首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Blockade of large-conductance Ca2+-activated K+ (BK) channels by the bulky quaternary ammonium compound, N-(4-[benzoyl]benzyl)-N,N,N-tributylammonium (bbTBA), exhibits features consistent with blockade of both closed and open states. Here, we examine block of closed BK channels by bbTBA and how it may differ from block of open channels. Although our observations generally confirm earlier results, we describe three observations that are inconsistent with a model in which closed and open channels are equally accessible to blockade by bbTBA. First, block by bbTBA exhibits Ca2+-dependent features that are inconsistent with strictly state-independent block. Second, the steady-state voltage dependence of bbTBA block at negative potentials shows that any block of completely closed states either does not occur or is completely voltage independent. Third, determination of the fractional unblock by bbTBA at either low or high Ca2+ reveals deviations from a model in which open- and closed-state block is identical. The results support the view that bbTBA blockade of fully closed channels does not occur. We imagine two general types of explanation. First, a stronger voltage dependence of closed-channel block may minimize the contribution of closed-channel block at negative potentials. Second, voltage-dependent conformational changes among closed-channel states may permit block by bbTBA. The analysis supports the latter view, suggesting that bbTBA blockade of fully closed channels does not occur, but the ability of bbTBA to block a closed channel requires movement of one or more voltage sensors. Models in which block is coupled to voltage sensor movement can qualitatively account for (1) the ability of open-channel block to better fit block of conductance–voltage curves at high Ca2+; (2) the voltage dependence of fractional availability; and (3) the fractional unblock at different open probabilities. BK channels appear to undergo voltage-dependent conformational changes among closed states that are permissive for bbTBA block.  相似文献   

2.
Crystal structures of potassium channels have strongly corroborated an earlier hypothetical picture based on functional studies, in which the channel gate was located on the cytoplasmic side of the pore. However, accessibility studies on several types of ligand-sensitive K(+) channels have suggested that their activation gates may be located near or within the selectivity filter instead. It remains to be determined to what extent the physical location of the gate is conserved across the large K(+) channel family. Direct evidence about the location of the gate in large conductance calcium-activated K(+) (BK) channels, which are gated by both voltage and ligand (calcium), has been scarce. Our earlier kinetic measurements of the block of BK channels by internal quaternary ammonium ions have raised the possibility that they may lack a cytoplasmic gate. We show in this study that a synthesized Shaker ball peptide (ShBP) homologue acts as a state-dependent blocker for BK channels when applied internally, suggesting a widening at the intracellular end of the channel pore upon gating. This is consistent with a gating-related conformational change at the cytoplasmic end of the pore-lining helices, as suggested by previous functional and structural studies on other K(+) channels. Furthermore, our results from two BK channel mutations demonstrate that similar types of interactions between ball peptides and channels are shared by BK and other K(+) channel types.  相似文献   

3.
Cyclic nucleotide-gated (CNG) channels play important roles in the transduction of visual and olfactory information by sensing changes in the intracellular concentration of cyclic nucleotides. We have investigated the interactions between intracellularly applied quaternary ammonium (QA) ions and the alpha subunit of rod cyclic nucleotide-gated channels. We have used a family of alkyl-triethylammonium derivatives in which the length of one chain is altered. These QA derivatives blocked the permeation pathway of CNG channels in a concentration- and voltage-dependent manner. For QA compounds with tails longer than six methylene groups, increasing the length of the chain resulted in higher apparent affinities of approximately 1.2 RT per methylene group added, which is consistent with the presence of a hydrophobic pocket within the intracellular mouth of the channel that serves as part of the receptor binding site. At the single channel level, decyltriethyl ammonium (C10-TEA) ions did not change the unitary conductance but they did reduce the apparent mean open time, suggesting that the blocker binds to open channels. We provide four lines of evidence suggesting that QA ions can also bind to closed channels: (1) the extent of C10-TEA blockade at subsaturating [cGMP] was larger than at saturating agonist concentration, (2) under saturating concentrations of cGMP, cIMP, or cAMP, blockade levels were inversely correlated with the maximal probability of opening achieved by each agonist, (3) in the closed state, MTS reagents of comparable sizes to QA ions were able to modify V391C in the inner vestibule of the channel, and (4) in the closed state, C10-TEA was able to slow the Cd2+ inhibition observed in V391C channels. These results are in stark contrast to the well-established QA blockade mechanism in Kv channels, where these compounds can only access the inner vestibule in the open state because the gate that opens and closes the channel is located cytoplasmically with respect to the binding site of QA ions. Therefore, in the context of Kv channels, our observations suggest that the regions involved in opening and closing the permeation pathways in these two types of channels are different.  相似文献   

