首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipopolysaccharide and D-galactosamine induced lethality and apoptotic liver injury is dependent on endogenously produced tumor necrosis factor (TNF)-alpha. The present study was undertaken to determine whether membrane-associated or secreted TNF-alpha signaling through the p55 or p75 receptor was responsible for survival and hepatic injury after lipopolysaccharide administration in D-galactosamine-sensitized mice. Transgenic mice expressing null forms of TNF-alpha, the p55 and p75 receptor, and mice expressing only a cell-associated form of TNF-alpha were challenged with 8 mg D-galactosamine and 100 ng lipopolysaccharide. Mortality and apoptotic liver injury were only seen in wild-type and p75 knockout mice. p75 Knockout mice had significantly higher concentrations of plasma TNF-alpha than any other experimental group (P 相似文献   

2.
Cell-mediated cytotoxicity plays an important role in the clearance of noncytopathic viruses from infected tissues. Perforin-dependent cytotoxic mechanisms have been noted to play an important role in the clearance of infections from multiple extrahepatic organs. In contrast, mice with defects in the Fas/Fas ligand (FasL)-mediated cytotoxicity pathway exhibit delayed clearance of adenovirus from the liver without apparent delay in the clearance of viral infections from extrahepatic organs. The present studies examined the role of cytotoxic effector mechanisms in intrahepatic immune responses to a replication-defective, recombinant beta-galactosidase-encoding adenovirus (AdCMV-lacZ). Delayed clearance of AdCMV-lacZ from the livers of FasL-defective B6.gld mice, but not perforin-deficient B6.pfp(-/-) mice, was noted despite no significant differences in initial hepatic CD8(+) T cell IFN-gamma or TNF responses or in activation of intrahepatic cytotoxic lymphocytes cells capable of killing AdCMV-lacZ-infected fibroblast targets. In contrast, AdCMV-lacZ-infected hepatocyte targets were far more sensitive to killing by intrahepatic cytotoxic lymphocytes from B6.pfp(-/-) than from B6.gld mice, and residual levels of virus-specific killing of hepatocyte targets by FasL-defective B6.gld CTL were blocked by TNF inhibition. These results suggest that inherent resistance of hepatocytes to cytotoxicity mediated by perforin-dependent mechanisms leaves Fas/FasL-dependent, cell-mediated cytotoxicity as the major pathway for CTL-mediated killing of virally infected hepatocytes and accounts for the more prominent role of perforin-independent anti-viral mechanisms in immune responses in the liver.  相似文献   

3.
Tumor necrosis factor (TNF)-alpha and Fas ligand (FasL) are trimeric proteins that induce apoptosis through similar caspase-dependent pathways. Hepatocytes are particularly sensitive to inflammation-induced programmed cell death, although the contribution of TNF-alpha and/or FasL to this injury response is still unclear. Here, we report that D-galactosamine and lipopolysaccharide-induced liver injury in C57BL/6 mice is associated with increased hepatic expression of both TNF-alpha and FasL mRNA. Pretreatment of mice with a TNF-binding protein improved survival, reduced plasma aspartate aminotransferase concentrations, and attenuated the apoptotic liver injury, as determined histologically and by in situ 3' OH end labeling of fragmented nuclear DNA. In contrast, pretreatment of mice with a murine-soluble Fas fusion protein (Fasfp) had only minimal effect on survival, and apoptotic liver injury was either unaffected or exacerbated depending on the dose of Fasfp employed. Similarly, mice with a spontaneous mutation in FasL (B6Smn.C3H-Fasl(gld) derived from C57BL/6) were equally sensitive to D-galactosamine/lipopolysaccharide-induced shock. We conclude that the shock and apoptotic liver injury after D-galactosamine/lipopolysaccharide treatment are due primarily to TNF-alpha release, whereas increased FasL expression appears to contribute little to the mortality and hepatic injury.  相似文献   

