首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xie X  Wang QY  Xu HY  Qing M  Kramer L  Yuan Z  Shi PY 《Journal of virology》2011,85(21):11183-11195
We report a novel inhibitor that selectively suppresses dengue virus (DENV) by targeting viral NS4B protein. The inhibitor was identified by screening a 1.8-million-compound library using a luciferase replicon of DENV serotype 2 (DENV-2). The compound specifically inhibits all four serotypes of DENV (50% effective concentration [EC(50)], 1 to 4 μM; and 50% cytotoxic concentration [CC(50)], >40 μM), but it does not inhibit closely related flaviviruses (West Nile virus and yellow fever virus) or nonflaviviruses (Western equine encephalomyelitis virus, Chikungunya virus, and vesicular stomatitis virus). A mode-of-action study suggested that the compound inhibits viral RNA synthesis. Replicons resistant to the inhibitor were selected in cell culture. Sequencing of the resistant replicons revealed two mutations (P104L and A119T) in the viral NS4B protein. Genetic analysis, using DENV-2 replicon and recombinant viruses, demonstrated that each of the two NS4B mutations alone confers partial resistance and double mutations confer additive resistance to the inhibitor in mammalian cells. In addition, we found that a replication defect caused by a lethal NS4B mutation could be partially rescued through trans complementation. The ability to complement NS4B in trans affected drug sensitivity when a single cell was coinfected with drug-sensitive and drug-resistant viruses. Mechanistically, NS4B was previously shown to interact with the viral NS3 helicase domain; one of the two NS4B mutations recovered in our resistance analysis-P104L-abolished the NS3-NS4B interaction (I. Umareddy, A. Chao, A. Sampath, F. Gu, and S. G. Vasudevan, J. Gen. Virol. 87:2605-2614, 2006). Collectively, the results suggest that the identified inhibitor targets the DENV NS4B protein, leading to a defect in viral RNA synthesis.  相似文献   

2.
Virus specificity of human influenza virus-immune cytotoxic T cells.   总被引:4,自引:0,他引:4  
The virus specificity of human in vitro cytotoxic T cell responses to influenza virus was studied with the use of peripheral blood mononuclear leukocytes from normal adult volunteers. Previous natural exposure of these donors to a variety of type A influenza viruses was documented by HI antibody titers. Cells sensitized in vitro with A/HK or A/PR8 were cytotoxic for autologous target cells infected with A/HK, A/PR8, or A/JAP 305 type A influenza viruses, but not for B/HK-infected or uninfected cells. B/HK-sensitized effector cells lysed target cells infected with B/HK but not targets infected with type A viruses. A/HK- and A/PR8-immune effector populations were shown to recognize cross-reactive antigens on A/HK- and A/PR8-infected target cells by cold target competition. Influenza-immune effector cells were cytotoxic for virus-infected autologous targets but much less so for virus-infected allogeneic targets. This self-restriction suggested that the cytotoxicity was largely T cell-mediated and was confirmed by cell separation analysis. Thus, the human secondary cytotoxic T cell response in vitro to influenza viruses is predominantly directed against cross-reactive determinants on cells infected with serologically distinct type A influenza viruses.  相似文献   

3.
The lifelong infection by varicelloviruses is characterized by a fine balance between the host immune response and immune evasion strategies used by these viruses. Virus-derived peptides are presented to cytotoxic T lymphocytes by major histocompatibility complex (MHC) class I molecules. The transporter associated with antigen processing (TAP) transports the peptides from the cytosol into the endoplasmic reticulum, where the loading of MHC-I molecules occurs. The varicelloviruses bovine herpesvirus 1 (BoHV-1), pseudorabies virus, and equid herpesviruses 1 and 4 have been found to encode a UL49.5 protein that inhibits TAP-mediated peptide transport. To investigate to what extent UL49.5-mediated TAP inhibition is conserved within the family of Alphaherpesvirinae, the homologs of another five varicelloviruses, one mardivirus, and one iltovirus were studied. The UL49.5 proteins of BoHV-5, bubaline herpesvirus 1, cervid herpesvirus 1, and felid herpesvirus 1 were identified as potent TAP inhibitors. The varicella-zoster virus and simian varicellovirus UL49.5 proteins fail to block TAP; this is not due to the absence of viral cofactors that might assist in this process, since cells infected with these viruses did not show reduced TAP function either. The UL49.5 homologs of the mardivirus Marek's disease virus 1 and the iltovirus infectious laryngotracheitis virus did not block TAP, suggesting that the capacity to inhibit TAP via UL49.5 has been acquired by varicelloviruses only. A phylogenetic analysis of viruses that inhibit TAP through their UL49.5 proteins reveals an interesting hereditary pattern, pointing toward the presence of this capacity in defined clades within the genus Varicellovirus.  相似文献   