4.
A study of properties of batrachotoxin modified sodium channels   总被引:4,自引:0,他引:4  
A further analysis of the effects of the steroidal alkaloid batrachotoxin (BTX) on sodium channels in frog node of Ranvier has been carried out under voltage-clamp conditions. The main properties of modified channels as compared with those of normal ones are as follows: The rate of channel closing is drastically decreased, whereas that of opening is changed slightly if at all; The steady-state voltage dependence of channel activation is shifted towards more negative potentials by 60-70 mV; Currents through modified channels do not show a decay during maintained depolarization as it is typical for normal channels. However modified channels retain the ability to partial inactivation as shown by experiments with depolarizing prepulses; Sodium against potassium selectivity beyond--20 mV suggesting either nonhomogeneity of the modified channels as for their kinetic and selectivity properties or potential-dependence of ionic selectivity for each channel; The selectivity sequence determined from peak current reversal potential measurements is as follows: H: Na :NH4:K = 528:1:0.47: :0.19; The effective pK value of proton block is decreased by about 0.4; 7) The sensitivity of the channels to tetrodotoxin (TTX) block is practically unchanged.  相似文献   

5.
The nicotinic acetylcholine (ACh) receptor is responsible for rapid conversion of chemical signals to electrical signals at the neuromuscular junction. Because the receptor and its ion channel are components of a single transmembrane protein, the time between ACh binding and channel opening can be minimized. To determine just how quickly the channel opens, we made rapid (100-400 microseconds) applications of 0.1-10 mM ACh to outside-out, multichannel membrane patches from BC3H-1 cells, while measuring the onset of current flow through the channels at 11 degrees C. Onset time is steeply dependent upon ACh concentration when channel activation is limited by binding of ACh (0.1-1 mM). At +50 mV, the 20-80% onset time reaches a plateau near 110 microseconds above 5 mM ACh as channel opening becomes rate limiting. Thus, we calculate the opening rate, beta = 12/ms, without reference to specific channel activation schemes. At -50 mV, the combination of a rapid, voltage-dependent block of channels by ACh with a finite solution exchange time distorts onset. To determine opening rate at -50 mV, we determine the kinetic parameters of block from "steady-state" current and noise analyses, assume a sequential model of channel activation/block, and numerically simulate current responses to rapid perfusion of ACh. Using this approach, we find beta = 15/ms. In contrast to the channel closing rate, the opening rate is relatively insensitive to voltage.  相似文献   

6.
According to the classic modulated receptor hypothesis, local anesthetics (LAs) such as benzocaine and lidocaine bind preferentially to fast-inactivated Na(+) channels with higher affinities. However, an alternative view suggests that activation of Na(+) channels plays a crucial role in promoting high-affinity LA binding and that fast inactivation per se is not a prerequisite for LA preferential binding. We investigated the role of activation in LA action in inactivation-deficient rat muscle Na(+) channels (rNav1.4-L435W/L437C/A438W) expressed in stably transfected Hek293 cells. The 50% inhibitory concentrations (IC(50)) for the open-channel block at +30 mV by lidocaine and benzocaine were 20.9 +/- 3.3 microM (n = 5) and 81.7 +/- 10.6 microM (n = 5), respectively; both were comparable to inactivated-channel affinities. In comparison, IC(50) values for resting-channel block at -140 mV were >12-fold higher than those for open-channel block. With 300 microM benzocaine, rapid time-dependent block (tau approximately 0.8 ms) of inactivation-deficient Na(+) currents occurred at +30 mV, but such a rapid time-dependent block was not evident at -30 mV. The peak current at -30 mV, however, was reduced more severely than that at +30 mV. This phenomenon suggested that the LA block of intermediate closed states took place notably when channel activation was slow. Such closed-channel block also readily accounted for the LA-induced hyperpolarizing shift in the conventional steady-state inactivation measurement. Our data together illustrate that the Na(+) channel activation pathway, including most, if not all, transient intermediate closed states and the final open state, promotes high-affinity LA binding.  相似文献   

