首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conformational analysis of four stranded DNA helices poly(dT).poly(dA).poly(dA).poly(dT) with parallel arrangement of the identical sugar-phosphate chains connected by twofold symmetry has been performed. All possible models of symmetrical base binding were checked. By the potential energy optimization the dihedral angles and helices parameters of stable conformations of four stranded polynucleotides were calculated. The dependences of conformational energy on the base complex structure and mutual orientation of the poly(dA).and poly(dT) chains were studied. Possible biological functions of four stranded helices are discussed.  相似文献   

2.
The molecular structure of poly (dT).poly (dA).poly (dT) has been determined and refined using the continuous x-ray intensity data on layer lines in the diffraction pattern obtained from an oriented fiber of the DNA. The final R-value for the preferred structure is 0.29 significantly lower than that for plausible alternatives. The molecule forms a 12-fold right-handed triple-helix of pitch 38.4 A and each base triplet is stabilized by a set of four Crick-Watson-Hoogsteen hydrogen bonds. The deoxyribose rings in all the three strands have C2'-endo conformations. The grooveless cylindrical shape of the triple-helix is consistent with the lack of lateral organization in the fiber.  相似文献   

3.
The conformation of DNA's with adenine-thymine tracts exhibiting retardation in electrophoretic migration and considered as curved were investigated in solution by CD and RAMAN spectroscopy. The following curved multimers with adenine tracts but of different flanking sequences d(CA5TGCC)n, d(TCTCTA6TATATA5)n, d(GA4T4C)n yield CD spectroscopic features indicating a non-B structure of the dA.dT tract with similarities to polyd(A).polyd(T). We suggest that adenine-thymine bases in these multimers contain some of the distinctive conformational features of poly(A).polyd(T) probably with large propeller twist found by NMR (Behling and Kearns, 1987) and by X-ray diffraction on oligonucleotides containing a tract of adenines (Nelson et al. 1987, Coll et al; 1987; DiGabriele et al. 1989). Some elements of distinctive CD features of the contiguous adenines run are also observed in the straight multi-9-mer d(CA5GCC)n which lacks in-phase relation to the helical repeat. Despite the presence of the TpA step in the straight multimer d(GT4A4)n, the altered dA.dT conformation is not completely destroyed. Interruption of adenine tract by a guanine in d(CAAGAATGCC)n leads to a B-like conformation and to a normal electrophoretic mobility. The Raman spectra reveal a rearrangement of the sugar-phosphate backbone of dA.dT tract in the multimer d(CA5TGCC)n with respect to that of polydA.polydT. This is reflected in the presence of an unique Raman band associated to C2'-endo sugar with a predominant contribution of C1'-exo puckering which is exhibited by the multimer whereas two distinct Raman bands characterize poly(dA).poly(dT) backbone conformation.  相似文献   

4.
We have performed a conformational analysis of DNA double helices with parallel directed backbone strands. The calculations were made for homopolymers poly(dG).poly(dC). All possible models of base binding were checked. By the potential energy optimization the dihedral angles and helices parameters of stable conformations of parallel double polynucleotides were calculated. The dependences of conformational energy on the base pair structure were studied. Possible structure of parallel helices with various nucleotide composition are discussed.  相似文献   

5.
We have performed a conformational analysis of DNA double helices poly(dA).poly(dT) with parallel directed backbone strands in heteronomic model frames. All possible models of base pairs and various mutual orientation of base pair and sugarphosphate backbones were checked. By the potential energy optimization the dihedral angles and helices parameters of stable conformations of parallel double polynucleotides were calculated. The dependences of conformational energy on the base pair structure were studied.  相似文献   

6.
The propeller DNA conformation of poly(dA).poly(dT).   总被引:1,自引:6,他引:1       下载免费PDF全文
Physical properties of the DNA duplex, poly(dA).poly(dT) differ considerably from the alternating copolymer poly(dAT). A number of molecular models have been used to describe these structures obtained from fiber X-ray diffraction data. The recent solutions of single crystal DNA dodecamer structures with segments of oligo-A.oligo-T have revealed the presence of a high propeller twist in the AT regions which is stabilized by the formation of bifurcated (three-center) hydrogen bonds on the floor of the major groove, involving the N6 amino group of adenine hydrogen bonding to two O4 atoms of adjacent thymine residues on the opposite strand. Here we show that it is possible to incorporate the features of the single crystal analysis, specifically high propeller twist, bifurcated hydrogen bonds, and a narrow minor groove, as well as the close interstrand NMR signal between adenine HC2 and ribose HC1' of the opposite strand, into a model that is fully compatible with the diffraction data obtained from poly(dA).poly(dT).  相似文献   