4.
Current evidence indicates that endogenously produced peptide cytokines, most notably TNF-alpha and IL-1, mediate the lethality of experimental endotoxemia. Because circulating serum levels of IFN-gamma can be detected soon after TNF-alpha and IL-1 in response to endotoxin, we investigated the role of IFN-gamma in endotoxin and TNF-alpha lethality. Specific neutralizing antibodies to murine TNF-alpha (anti-TNF-alpha Ab) or murine IFN gamma (anti-IFN-gamma Ab) produced in our laboratory protected mice against the lethality of Escherichia coli endotoxin (LPS) administered 6 h later. Serum IFN-gamma levels 2 h after i.v. LPS were lower in mice treated with anti-TNF-alpha Ab compared to mice that received nonimmune IgG (median less than 2.5 vs 3.0 U/ml, P2 less than 0.05). In contrast, serum TNF-alpha levels 1 h after i.v. LPS peaked more than fourfold higher in mice treated with anti-IFN-gamma Ab compared to controls (median greater than 6400 vs 1405 pg/ml, p2 less than 0.05). Doses of TNF-alpha (300 micrograms/kg) and IFN-gamma (50,000 U) which were well tolerated when given individually were synergistically lethal in combination (0% lethality vs 100% lethality, P2 less than 0.001), and were associated with higher serum levels of IL-6 than with either cytokine alone. Anti-IFN-gamma Ab provided complete protection against exogenous human rTNF-alpha at the LD100 dose (1400 micrograms/kg, p2 less than 0.001), and in fact prevented lethality at doses four- to fivefold greater than the LD100 human rTNF-alpha (up to 6000 micrograms/kg). We conclude that IFN-gamma is synergistic with TNF-alpha, is essential for the lethality of LPS and TNF-alpha, and may have modulating effects on the negative control of serum levels of TNF-alpha after LPS in mice.  相似文献   

5.
BACKGROUND: Tumor necrosis factor alpha (TNF-alpha) is often considered the main proinflammatory cytokine induced by lipopolysaccharide (LPS) and consequently the critical mediator of the lethality associated with septic shock. MATERIALS AND METHODS: We used mice carrying a deletion of both the lymphotoxin alpha (LT-alpha) and TNF-alpha genes to assess the role of TNF in the cytokine cascade and lethality induced by LPS. RESULTS: Initial production of IL-1 alpha, IL-1 beta, IL-6, and IL-10 is comparable in wild-type and mutant mice. However, at later times, expression of IL-1 alpha, IL-1 beta, and IL-10 is prolonged, whereas that of IL-6 decreases in mutant mice. Expression of IFN-gamma is almost completely abrogated in mutants, which is in agreement with a more significant alteration of the late phase of the cytokine cascade. We measured similar LD50 (600 micrograms) for the intravenous injection of LPS in mice of the three genotypes (+/+, +/-, -/-), demonstrating that the absence of TNF does not confer long-term protection from lethality. However, death occurred much more slowly in mutant mice, who were protected more efficiently from death by CNI 1493, an inhibitor of proinflammatory cytokine production, than were wild-type mice. DISCUSSION: Thus, while TNF-alpha is not required for the induction of these cytokines by LPS, it modulates the kinetics of their expression. The lethality studies simultaneously confirm a role for TNF as a mediator of early lethality and establish that, in the absence of these cytokines, other mediators take over, resulting in the absence of long-term protection from LPS toxicity.  相似文献   

6.
The methanolic extract (200 mg/kg, p.o. and i.p.), principal coumarin constituents (isoepoxypteryxin, anomalin, and praeroside IV), and a polyacetylene constituent (falcarindiol) (25 mg/kg, i.p.) from the roots of Angelica furcijuga protected the liver injury induced by D-galactosamine (D-GalN)/lipopolysaccharide (LPS) in mice. In in vitro experiments, coumarin constituents (hyuganins A-D, anomalin, pteryxin, isopteryxin, and suksdorfin) and polyacetylene constituents [(-)-falcarinol and falcarindiol] substantially inhibited LPS-induced NO and/or TNF-alpha production in mouse peritoneal macrophages, and isoepoxypteryxin inhibited D-GalN-induced cytotoxicity in primary cultured rat hepatocytes. Furthermore, hyuganin A, anomalin, and isopteryxin inhibited the decrease in cell viability by TNF-alpha in L929 cells.  相似文献   