4.
Invertebrate iridescent viruses (Iridoviridae) possess a highly cytotoxic protein. In mosquitoes (Diptera: Culicidae), invertebrate iridescent virus 6 (IIV-6) usually causes covert (inapparent) infection that reduces fitness. To determine whether sublethal effects of IIV-6 are principally due to cytotoxicity of the viral inoculum (which inhibits macromolecular synthesis in the host), or caused by replication of the virus larvae of the mosquito Aedes aegypti (L) were exposed to untreated IIV-6 virus that had previously been deactivated by heat or ultraviolet light. Control larvae were not exposed to virus. Larval development time was shortest in control larvae and extended in larvae exposed to untreated virus. Covertly infected mosquitoes laid significantly fewer eggs, produced between 20 and 35% fewer progeny and had reduced longevity compared to other treatments. Wing length was shortest in mosquitoes exposed to heat-deactivated virus. Multivariate analysis of the same data identified fecundity and progeny production as the most influential variables in defining differences among treatments. Overall, viral infection resulted in a 34% decrease in the net reproductive rate (R0) of covertly infected mosquitoes, vs. only 5-17% decrease of R0 following treatments with deactivated virus, compared to controls. Sublethal effects of IIV-6 in Ae. aegypti appear to be mainly due to virus replication, rather than cytotoxic effects of the viral inoculum.  相似文献   

5.
In the present study we have identified Epstein-Barr virus isolates which encode variant sequences within an HLA B35-restricted immunodominant cytotoxic T-lymphocyte (CTL) epitope that act as natural antagonists and can inhibit CTL activity on the wild-type epitope. This effect can be demonstrated if the wild-type epitope is presented as a synthetic peptide or when processed from a full-length Epstein-Barr virus protein expressed by recombinant vaccinia constructs. However, this antagonistic effect was only selectively seen with some CTL clones, while a strong agonistic effect was evident for other clones in the presence of the same variant peptide. The data presented in this study strongly suggest that it is unlikely that the variant viruses can completely antagonize a virus-specific CTL response by this mechanism since the host immune response is capable of generating CTLs expressing a diverse array of T-cell receptors. Moreover, many of these CTLs can recognize the variant sequences as efficiently as wild-type epitope.  相似文献   

6.
By employing the 125IUdR release cytotoxicity assay, we have been able to measure the primary and secondary cell-mediated cytotoxic response of C57BL/6 mice to FBL-3 cells, a syngeneic Friend virus-induced leukemia. It was found that the secondary cell-mediated cytotoxic response occurred more rapidly after challenge (within 3 days) than the primary response, and the levels of reactivity were considerably higher. As in the primary response, the secondary cytotoxic reactivity of spleen cells was T cell dependent, being eliminated by pretreatment with anti-theta antibody plus complement. However, the secondary reactivity of pertioneal exudate (PE) cells was not entirely T-cell dependent. The specificity of the secondary cytotoxic response was analyzed by primary or secondary immunization with various tumor cells and by testing of cytotoxic lymphocytes against a variety of target cells. When spleen cells were used for testing, only tumor cells induced by Friend, Moloney, or Rauscher (FMR) leukemia viruses could produce secondary cell-mediated cytotoxic responses against FBL-3 cells. This correlated well with the specificity observed in the in vivo tumor transplantation protection studies. Similarly, spleen cells immune to FBL-3 had appreciable cytotoxicity against tumor cells induced by FMR viruses. The FBL-3 immune mice also gave significant protection against the challenge of FMR leukemias. When PE cells were used for testing, they gave higher levels of cytotoxicity against tumor cells induced by FMR viruses, but also gave less, but appreciable, cytotoxicity against non-FMR tumors. The latter reactivity might be related to the antigens induced by the murine endogenous type C viruses.  相似文献   