7.
J E Herrera  J B Chaires 《Biochemistry》1989,28(5):1993-2000
Circular dichroism and UV absorbance spectroscopy were used to monitor and characterize a premelting conformational transition of poly(dA)-poly(dT) from one helical form to another. The transition was found to be broad, with a midpoint of tm = 29.9 degrees C and delta HVH = +19.9 kcal mol-1. The transition renders poly(dA)-poly(dT) more susceptible to digestion by DNase I and facilitates binding of the intercalator daunomycin. Dimethyl sulfoxide was found to perturb poly(dA)-poly(dT) structure in a manner similar to temperature. These combined results suggest that disruption of bound water might be linked to the observed transition. A thermodynamic analysis of daunomycin binding to poly(dA)-poly(dT) shows that antibiotic binding is coupled to the polynucleotide conformational transition. Daunomycin binding renders poly(dA)-poly(dT) more susceptible to DNase I digestion at low binding ratios, in contrast to the normal behavior of intercalators, indicating that antibiotic binding alters the conformation of the polynucleotide. The unusual thermodynamic profiles previously observed for the binding of many antibiotics to poly(dA)-poly(dT) can be explained by our results as arising from the coupling of ligand binding to the polynucleotide conformational transition. Our data further suggest a physical basis for the temperature dependence of DNA bending.  相似文献   

8.
9.
Intergenic regions of the Dictyostelium genome contain an extremely high proportion of AT base pairs. Those intergenic regions which have been subjected to nucleotide sequence analysis are predominantly composed of alternating runs of poly(dA) and poly(dT) and there is evidence to suggest that nucleosomes do not form on such sequences. We have identified two nuclear proteins, of molecular weight 70,000 and 74,000 daltons, which bind only to intergenic regions of a cloned Dictyostelium gene. Binding is specifically inhibited in the presence of synthetic poly(dA) - poly (dT) as competitor. These proteins may play some role in the chromosomal organization of intergenic regions in Dictyostelium discoideum.  相似文献   

10.
Coralyne is a small crescent-shaped molecule known to intercalate duplex and triplex DNA. We report that coralyne can cause the complete and irreversible disproportionation of duplex poly(dT)·poly(dA). That is, coralyne causes the strands of duplex poly(dT)·poly(dA) to repartition into equal molar equivalents of triplex poly(dT)·poly(dA)·poly(dT) and poly(dA). Poly(dT)·poly(dA) will remain as a duplex for months after the addition of coralyne, if the sample is maintained at 4°C. However, disproportionation readily occurs upon heating above 35°C and is not reversed by subsequent cooling. A titration of poly(dT)·poly(dA) with coralyne reveals that disproportionation is favored by as little as one molar equivalent of coralyne per eight base pairs of initial duplex. We have also found that poly(dA) forms a self-structure in the presence of coralyne with a melting temperature of 47°C, for the conditions of our study. This poly(dA) self-structure binds coralyne with an affinity that is comparable with that of triplex poly(dT)·poly(dA)·poly(dT). A Job plot analysis reveals that the maximum level of poly(dA) self-structure intercalation is 0.25 coralyne molecules per adenine base. This conforms to the nearest neighbor exclusion principle for a poly(dA) duplex structure with A·A base pairs. We propose that duplex disproportionation by coralyne is promoted by both the triplex and the poly(dA) self-structure having binding constants for coralyne that are greater than that of duplex poly(dT)·poly(dA).  相似文献   

11.
Nucleosome reconstitution on plasmid-inserted poly(dA) . poly(dT).   总被引:23,自引:7,他引:23       下载免费PDF全文
Chromatin was reconstituted from core histones and recombinant plasmid DNAs carrying poly(dA) . poly(dT) inserts of various lengths. A 97-bp insert was found to occupy discrete and regularly-spaced positions on the edges of the nucleosome. This insert cannot, however, be entirely included due to a block in the center of the particle. In contrast, nucleosomes reconstitute on a shorter 20-bp insert. In this case, the insert shows a marked preference for the edges of the particle. Possible structural and physiological implications of these observations are discussed.  相似文献   