7.
Flavonoids protect mice from two types of lethal shock induced by endotoxin   总被引:3,自引:0,他引:3  
The protective effect of flavonoids on two types of lethal endotoxic shock was studied. A lethal endotoxic shock was induced by administration of lipopolysaccharide (LPS) into D-galactosamine (D-GalN)-sensitized mice and another one was done by administration of a high dose of LPS into normal mice. Pretreatment with a series of flavonoids protected mice from two types of endotoxin lethality. Flavonoid pretreatment reduced the serum tumor necrosis factor-alpha (TNF-alpha) level in mice injected with D-GalN and LPS, but not in mice injected with a high dose of LPS. TNF-alpha-induced lethal shock in D-GalN-sensitized mice was also protected by pretreatment with flavonoids, suggesting that flavonoids augmented the resistance to TNF-alpha lethality. On the other hand, flavonoids reduced the plasma level of lipid peroxides in mice injected with a high dose of LPS, but not in D-GalN-sensitized mice. Taken together, these results indicated that flavonoids might protect mice from two types of endotoxin lethality. The protective mechanism of flavonoids in each endotoxin lethality is discussed.  相似文献   

8.
Bacterial endotoxin lipopolysaccharide (LPS) often results in multiple organ failure.However,pre-exposure of mice to a sublethal dose of LPS renders the animal tolerant to a lethal dose of LPS.Thisstudy was designed to determine whether pre-exposure of a small dose of LPS was able to suppressapoptosis in mice when challenged with LPS in combination with D-galactosamine,and to investigate theexpression changes of the apoptosis-associated molecules.The results showed that a characteristic apoptoticDNA fragmentation existed in mouse livers of the LPS-naive group,but not in control groups;and the miceof the LPS-naive group were all dead after 2 d.However,in the LPS-tolerance groups,both the lethal rateand apoptotic DNA fragmentation were suppressed after the mice were challenged with LPS/D-galactosamine,and the protection against the lethality and apoptotic reaction could be maintained for up to 7 d.In thisperiod, significantly lower levels of caspase-3 and its mRNA appeared in LPS-tolerant groups compared tothose of the LPS-naive group (P<0.05),and the caspase-3 activities gradually recovered as the observationwas prolonged.Our findings suggest that LPS tolerance could suppress apoptosis in mouse liver cells,andthe expression and activity of caspase-3 could be down-regulated.  相似文献   

9.
Macrophages from Tpl2 knockout (Tpl2(-/-)) mice exhibit a defect in ERK activation by lipopolysaccharide (LPS). This impairs the nucleocytoplasmic transport of the tumor necrosis factor alpha (TNF-alpha) mRNA and prevents the induction of TNF-alpha by LPS. As a result, Tpl2(-/-) mice are resistant to LPS/D-galactosamine-induced shock. We demonstrate that Tpl2 is essential for ERK signals transduced by members of the TNF receptor superfamily, such as CD40 and the TNF receptor 1. Thus, ERK activation was impaired in Tpl2(-/-) B cells and macrophages stimulated with agonistic CD40 antibody or TNF-alpha, whereas the induction of other mitogen-activated protein kinases, such as JNK and p38, and the activation of NF-kappaB were unaffected. Tpl2 was recruited to a CD40/TRAF6 complex in response to CD40 stimulation. Moreover, TRAF6, which when overexpressed activates ERK, failed to do so in Tpl2(-/-) cells. The selective signaling defect resulting from the inactivation of Tpl2 allowed us to demonstrate that CD40-mediated ERK activation contributes to immunoglobulin production but is not essential for B-cell proliferation.  相似文献   

10.
The methanolic extract from the flowers of Tilia argentea (linden) was found to show a hepatoprotective effect against D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced liver injury in mice. By bioassay-guided separation using in vitro D-GalN-induced damage to hepatocytes, five flavonol glycosides were isolated as the hepatoprotective constituents of the methanolic extract. Tiliroside, the principal flavonol glycoside, strongly inhibited serum GPT and GOT elevations at doses of 25-100 mg/kg (p.o.) in D-GalN/LPS-treated mice. By comparing the inhibitory effects of tiliroside with those of its components alone, the kaempferol 3-O-beta-D-glucopyranoside moiety was found to be essential for the activity, and its effect was suggested to depend on the inhibition of tumor necrosis factor-alpha (TNF-alpha) production, decreased sensitivity of hepatocytes to TNF-alpha, and on the protection of hepatocytes against D-GalN.  相似文献   