7.
The production of cytotoxic cells in the spleen of adult male BALB/c mice infected with Coxsackievirus B-3 has been examined.An in vitro 51Cr release assay was used to measure cytotoxic activity against virus-infected and uninfected neonatal sygeneic fibroblasts. Cytotoxicity of immune spleen cells against virus-infected targets was detected on the 3rd day after infection, reached a peak on day 7, and then declined to low levels by days 12 and 14. Spleen cells obtained 3 and 5 days after infection also exerted cytotoxicity against uninfected fibroblasts, but by the 7th day there was little or no reactivity against uninfected target cells, although activity against infected fibroblasts was maximal at this time. Reciprocal assays performed by using Coxsackie and vaccinia viruses provided evidence of virus specificity of the cytotoxic reaction. When spleen cells were obtained 7 days after infection, the Coxsackievirus-immune population was not cytotoxic for vaccinia-infected fibroblasts, and the vaccinia-immune population was not cytotoxic for Coxsackievirus-infected targets, although each immune cell preparation caused significant lysis of fibroblasts infected with the homologous virus. Additional studies showed that primary mouse or hyperimmune rabbit anti-Coxsackieviral serum could not block immune spleen cell cytotoxicity or induce complement-mediated lysis of infected targets. The findings indicate that Coxsackievirus infection results in surface membrane alterations, but no evidence was obtained that antiviral antibody could react with the infected cells.  相似文献   

8.
Chen Y  Cao L  Zhong M  Zhang Y  Han C  Li Q  Yang J  Zhou D  Shi W  He B  Liu F  Yu J  Sun Y  Cao Y  Li Y  Li W  Guo D  Cao Z  Yan H 《PloS one》2012,7(4):e34947
For over 30 years, HIV/AIDS has wreaked havoc in the world. In the absence of an effective vaccine for HIV, development of new anti-HIV agents is urgently needed. We previously identified the antiviral activities of the scorpion-venom-peptide-derived mucroporin-M1 for three RNA viruses (measles viruses, SARS-CoV, and H5N1). In this investigation, a panel of scorpion venom peptides and their derivatives were designed and chosen for assessment of their anti-HIV activities. A new scorpion venom peptide derivative Kn2-7 was identified as the most potent anti-HIV-1 peptide by screening assays with an EC(50) value of 2.76 μg/ml (1.65 μM) and showed low cytotoxicity to host cells with a selective index (SI) of 13.93. Kn2-7 could inhibit all members of a standard reference panel of HIV-1 subtype B pseudotyped virus (PV) with CCR5-tropic and CXCR4-tropic NL4-3 PV strain. Furthermore, it also inhibited a CXCR4-tropic replication-competent strain of HIV-1 subtype B virus. Binding assay of Kn2-7 to HIV-1 PV by Octet Red system suggested the anti-HIV-1 activity was correlated with a direct interaction between Kn2-7 and HIV-1 envelope. These results demonstrated that peptide Kn2-7 could inhibit HIV-1 by direct interaction with viral particle and may become a promising candidate compound for further development of microbicide against HIV-1.  相似文献   

9.
To date, four main mechanisms mediating inhibition of influenza infection by anti-hemagglutinin antibodies have been reported. Anti-globular-head-domain antibodies block either influenza virus receptor binding to the host cell or progeny virion release from the host cell. Anti-stem region antibodies hinder the membrane fusion process or induce antibody-dependent cytotoxicity to infected cells. In this study we identified a human monoclonal IgG1 antibody (CT302), which does not inhibit both the receptor binding and the membrane fusion process but efficiently reduced the nucleus entry of viral nucleoprotein suggesting a novel inhibition mechanism of viral infection by antibody. This antibody binds to the subtype-H3 hemagglutinin globular head domain of group-2 influenza viruses circulating throughout the population between 1997 and 2007.  相似文献   

10.
The Sindbis virus RNA-dependent RNA polymerase nsP4 possesses an amino-terminal region that is unique to alphaviruses and is predicted to be disordered. To determine the importance of this region during alphavirus replication, 29 mutations were introduced, and resultant viruses were assessed for growth defects. Three small plaque mutants, D41A, G83L, and the triple mutant GPG((8-10))VAV, had defects in subgenome synthesis, minus-strand synthesis, and overall levels of viral RNA synthesis, respectively. Large plaque viruses were selected following passage in BHK-21 cells, and the genomes of these were sequenced. Suppressor mutations in nsP1, nsP2, and nsP3 that restored viral RNA synthesis were identified. An nsP2 change from M282 to L and an nsP3 change from H99 to N corrected the D41A-induced defect in subgenomic RNA synthesis. Three changes in nsP1, I351 to V, I388 to V, or the previously identified change, N374 to H (C. L. Fata, S. G. Sawicki, and D. L. Sawicki, J. Virol. 76:8641-8649, 2002), suppressed the minus-strand synthetic defect. A direct reversion back to G at position 8 reduced the RNA synthesis defect of the GPG((8-10))VAV virus. These results imply that nsP4's amino-terminal domain participates in distinct interactions with other nsPs in the context of differentially functioning RNA synthetic complexes, and flexibility in this domain is important for viral RNA synthesis. Additionally, the inability of the mutant viruses to efficiently inhibit host protein synthesis suggests a role for nsP4 in the regulation of host cell gene expression.  相似文献   