12.
The binding of propidium to poly(dA).poly(dT) [poly(dA.dT)] and to poly[d(A-T)].poly[d(A-T)] [poly[d(A-T)2]] has been compared under a variety of solution conditions by viscometric titrations, binding studies, and kinetic experiments. The binding of propidium to poly[d(A-T)2] is quite similar to its binding to calf thymus deoxyribonucleic acid (DNA). The interaction with poly(dA.dT), however, is quite unusual. The viscosity of a poly(dA.dT) solution first decreases and then increases in a titration with propidium at 18 degrees C. The viscosity of poly[d(A-T)2] shows no decrease in a similar titration. Scatchard plots for the interaction of propidium with poly(dA.dT) show the classical upward curvature for positive cooperativity. The curvature decreases as the temperature is increased in binding experiments. A van't Hoff plot of the observed binding constants yields an apparent positive enthalpy of approximately +6 kcal/mol for the propidium-poly(dA.dT) interaction. Propidium binding to poly[d(A-T)2] shows no evidence for positive cooperativity, and the enthalpy change for the reaction is approximately -9 kcal/mol. Both the magnitude of the dissociation constants and the effects of ionic strength are quite similar for the dissociation of propidium from poly(dA-T)2] and from poly[d(A-T)2], suggesting that the intercalated states are similar for the two complexes. The observed association reactions, under pseudo-first-order conditions, are quite different. Plots of the observed pseudo-first-order association rate constant vs. polymer concentration have much larger slopes for propidium binding to poly[d(A-T)2] than to poly(dA.dT).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Structural conformation of triple-helical poly(dT)-poly(dA)-poly(dT) has been a very controversial issue recently. Earlier investigations, based on fiber diffraction data and molecular modeling, indicated an A-form conformation with C'3-endo sugar pucker. On the other hand, Raman, solution infrared spectral, and NMR studies show a B-form structure with C'2-endo sugars. In accordance with these experimental results, a theoretical model with B-form, C'2-endo sugars was proposed in 1993. In the present work we investigate the dynamics and stability of the two conformations within the effective local field approach applied to the normal mode calculations for the system. The presence of counterions was explicitly taken into account. Stable equilibrium positions for the counterions were calculated by analyzing the normal mode dynamics and free energy of the system. The breathing modes of the triple helix are shifted to higher frequencies over those of the double helix by 4-16 cm-1. The characteristic marker band for the B conformation at 835 cm-1 is split up into two marker bands at 830 and 835 cm-1. A detailed comparison of the normal modes and the free energies indicates that the B-form structure, with C'2-endo sugar pucker, is more stable than the A-form structure. The normal modes and the corresponding dipole moments are found to be in close agreement with recent spectroscopic findings.  相似文献   

14.
The effect of hydrostatic pressure upon the DNA duplex, poly(dA)poly(dT), and its component single strands, poly(dA) and poly(dT) has been studied by fourier-transform infrared spectroscopy (FT-IR). The spectral data indicate that at 28 degrees C and pressures up to 12 kbar (1200 MPa) all three polymers retain the B conformation. Pressure causes the band at 967 cm(-1), arising from water-deoxyribose interactions, to shift to higher frequencies, a result consistent with increased hydration at elevated pressures. A larger pressure-induced frequency shift in this band is observed in the single stranded polymers than in the double stranded molecule, suggesting that the effect of pressure on the hydration of single strands may be greater than upon a double stranded complex. A pressure-dependent hypochromicity in the bands attributed to base stacking indicates that pressure facilitates the base stacking in the three polymers, in agreement with previous assessments of the importance of stacking in the stabilization of DNA secondary structure at ambient and high pressures.  相似文献   

15.
We extracted phosphorus atom coordinates from the database of DNA crystal structures and calculated geometrical parameters needed to reproduce the crystal structures in the phosphorus atom representation. Using the geometrical parameters we wrote a piece of software assigning the phosphorus atom coordinates to the DNA of any nucleotide sequence. The software demonstrates non-negligible influence of the primary structure on DNA helicity, which may stand behind the heteromonous double helices of poly(dA).poly(dT) and poly(dG).poly(dC). In addition, the software is so simple that it makes possible to simulate the "crystal" structures of not only viral DNAs, but also the whole genome of Saccharomyces cerevisiae as well as the DNA human chromosome 22 having dozens of megabases in length.  相似文献   