11.
Recent investigations have demonstrated a complex interrelationship between autophagy and cell death. A common mechanism of cell death in liver injury is tumor necrosis factor (TNF) cytotoxicity. To better delineate the in vivo function of autophagy in cell death, we examined the role of autophagy in TNF-induced hepatic injury. Atg7Δhep mice with a hepatocyte-specific knockout of the autophagy gene atg7 were generated and cotreated with D-galactosamine (GalN) and lipopolysaccharide (LPS). GalN/LPS-treated Atg7Δhep mice had increased serum alanine aminotransferase levels, histological injury, numbers of TUNEL (terminal deoxynucleotide transferase-mediated deoxyuridine triphosphate nick end-labeling)-positive cells and mortality as compared with littermate controls. Loss of hepatocyte autophagy similarly sensitized to GalN/TNF liver injury. GalN/LPS injury in knockout animals did not result from altered production of TNF or other cytokines. Atg7Δhep mice had accelerated activation of the mitochondrial death pathway and caspase-3 and -7 cleavage. Increased cell death did not occur from direct mitochondrial toxicity or a lack of mitophagy, but rather from increased activation of initiator caspase-8 causing Bid cleavage. GalN blocked LPS induction of hepatic autophagy, and increased autophagy from beclin 1 overexpression prevented GalN/LPS injury. Autophagy, therefore, mediates cellular resistance to TNF toxicity in vivo by blocking activation of caspase-8 and the mitochondrial death pathway, suggesting that autophagy is a therapeutic target in TNF-dependent tissue injury.  相似文献   

12.
Tumor necrosis factor (TNF) alpha-induced neutral sphingomyelinase-mediated generation of ceramide, a bioactive lipid molecule, is transduced by the adaptor protein FAN, which binds to the intracellular region of the CD120a TNFalpha receptor. FAN-deficient mice do not exhibit any gross abnormality. To further explore the functions of FAN in vivo and because CD120a-deficient mice are resistant to endotoxin-induced liver failure and lethality, we investigated the susceptibility of FAN-deficient animals to lipopolysaccharide (LPS). We show that after d-galactosamine sensitization, FAN-deficient mice were partially resistant to LPS- and TNFalpha-induced lethality. Although LPS challenge resulted in a hepatic ceramide content lower in mutant mice than in control animals, it triggered similar histological alterations, caspase activation, and DNA fragmentation in the liver. Interestingly, LPS-induced elevation of IL-6 (but not TNFalpha) serum concentrations was attenuated in FAN-deficient mice. A less pronounced secretion of IL-6 was also observed after LPS or TNFalpha treatment of cultured peritoneal macrophages and embryonic fibroblasts isolated from FAN-deficient mice, as well as in human fibroblasts expressing a mutated FAN. Finally, we show that d-galactosamine-sensitized IL-6-deficient mice were partially resistant to endotoxin-induced liver apoptosis and lethality. These findings highlight the role of FAN and IL-6 in the inflammatory response initiated by endotoxin, implicating TNFalpha.  相似文献   

13.
Activation of either tumor necrosis factor receptor 1 or Fas induces a low level of programmed cell death in LNCaP human prostate cancer cells. We have shown that LNCaP cells are entirely resistant to gamma-radiation-induced apoptosis, but can be sensitized to irradiation by TNF-alpha. Fas activation also sensitized LNCaP cells to irradiation, causing nearly 40% cell death 72 h after irradiation. Caspase-8 was cleaved and activated after exposure to tumor necrosis factor (TNF)-alpha. However, after exposure to anti-Fas antibody caspase-8 cleavage occurred only between the 26-kDa N-terminal prodomain and the 28-kDa C-terminal region that contains the protease components. Although anti-Fas antibody plus irradiation induced apoptosis that could be blocked by the pancaspase inhibitor zVAD, there was no measurable caspase-8 activity after exposure to anti-Fas antibody. The effector caspases-6 and -7, and to a lesser extent caspase-3, were activated by TNF-alpha, but not by anti-Fas antibody. Anti-Fas antibody, like TNF-alpha also activated serine proteases that contributed to cell death. Exposure of LNCaP cells simultaneously to TNF-alpha and anti-Fas antibody CH-11 resulted in marked enhancement of apoptosis that occurred very rapidly and was still further augmented by irradiation. Rapid apoptosis that ensued from combined treatment with TNF-alpha, anti-Fas antibody, and irradiation was completely blocked either by zVAD or expression of dominant negative Fas-associated death domain. Our data shows that there are qualitative differences in caspase activation resulting from either TNF receptor 1 or Fas. Simultaneous activation of these receptors was synergistic and caused rapid epithelial cell apoptosis mediated by the caspase cascade.  相似文献   