7.
Single-channel acetylcholine receptor kinetics.   总被引:3,自引:0,他引:3       下载免费PDF全文
The temporal relationships among junctional acetylcholine receptor single-channel currents have been examined to probe the mechanism of channel activation. We have presented an analytical approach, termed single-channel ensemble analysis, that allows one to estimate the kinetic transition rate constants for channel-opening and closing as well as the rate of leaving the specific doubly-liganded, closed state from which opening occurs. This approach may be applied to data produced by any number of independent channels as long as the probability of channel opening is low, a condition that is experimentally verifiable. The method has been independently validated using simulated single-channel data generated by computer from one or 100 hypothetical channels. Typical experimental values for the transition rate constants estimated from acetylcholine-activated single channels at the garter snake neuromuscular junction were: opening = 1,200 s-1, closing = 455 s-1, back rate for leaving the doubly-liganded, closed state = 3,200 s-1 at a transmembrane potential of -92 mV at room temperature. Each of these three rate constants was voltage dependent, with the closing rate decreasing e-fold for 173 mV of hyperpolarization, the opening rate increasing e-fold for 78 mV, and the unbinding rate increasing e-fold for 105 mV. The channel-closing rate was agonist dependent, being greater at all potentials for channels activated with carbamylcholine than for channels activated with acetylcholine. However, the single-channel conductance and reversal potential were the same for these two agonists.  相似文献   

8.
The pore-lining amino acids of ion channel proteins reside on the interface between a polar (the pore) and a nonpolar environment (the rest of the protein). The structural dynamics of this region, which physically controls ionic flow, are essential components of channel gating. Using large-conductance, Ca(2+)-dependent K(+) (BK) channels, we devised a systematic charge-substitution method to probe conformational changes in the pore region during channel gating. We identified a deep-pore residue (314 in hSlo1) as a marker of structural dynamics. We manipulated the charge states of this residue by substituting amino acids with different valence and pKa, and by adjusting intracellular pH. We found that the charged states of the 314 residues stabilized an open state of the BK channel. With models based on known structures of related channels, we postulate a dynamic rearrangement of the deep-pore region during BK channel opening/closing, which involves a change of the degree of pore exposure for 314.  相似文献   

9.
BK channels are activated by intracellular Ca(2+) and Mg(2+) as well as by depolarization. Such activation is possible because each of the four subunits has two high-affinity Ca(2+) sites, one low-affinity Mg(2+) site, and a voltage sensor. This study further investigates the mechanism of Mg(2+) activation by using single-channel recording to determine separately the action of Mg(2+) on the open and closed states of the channel. To limit Mg(2+) action to the Mg(2+) sites, the two high-affinity Ca(2+) sites are disabled by mutation. When the voltage is stepped from negative holding potentials to +100 mV, we find that 10 mM Mg(2+) decreases the mean closed latency to the first channel opening 2.1-fold, decreases the mean closed interval duration 8.7-fold, increases mean burst duration 10.1-fold, increases the number of openings per burst 4.4-fold, and increases mean open interval duration 2.3-fold. Hence, Mg(2+) can bind to closed BK channels, increasing their opening rates, and to open BK channels, decreasing their closing rates. To explore the relationship between Mg(2+) action and voltage sensor activation, we record single-channel activity in macropatches containing hundreds of channels. Open probability (P(o)) is dramatically increased by 10 mM Mg(2+) when voltage sensors are activated with either depolarization or the mutation R210C. The increased P(o) arises from large decreases in mean closed interval durations and moderate increases in mean open interval durations. In contrast, 10 mM Mg(2+) has no detectable effects on P(o) or interval durations when voltage sensors are deactivated with very negative potentials or the mutation R167E. These observations are consistent with a model in which Mg(2+) can bind to and alter the gating of both closed and open states to increase P(o), provided that one or more voltage sensors are activated.  相似文献   

