specific protein synthesis in target tissue in vitro soon after hormone stimulation. Hormone-treated tissue was incubated with 3H-leucine while control tissue was incubated with 14C-leucine. Polyacrylamide gel electrophoretic distribution of labelled wing tissue proteins after ecdysterone stimulation in vitro for various periods of time was determined. The 3H14C ratio emphasized the areas of increased protein synthesis due to ecdysterone. These areas of increased protein synthesis were reproducible with several ecdysterone concentrations and with different incubation times. Induction of protein synthesis occurs at an earlier time period when the hormone dosage is higher, i.e. the lower the dosage, the longer it is necessary for exposure of tissue to hormone. α-Ecdysone, known to initiate the moulting process in vitro in some insect species, also induced protein synthesis. Cortisol, a mammalian steroid hormone, produced no hormone specific protein synthesis. Therefore, the results seen with ecdysterone and α-ecdysone are not the result of non-specific steroid stimulation. When no hormone was added to the incubation medium (control), only one area of the polyacrylamide gel demonstrated protein synthesis. Therefore, there are a few proteins being synthesized in vitro in wing tissue, removed from diapausing animals without hormone stimulation, which may be related to the ‘injury phenomenon’. Protein banding patterns were also determined and compared with the radioactivity profile. The study of such early biochemical and physiological responses of target tissue to hormones will aid in our understanding of a hormone's mechanism of action, since the earlier an event occurs, the more likely that it is the primary result of hormone stimulation.  相似文献   

18.
Electrophoretic analysis of proteins synthesized during maturation, cleavage, and gastrulation indicates that patterns of protein synthesis are characteristic for each stage studied. Oocytes induced to maturein vitro markedly alter their pattern of protein synthesis during the period between 24 and 48 hours after hormone exposure. The same alteration occurs in oocytes from which the germinal vesicles were removed prior to hormone exposure, indicating that the oocyte cytoplasm during maturation is capable of regulating the nature of protein synthesis.  相似文献   

19.
20.
The mechanisms for de novo protein folding differ significantly between bacteria and eukaryotes, as evidenced by the often observed poor yields of native eukaryotic proteins upon recombinant production in bacterial systems. Polypeptide synthesis rates are faster in bacteria than in eukaryotes, but the effects of general variations in translation rates on protein folding efficiency have remained largely unexplored. By employing Escherichia coli cells with mutant ribosomes whose translation speed can be modulated, we show here that reducing polypeptide elongation rates leads to enhanced folding of diverse proteins of eukaryotic origin. These results suggest that in eukaryotes, protein folding necessitates slow translation rates. In contrast, folding in bacteria appears to be uncoupled from protein synthesis, explaining our findings that a generalized reduction in translation speed does not adversely impact the folding of the endogenous bacterial proteome. Utilization of this strategy has allowed the production of a native eukaryotic multidomain protein that has been previously unattainable in bacterial systems and may constitute a general alternative to the production of aggregation-prone recombinant proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号