14.
Mice treated with lipopolysaccharide (LPS)/D-galactosamine (GalN) selectively develop hepatic failure. The acute-phase protein alpha(1)-acid glycoprotein (AGP) has been demonstrated to protect mice from LPS/GalN-induced lethality. Metallothionein (MT), which is a low-molecular weight, cysteine-rich, metal-binding protein, is also induced in the acute-phase reaction. However, the specific function of MT in acute-phase response remain to be elucidated. We showed that MT-null mice were more sensitive to LPS/GalN-induced lethality than wild-type mice. The increase in vital mediator levels, TNF-alpha and NO were of similar levels in wild-type and MT-null mice. A remarkable increase in plasma platelet-activating factor levels was not observed in our experimental conditions. On the other hands, the mRNA level of AGP in the response to LPS/GalN was decreased in MT-null mice compared to wild-type mice. These results indicated that MT may have the potential to prevent LPS/GalN-induced lethality, at least through the attenuation of AGP induction.  相似文献   

15.
16.
Pretreatment with recombinant human granulocyte CSF (G-CSF) protected mice in two different models of septic shock. Intravenous injection of 250 micrograms/kg G-CSF to mice prevented lethality induced by 5 mg/kg LPS. Injection of 50 micrograms/kg G-CSF protected galactosamine-sensitized mice against LPS-induced hepatitis. In either case, this protection was accompanied by a suppression of LPS-induced serum TNF activity. In contrast, when galactosamine-sensitized mice were pretreated with 50 micrograms/kg murine recombinant granulocyte/macrophage CSF instead of G-CSF and subsequently challenged with LPS, serum TNF activity was significantly enhanced and mortality was increased. The suppressive effect of G-CSF on LPS-induced TNF production was also demonstrated in rats. In vivo, no TNF was detectable in the blood of LPS-treated rats, which had been pretreated with G-CSF. Ex vivo, alveolar macrophages, bone marrow macrophages, Kupffer cells, or peritoneal macrophages prepared from G-CSF-treated rats produced significantly less TNF upon stimulation with LPS than corresponding populations from control rats. However, when these macrophage populations were incubated with G-CSF in vitro, LPS-induced TNF production was unaffected. These data suggest that the G-CSF-mediated suppression of TNF production is not a direct effect of G-CSF on macrophages. To examine whether, independent of the protection against LPS, G-CSF treatment still activated neutrophils, it was demonstrated that granulocytes from G-CSF-treated rats were primed for PMA-induced oxidative burst and for ionophore/arachidonic acid-stimulated lipoxygenase product formation. The experiments of this study support the notion that G-CSF is a negative feedback signal for macrophage-derived TNF-alpha production during Gram-negative sepsis.  相似文献   

17.
Effects of adenoviral infection on in vivo responses to LPS mediated by TNF-alpha were evaluated in a murine model. Adenovirus-infected mice showed decreased mortality from fulminant hepatitis induced by administration of LPS or staphylococcal enterotoxin B in the presence of D-galactosamine. Importantly, TNF-alpha resistance genes within adenoviral E3 region were not required, because E1,E3-deleted vectors showed similar effects. Adenovirus-infected mice exhibited higher TNF-alpha levels after LPS stimulation, no difference in TNFR1 expression, and similar mortality from Fas-induced fulminant hepatitis. Decreased production of IL-6 and KC in response to exogenous TNF-alpha, in addition to protection from TNF-alpha, suggested that adenoviral infection results in TNF-alpha tolerance.  相似文献   