10.
The antiarrhythmic agent flecainide appears beneficial for painful congenital myotonia and LQT-3/DeltaKPQ syndrome. Both diseases manifest small but persistent late Na+ currents in skeletal or cardiac myocytes. Flecainide may therefore block late Na+ currents for its efficacy. To investigate this possibility, we characterized state-dependent block of flecainide in wild-type and inactivation-deficient rNav1.4 muscle Na+ channels (L435W/L437C/A438W) expressed with beta1 subunits in Hek293t cells. The flecainide-resting block at -140 mV was weak for wild-type Na+ channels, with an estimated 50% inhibitory concentration (IC50) of 365 micro M when the cell was not stimulated for 1,000 s. At 100 micro M flecainide, brief monitoring pulses of +30 mV applied at frequencies as low as 1 per 60 s, however, produced an approximately 70% use-dependent block of peak Na+ currents. Recovery from this use-dependent block followed an exponential function, with a time constant over 225 s at -140 mV. Inactivated wild-type Na+ channels interacted with flecainide also slowly at -50 mV, with a time constant of 7.9 s. In contrast, flecainide blocked the open state of inactivation-deficient Na+ channels potently as revealed by its rapid time-dependent block of late Na+ currents. The IC50 for flecainide open-channel block at +30 mV was 0.61 micro M, right within the therapeutic plasma concentration range; on-rate and off-rate constants were 14.9 micro M-1s-1 and 12.2 s-1, respectively. Upon repolarization to -140 mV, flecainide block of inactivation-deficient Na+ channels recovered, with a time constant of 11.2 s, which was approximately 20-fold faster than that of wild-type counterparts. We conclude that flecainide directly blocks persistent late Na+ currents with a high affinity. The fast-inactivation gate, probably via its S6 docking site, may further stabilize the flecainide-receptor complex in wild-type Na+ channels.  相似文献   

11.
The effects of verapamil on the large conductance Ca-activated K (BK) channel from rat aortic smooth muscle cells were examined at the single channel level. Micromolar concentrations of verapamil produced a reversible flickering block of the BK channel activity. Kinetic analysis showed that verapamil decreased markedly the time constants of the open states, without any significant change in the time constants of the closed states. The appearance of an additional closed state — specifically, a nonconducting, open-blocked state — was also observed, whose time constant would reflect the mean residence time of verapamil on the channel. These observations are indicative of a state-dependent, open-channel block mechanism. Dedicated kinetic (group) analysis confirmed the state-dependent block exerted by verapamil. D600 (gallopamil), the methoxy derivative of verapamil, was also tested and found to exert a similar type of block, but with a higher affinity than verapamil. The permanently charged and membrane impermeant verapamil analogue D890 was used to address other important features of verapamil block, such as the sidedness of action and the location of the binding site on the channel protein. D890 induced a flickering block of BK channels similar to that observed with verapamil only when applied to the internal side of the membrane, indicating that D890 binds to a site accessible from the cytoplasmic side. Finally, the voltage dependence of D890 block was assessed. The experimental data fitted with a Langmuir equation incorporating the Woodhull model for charged blockers confirms that the D890-binding site is accessed from the internal mouth of the BK channel, and locates it approximately 40% of the membrane voltage drop along the permeation pathway. Received: 11 April 2000/Revised: 17 October 2000  相似文献   