16.
Isotherms of the EtBr adsorption on native and denatured poly(dA)poly(dT) in the temperature interval 20–70°C were obtained. The EtBr binding constants and the number of binding sites were determined. The thermodynamic parameters of the EtBr intercalation complex upon changes of solution temperature 20–48°C were calculated: 1.0·106 M−1K≤1.4·106 M−1, free energy ΔG o=−8.7±0.3 kcal/mol, enthalpy ΔH o≅0, and entropy ΔS o=28±0.5 cal/(mol deg). UV melting has shown that the melting temperature (T m) of EtBr-poly(dA)poly(dT) complexes (μ=0.022,4.16·10−5 M EtBr) increased by 17°C as compared with the ΔT m of free homopolymer, whereas the half-width of the transition (T m) is not changed. It was shown for the first time that EtBr forms complexes of two types on single-stranded regions of poly(dA)poly(dT) denatured at 70°C: strong (K 1=1.7·105 M−1; ΔG o=−8.10±0.03 kcal/mol) and weak (K 2=2.9·103 M−1; ΔG o=−6.0±0.3 kcal/mol).The ΔG o of the strong and weak complexes was independent of the solution ionic strength, 0.0022≤μ≤0.022. A model of EtBr binding with single-stranded regions of poly(dA)poly(dT) is discussed.  相似文献   

17.
A unique deletion covering around 43% of the pBR322 genome was found after attempting to insert 100 or 200 bp poly(dA).poly(dT) into the EcoRV site of pBR322 DNA. This result was not observed if an equivalent size heterologous DNA or a larger poly(dA).poly(dT) fragment of 10-20,000 bp was introduced at the same site. DNA sequencing analysis at the junctions suggests that a specific intramolecular pairing may be involved in the formation of this deletion mutant.  相似文献   

18.
A DNA binding protein that recognizes oligo(dA).oligo(dT) tracts.   总被引:28,自引:4,他引:24       下载免费PDF全文
  相似文献   

19.
A Levy  P Weisman-Shomer  M Fry 《Biochemistry》1989,28(18):7262-7267
Distamycin A, a polypeptide antibiotic, binds to dA.dT-rich regions in the minor groove of B-DNA. By virtue of its nonintercalating binding, distamycin acts as a potent inhibitor of the synthesis of DNA both in vivo and in vitro. Here we report that distamycin paradoxically stimulates Escherichia coli DNA polymerase I (pol I), its large (Klenow) fragment, and bacteriophage T4 DNA polymerase to copy oligo(dA).poly(dT) in vitro. It is found that distamycin increases the maximum velocity (Vmax) of the extension of the oligo(dA) primer by pol I without affecting the Michaelis constant (Km) of the primer. Gel electrophoresis of the extended primer indicates that the antibiotic specifically increases the rate of addition of the first three dAMP residues. Lastly, in the presence of both distamycin and the oligo(dT)-binding protein factor D, which increases the processivity of pol I, a synergistic stimulation of polymerization is attained. Taken together, these results suggest that distamycin stimulates synthesis by increasing the rate of initiation of oligo(dA) extension. The stimulatory effect of distamycin is inversely related to the stability of the primer-template complex. Thus, maximum stimulation is exerted at elevated temperatures and with shorter oligo(dA) primers. That distamycin increases the thermal stability of [32P](dA)9.poly(dT) is directly demonstrated by electrophoretic separation of the hybrid from dissociated [32P](dA)9 primer. It is proposed that by binding to the short primer-template duplex, distamycin stabilizes the oligo(dA).poly(dT) complex and, therefore, increases the rate of productive initiations of synthesis at the primer terminus.  相似文献   

20.
In this work, we report on the binding of the novel antitumor agent CC-1065 to poly(dA).poly(dT) and to mixtures of dA and dT oligomers as determined by electronic absorption and circular dichroism (CD) methods. In addition, the DNA binding properties of CC-1065 and its binding mechanism are compared to those of netropsin. CC-1065 binds to the polymer by at least three mechanisms to produce one irreversibly and two reversibly bound species. One reversibly bound species is moderately stable, but in time (days), it converts to the irreversibly bound species. Both of these species bind within the minor groove of the polymer and exhibit intense CC-1065 induced CD spectra. The other reversibly bound species does not acquire an induced CD. CC-1065 forces B-form duplex formation between mixtures of single strand dA and dT oligomers and binds irreversibly to the duplexes without showing the presence of an intermediate, reversibly bound species. The induced CD increases with increasing length of the oligomer, from the 5-mer (barely detectable CD) to the 14-mer (intense CD). The 7-, 10- and 14-mer mixtures bind about 1, between 1 and 2, and between 2 and 3 CC-1065 molecules, respectively. Computer graphic models of the CC-1065-DNA complex show that the covalent adduct of CC-1065 and unreacted CC-1065 can attain the same close van der Waals contacts between adenine C2 hydrogens and antibiotic CH groups that were observed in the crystal structure of the netropsin-DNA complex. These contacts may account for the dA-dT base pair binding specificity of CC-1065 and for the stability of the reversibly bound CC-1065 species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号