11.
Human DDX3 is a DEAD (Asp-Glu-Ala-Asp)-box RNA helicase that appears to be a prime target for viral manipulation. While two viruses that manifest major global health threats, HIV and HCV (hepatitis C virus), utilize DDX3 for their replication, other viruses inhibit DDX3's newly identified function in innate antiviral signalling. This review discusses the role of DDX3 in antiviral immunity and its inhibition or exploitation by different viruses.  相似文献   

12.
NK cells mediate their cytotoxicity against tumor cells through abroad array of cytotoxic and cytostatic proteins. We investigated whether specific proteins could also be identified that contributed to NK cell-mediated antiviral immunity. Human CD16+/CD3- NK cells were obtained by using FACS and subsequently cloned by using limiting dilution. These NK cell lines, which were cytotoxic against NK-sensitive tumor targets and virally infected cells, also generated supernatants that selectively killed vesicular stomatitis virus-infected cells while sparing noninfected cells. This soluble antiviral activity was completely neutralized by antibodies specific for TNF and lymphotoxin. Purified human rTNF also duplicated this specific cytotoxicity against vesicular stomatitis virus-infected cells, as well as against CMV-, Theiler's murine encephalomyelitis virus-, and HSV-infected cells. The degree of cytotoxicity varied for the different viruses and depended on the cell type infected. These results suggest that NK cells can mediate selective and direct cytotoxicity against virally infected cells by the secretion of TNF and lymphotoxin.  相似文献   

13.
Chickens and quails were immunized in parallel either i.v. or intramuscularly (i.m.) with lectin column-purified antigens from chick embryo cells that were transformed in vitro by avain sarcoma virus (ASV). After five to six injections, immunity of the animals was tested by challenge with ASV into the wing webs. Whereas tumor growth was inhibited after i.v. immunization with respect to incidence rate and time of tumor appearance, tumor growth was enhanced after i.m. injection. Animals that were injected with normal cell antigens served as controls. Spleen cells from only those animals that were immunized i.v. exerted a cytotoxic effect in vitro against ASV-transformed cells, whereas spleen cells from i.m. injected animals, in contrast, suppressed such cytotoxicity. The search for serum blocking or arming factors suggested that sera from i.m. injected animals block cellular cytotoxicity whereas sera from i.v. immunized animals render normal spleen cells cytotoxic (arming effect). The use of viruses from different subgroups and of antigens from gp85-lacking ASV-transformed cells indicates that immune effects were obtained against tumor cell surface antigens that differ from the antigen that is involved in virus neutralization (s-gp85).  相似文献   

14.
For viruses that establish persistent infection, continuous immunosurveillance by effector-competent antiviral CD8(+) T cells is likely essential for limiting viral replication. Although it is well documented that virus-specific memory CD8(+) T cells synthesize cytokines after short term in vitro stimulation, there is limited evidence that these T cells exhibit cytotoxicity, the dominant antiviral effector function. Here, we show that antiviral CD8(+) T cells in mice acutely infected by polyoma virus, a persistent mouse pathogen, specifically eliminate viral peptide-pulsed donor spleen cells within minutes after adoptive transfer and do so via a perforin-dependent mechanism. Antiviral memory CD8(+) T cells were similarly capable of rapidly mobilizing potent Ag-specific cytotoxic activity in vivo. These findings strongly support the concept that a cytotoxic effector-memory CD8(+) T cell population operates in vivo to control this persistent viral infection.  相似文献   

15.
Antigen-specific T cells demonstrate several potent effector functions during immune responses. Direct killing of infected cells is crucial for clearing viruses and other intracellular pathogens, but it has been difficult to measure the frequency of cytolytic cells. We have now developed a single-cell assay to measure the number of cytotoxic cells in a population, using a herpes simplex virus amplicon vector to express Escherichia coli beta-galactosidase in mouse or human target cells, and an Elispot to detect release of beta-galactosidase from killed target cells. This antigen-specific, perforin-dependent Lysispot assay has been combined with a cytokine Elispot in a two-color assay to confirm that cytotoxicity and interferon-gamma secretion are regulated independently. The simultaneous enumeration of cytokine-secreting and cytotoxic cells should be invaluable for ex vivo analysis of immune responses during infection and autoimmunity.  相似文献   