12.
To determine how intracellular Ca(2+) and membrane voltage regulate the gating of large conductance Ca(2+)-activated K(+) (BK) channels, we examined the steady-state and kinetic properties of mSlo1 ionic and gating currents in the presence and absence of Ca(2+) over a wide range of voltage. The activation of unliganded mSlo1 channels can be accounted for by allosteric coupling between voltage sensor activation and the closed (C) to open (O) conformational change (Horrigan, F.T., and R.W. Aldrich. 1999. J. Gen. Physiol. 114:305-336; Horrigan, F.T., J. Cui, and R.W. Aldrich. 1999. J. Gen. Physiol. 114:277-304). In 0 Ca(2+), the steady-state gating charge-voltage (Q(SS)-V) relationship is shallower and shifted to more negative voltages than the conductance-voltage (G(K)-V) relationship. Calcium alters the relationship between Q-V and G-V, shifting both to more negative voltages such that they almost superimpose in 70 microM Ca(2+). This change reflects a differential effect of Ca(2+) on voltage sensor activation and channel opening. Ca(2+) has only a small effect on the fast component of ON gating current, indicating that Ca(2+) binding has little effect on voltage sensor activation when channels are closed. In contrast, open probability measured at very negative voltages (less than -80 mV) increases more than 1,000-fold in 70 microM Ca(2+), demonstrating that Ca(2+) increases the C-O equilibrium constant under conditions where voltage sensors are not activated. Thus, Ca(2+) binding and voltage sensor activation act almost independently, to enhance channel opening. This dual-allosteric mechanism can reproduce the steady-state behavior of mSlo1 over a wide range of conditions, with the assumption that activation of individual Ca(2+) sensors or voltage sensors additively affect the energy of the C-O transition and that a weak interaction between Ca(2+) sensors and voltage sensors occurs independent of channel opening. By contrast, macroscopic I(K) kinetics indicate that Ca(2+) and voltage dependencies of C-O transition rates are complex, leading us to propose that the C-O conformational change may be described by a complex energy landscape.  相似文献   

13.
Calcium-dependent potassium (BK-type) Ca2+ and voltage-dependent K+ channels in chromaffin cells exhibit an inactivation that probably arises from coassembly of Slo1 alpha subunits with auxiliary beta subunits. One goal of this work was to determine whether the Ca2+ dependence of inactivation arises from any mechanism other than coupling of inactivation to the Ca2+ dependence of activation. Steady-state inactivation and the onset of inactivation were studied in inside-out patches and whole-cell recordings from rat adrenal chromaffin cells with parallel experiments on inactivating BK channels resulting from cloned alpha + beta2 subunits. In both cases, steady-state inactivation was shifted to more negative potentials by increases in submembrane [Ca2+] from 1 to 60 microM. At 10 and 60 microM Ca2+, the maximal channel availability at negative potentials was similar despite a shift in the voltage of half availability, suggesting there is no strictly Ca2+-dependent inactivation. In contrast, in the absence of Ca2+, depolarization to potentials positive to +20 mV induces channel inactivation. Thus, voltage-dependent, but not solely Ca2+-dependent, kinetic steps are required for inactivation to occur. Finally, under some conditions, BK channels are shown to inactivate as readily from closed states as from open states, indicative that a key conformational change required for inactivation precedes channel opening.  相似文献   

14.
We examined the effects of Pandinus imperator scorpion venom on voltage-gated potassium channels in cultured clonal rat anterior pituitary cells (GH3 cells) using the gigohm-seal voltage-clamp method in the whole-cell configuration. We found that Pandinus venom blocks the voltage-gated potassium channels of GH3 cells in a voltage-dependent and dose-dependent manner. Crude venom in concentrations of 50-500 micrograms/ml produced 50-70% block of potassium currents measured at -20 mV, compared with 25-60% block measured at +50 mV. The venom both decreased the peak potassium current and shifted the voltage dependence of potassium current activation to more positive potentials. Pandinus venom affected potassium channel kinetics by slowing channel opening, speeding deactivation slightly, and increasing inactivation rates. Potassium currents in cells exposed to Pandinus venom did not recover control amplitudes or kinetics even after 20-40 min of washing with venom-free solution. The concentration dependence of crude venom block indicates that the toxins it contains are effective in the nanomolar range of concentrations. The effects of Pandinus venom were mimicked by zinc at concentrations less than or equal to 0.2 mM. Block of potassium current by zinc was voltage dependent and resembled Pandinus venom block, except that block by zinc was rapidly reversible. Since zinc is found in crude Pandinus venom, it could be important in the interaction of the venom with the potassium channel. We conclude that Pandinus venom contains toxins that bind tightly to voltage-dependent potassium channels in GH3 cells. Because of its high affinity for voltage-gated potassium channels and its irreversibility, Pandinus venom may be useful in the isolation, mapping, and characterization of voltage-gated potassium channels.  相似文献   