18.
Fas ligand (FasL), perforin, TNF-alpha, IL-1, and NO have been considered as effector molecule(s) leading to beta cell death in autoimmune diabetes. However, the real culprit(s) in beta cell destruction have long been elusive, despite intense investigation. We and others have demonstrated that FasL is not a major effector molecule in autoimmune diabetes, and previous inability to transfer diabetes to Fas-deficient nonobese diabetic (NOD)-lpr mice was due to constitutive FasL expression on lymphocytes from these mice. Here, we identified IFN-gamma/TNF-alpha synergism as the final effector molecules in autoimmune diabetes of NOD mice. A combination of IFN-gamma and TNF-alpha, but neither cytokine alone, induced classical caspase-dependent apoptosis in insulinoma and pancreatic islet cells. IFN-gamma treatment conferred susceptibility to TNF-alpha-induced apoptosis on otherwise resistant insulinoma cells by STAT1 activation followed by IFN regulatory factor (IRF)-1 induction. IRF-1 played a central role in IFN-gamma/TNF-alpha-induced cytotoxicity because inhibition of IRF-1 induction by antisense oligonucleotides blocked IFN-gamma/TNF-alpha-induced cytotoxicity, and transfection of IRF-1 rendered insulinoma cells susceptible to TNF-alpha-induced cytotoxicity. STAT1 and IRF-1 were expressed in pancreatic islets of diabetic NOD mice and colocalized with apoptotic cells. Moreover, anti-TNF-alpha Ab inhibited the development of diabetes after adoptive transfer. Taken together, our results indicate that IFN-gamma/TNF-alpha synergism is responsible for autoimmune diabetes in vivo as well as beta cell apoptosis in vitro and suggest a novel signal transduction in IFN-gamma/TNF-alpha synergism that may have relevance in other autoimmune diseases and synergistic anti-tumor effects of the two cytokines.  相似文献   

19.
Cathepsin B is a cysteine proteinase, considered to have an important role in apoptosis, which is activated by D-galactosamine and tumor necrosis factor-alpha (D-GalN/TNF-alpha). Benzyloxycarbonyl-L-phenylalanine fluoromethyl ketone (Z-FA.FMK) is a cathepsin B inhibitor used in research on apoptotic pathways. The aim of this study was to investigate the role of Z-FA.FMK on apoptotic cell death, cell proliferation and liver damage induced by a D-GalN/TNF-alpha combination in mice. In the study, 1 h after administration of 8 mg/kg Z-FA.FMK by intravenous injection, D-GalN (700 mg/kg) and TNF-alpha (15 microg/kg) were administered by a single intraperitoneal injection. In the group given D-GalN/TNF-alpha, the following results were found: Degenerative changes in the liver tissue, significant increase in the number of both TUNEL and activated caspase-3-positive hepatocytes, a decrease in the number of PCNA-positive hepatocytes, an increase in lipid peroxidation (LPO) levels and a decrease in glutathione (GSH) and DNA levels in the liver tissue. In contrast, in the group given D-GalN/TNF-alpha and Z-FA.FMK, a decrease in the damage of the liver tissue, a significant decrease in TUNEL and activated caspase-3-positive hepatocytes, a significant increase in the number of PCNA-positive hepatocytes, a decrease in the LPO levels, an increase in GSH and DNA levels in the liver tissue were found. As a result, microscopic and biochemical evaluations indicate that Z-FA.FMK plays a protective role against liver injury induced by D-GalN/TNF-alpha and it has an inverse effect on hepatocyte apoptosis and proliferation in BALB/c mice.  相似文献   

20.
It was found that the capacity for tumor necrosis factor (TNF) production by Japanese modified traditional Chinese medicines and crude drugs broadly paralleled their antitumor activity. Pretreatment with these drugs prevented the lethal and marked side effects of recombinant human TNF (rhTNF) and lipopolysaccharide (LPS) without impairing their antitumor activity. These drugs are thought to decrease the oxygen radicals and stabilize the cell membranes, with a deep relation to the arachidonic cascade. The release of prostaglandins and leukotriene B4 was suppressed by pretreatment with Shosaiko-to. Thromboxane B2 was transiently increased, followed by suppression. After pretreatment with Hochu-ekki-to or Juzen-taiho-to, suppression of leukotriene B4 could not be observed. The release of prostaglandin D2 was suppressed in mice pretreated with Shosaiko-to, Juzentaiho-to or Ogon (Scutellariae Radix) but it increased following pretreatment with Hochu-ekki-to. Chemicals that could prevent the lethality of rhTNF and LPS also revealed suppression of prostaglandins, leukotriene B4 and thromboxane B2. In general, drugs that prevented the lethality of rhTNF and LPS without impairing the antitumor activity could inhibit the release of leukotriene B4 and/or prostaglandin D2. rhTNF could activate the arachidonic cascade in combination with LPS. The lethality of rhTNF and LPS could be prevented by pretreatment with Japanese modified traditional Chinese medicines and the crude drug, Ogon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号