15.
Calcium and voltage-activated potassium (BK) channels are key actors in cell physiology, both in neuronal and non-neuronal cells and tissues. Through negative feedback between intracellular Ca2+ and membrane voltage, BK channels provide a damping mechanism for excitatory signals. Molecular modulation of these channels by alternative splicing, auxiliary subunits and post-translational modifications showed that these channels are subjected to many mechanisms that add diversity to the BK channel α subunit gene. This complexity of interactions modulates BK channel gating, modifying the energetic barrier of voltage sensor domain activation and channel opening. Regions for voltage as well as Ca2+ sensitivity have been identified, and the crystal structure generated by the 2 RCK domains contained in the C-terminal of the channel has been described. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, has been found to be relevant in many physiological processes. This review includes the hallmarks of BK channel biophysics and its physiological impact on specific cells and tissues, highlighting its relationship with auxiliary subunit expression.  相似文献   

16.
Large-conductance (BK-type) Ca(2+)-activated potassium channels are activated by membrane depolarization and cytoplasmic Ca(2+). BK channels are expressed in a broad variety of cells and have a corresponding diversity in properties. Underlying much of the functional diversity is a family of four tissue-specific accessory subunits (beta1-beta4). Biophysical characterization has shown that the beta4 subunit confers properties of the so-called "type II" BK channel isotypes seen in brain. These properties include slow gating kinetics and resistance to iberiotoxin and charybdotoxin blockade. In addition, the beta4 subunit reduces the apparent voltage sensitivity of channel activation and has complex effects on apparent Ca(2+) sensitivity. Specifically, channel activity at low Ca(2+) is inhibited, while at high Ca(2+), activity is enhanced. The goal of this study is to understand the mechanism underlying beta4 subunit action in the context of a dual allosteric model for BK channel gating. We observed that beta4's most profound effect is a decrease in P(o) (at least 11-fold) in the absence of calcium binding and voltage sensor activation. However, beta4 promotes channel opening by increasing voltage dependence of P(o)-V relations at negative membrane potentials. In the context of the dual allosteric model for BK channels, we find these properties are explained by distinct and opposing actions of beta4 on BK channels. beta4 reduces channel opening by decreasing the intrinsic gating equilibrium (L(0)), and decreasing the allosteric coupling between calcium binding and voltage sensor activation (E). However, beta4 has a compensatory effect on channel opening following depolarization by shifting open channel voltage sensor activation (Vh(o)) to more negative membrane potentials. The consequence is that beta4 causes a net positive shift of the G-V relationship (relative to alpha subunit alone) at low calcium. At higher calcium, the contribution by Vh(o) and an increase in allosteric coupling to Ca(2+) binding (C) promotes a negative G-V shift of alpha+beta4 channels as compared to alpha subunits alone. This manner of modulation predicts that type II BK channels are downregulated by beta4 at resting voltages through effects on L(0). However, beta4 confers a compensatory effect on voltage sensor activation that increases channel opening during depolarization.  相似文献   

17.
The Torpedo Cl- channel, CLC-0, is inhibited by clofibric acid derivatives from the intracellular side. We used the slow gate-deficient mutant CLC-0C212S to investigate the mechanism of block by the clofibric acid-derivative p-chlorophenoxy-acetic acid (CPA). CPA blocks open channels with low affinity (KDO= 45 mM at 0 mV) and shows fast dissociation (koff = 490 s-1 at -140 mV). In contrast, the blocker binds to closed channels with higher affinity and with much slower kinetics. This state-dependent block coupled with the voltage dependence of the gating transitions results in a highly voltage-dependent inhibition of macroscopic currents (KD approximately 1 mM at -140 mV; KD approximately 65 mM at 60 mV). The large difference in CPA affinity of the open and closed state suggests that channel opening involves more than just a local conformational rearrangement. On the other hand, in a recent work (Dutzler, R., E.B. Campbell, and R. MacKinnon. 2003. Science. 300:108-112) it was proposed that the conformational change underlying channel opening is limited to a movement of a single side chain. A prediction of this latter model is that mutations that influence CPA binding to the channel should affect the affinities for an open and closed channel in a similar manner since the general structure of the pore remains largely unchanged. To test this hypothesis we introduced point mutations in four residues (S123, T471, Y512, and K519) that lie close to the intracellular pore mouth or to the putative selectivity filter. Mutation T471S alters CPA binding exclusively to closed channels. Pronounced effects on the open channel block are observed in three other mutants, S123T, Y512A, and K519Q. Together, these results collectively suggest that the structure of the CPA binding site is different in the open and closed state. Finally, replacement of Tyr 512, a residue directly coordinating the central Cl- ion in the crystal structure, with Phe or Ala has very little effect on single channel conductance and selectivity. These observations suggest that channel opening in CLC-0 consists in more than a movement of a side chain and that other parts of the channel and of the selectivity filter are probably involved.  相似文献   

18.
Permeant ions can have significant effects on ion channel conformational changes. To further understand the relationship between ion occupancy and gating conformational changes, we have studied macroscopic and single-channel gating of BK potassium channels with different permeant monovalent cations. While the slopes of the conductance-voltage curve were reduced with respect to potassium for all permeant ions, BK channels required stronger depolarization to open only when thallium was the permeant ion. Thallium also slowed the activation and deactivation kinetics. Both the change in kinetics and the shift in the GV curve were dependent on the thallium passing through the permeation pathway, as well as on the concentration of thallium. There was a decrease in the mean open time and an increase in the number of short flicker closing events with thallium as the permeating ion. Mean closed durations were unaffected. Application of previously established allosteric gating models indicated that thallium specifically alters the opening and closing transition of the channel and does not alter the calcium activation or voltage activation pathways. Addition of a closed flicker state into the allosteric model can account for the effect of thallium on gating. Consideration of the thallium concentration dependence of the gating effects suggests that the flicker state may correspond to the collapsed selectivity filter seen in crystal structures of the KcsA potassium channel under the condition of low permeant ion concentration.  相似文献   

19.
We have examined the actions of histidine-specific reagents on potassium channels in squid giant axons. External application of 20-500 microM diethylpyrocarbonate (DEP) slowed the opening of potassium channels with little or no effect on closing rates. Sodium channels were not affected by these low external concentrations of DEP. Internal application of up to 2 mM DEP had no effect on potassium channel kinetics. Steady-state potassium channel currents were reduced in an apparently voltage-dependent manner by external treatment with this reagent. The shape of the instantaneous current-voltage relation was not altered. The voltage-dependent probability of channel opening was shifted toward more positive membrane potentials, thus accounting for the apparent voltage-dependent reduction of steady-state current. Histidine-specific photo-oxidation catalyzed by rose bengal produced alterations in potassium channel properties similar to those observed with DEP. The rate of action of DEP was consistent with a single kinetic class of histidine residues. In contrast to the effects on ionic currents, potassium channel gating currents were not modified by treatment with DEP. These results suggest the existence of a histidyl group (or groups) on the external surface of potassium channels important for a weakly voltage-dependent conformational transition. These effects can be reproduced by a simple kinetic model of potassium channels.  相似文献   

20.
Batrachotoxin-activated rat brain Na+ channels were reconstituted in neutral planar phospholipid bilayers in high ionic strength solutions (3 M NaCl). Under these conditions, diffuse surface charges present on the channel protein are screened. Nevertheless, the addition of extracellular and/or intracellular Ba2+ caused the following alterations in the gating of Na+ channels: (a) external (or internal) Ba2+ caused a depolarizing (or hyperpolarizing) voltage shift in the gating curve (open probability versus membrane potential curve) of the channels; (b) In the concentration range of 10-120 mM, extracellular Ba2+ caused a larger voltage shift in the gating curve of Na+ channels than intracellular Ba2+; (c) voltage shifts of the gating curve of Na+ channels as a function of external or internal Ba2+ were fitted with a simple binding isotherm with the following parameters: for internal Ba2+, delta V0.5,max (maximum voltage shift) = -11.5 mV, KD = 64.7 mM; for external Ba2+, delta V0.5,max = 13.5 mV, KD = 25.8 mM; (d) the change in the open probability of the channel caused by extracellular or intracellular Ba2+ is a consequence of alterations in both the opening and closing rate constants. Extracellular and intracellular divalent cations can modify the gating kinetics of Na+ channels by a specific modulatory effect that is independent of diffuse surface potentials. External or internal divalent cations probably bind to specific charges on the Na+ channel glycoprotein that modulate channel gating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号