16.
Multiple sialic acid (SA) residues conjugated to a linear polyacrylamide backbone are more effective than monomeric SA at inhibiting influenza-induced agglutination of red blood cells. However, "polymeric inhibitors" based on polyacrylamide backbones are cytotoxic. Dendritic polymers offer a nontoxic alternative to polyacrylamide and may provide a variety of potential synthetic inhibitors of influenza virus adhesion due to the wide range of available polymer structures. We evaluated several dendritic polymeric inhibitors, including spheroidal, linear, linear-dendron copolymers, comb-branched, and dendrigraft polymers, for the ability to inhibit virus hemagglutination (HA) and to block infection of mammalian cells in vitro. Four viruses were tested: influenza A H2N2 (selectively propagated two ways), X-31 influenza A H3N2, and sendai. The most potent of the linear and spheroidal inhibitors were 32-256-fold more effective than monomeric SA at inhibiting HA by the H2N2 influenza virus. Linear-dendron copolymers were 1025-8200-fold more effective against H2N2 influenza, X-31 influenza, and sendai viruses. The most effective were the comb-branched and dendrigraft inhibitors, which showed up to 50000-fold increased activity against these viruses. We were able to demonstrate significant (p < 0.001) dose-dependent reduction of influenza infection in mammalian cells by polymeric inhibitors, the first such demonstration for multivalent SA inhibitors. Effective dendrimer polymers were not cytotoxic to mammalian cells at therapeutic levels. Of additional interest, variation in the inhibitory effect was observed with different viruses, suggesting possible differences due to specific growth conditions of virus. SA-conjugated dendritic polymers may provide a new therapeutic modality for viruses that employ SA as their target receptor.  相似文献   

17.
1911年Peyton Rous发现禽肉瘤病毒,从而建立了肿瘤病毒学这一学科领域。20世纪30年代,Richard发现哺乳动物肿瘤病毒,60年代发现第一个人类肿瘤病毒--EB病毒,随后相继鉴定出乙型肝炎病毒(HBV)和乳头状瘤病毒(HPV)。肿瘤病毒的深入研究带动了癌基因概念的确立和抑癌基因功能的发现,促进癌症疫苗的研究,后者可以抑制病毒的传染性并降低肿瘤的发病率。20世纪80-90年代发现了人T细胞白血病Ⅰ型病毒(HTLV-1),丙型肝炎病毒(HVC)及卡波西肉瘤病毒(KSHV)。目前已知6种病毒(EBV、HBV、HPV、HTLV-1、HCV、KSHV)引起世界范围10%-15%的癌症,因此,病毒不仅是许多人类癌症的病原体,还可以作为揭示人类恶性肿瘤发病机制的研究工具。  相似文献   

18.
Peritoneal exudate cells from mice infected with ectromelia virus were cytotoxic for virus-infected target cells as measured in a 51Cr release assay. Cytotoxic activity seemed to be T cell-dependent as it was largely abolished by treatment with anti-theta serum and complement but was not impaired by macrophage depletion. The kinetics of development of cytotoxicity in the peritoneal cavity lagged behind spleen cytotoxicity by 1-2 days. Peak activity in peritoneal cells was present about 6 days after intravenous infection with virus. These studies suggest that macrophages present in the free peritoneal cell populations of ectromelia-infected mice are not cytotoxic for virus-infected target cells. The effect of macrophages in virus clearance is therefore likely to be due to phagocytic rather than cytotoxic effects.  相似文献   

19.
T cell immune responses in syngeneic WKA/H rats were analyzed by using lymphoid cell lines, TARS-1, TART-1, and TARL-2, infected with human T-lymphotropic virus type 1 (HTLV-1). Spleen cells of rats in which these cell lines had been rejected were sensitized in vitro with the same cell lines, and cells cytotoxic to these HTLV-1+ cell lines, and cells cytotoxic to these HTLV-1+ cell lines were generated. The effector cells were CTL of the CD5+ CD8+ phenotype and showed restriction of MHC class I Ag. Direct tests as well as cold target cell inhibition tests with an array of cell populations showed that these CTL reacted only with syngeneic HTLV-1+ cell lines. When xenogeneic HTLV-1+ cell lines were similarly utilized for in vitro sensitization, rat CTL specific for syngeneic HTLV-1+ cells were generated. They were not, however, reactive with xenogeneic HTLV-1+ cells used for sensitization. Syngeneic rat cells selectively expressing gag, env, or pX gene coded Ag were prepared by infection of recombinant vaccinia viruses. In cold target cell inhibition tests of anti-HTLV-1 CTL with thus prepared cells, cytotoxicity against the syngeneic HTLV-1+ cells line, TARS-1, was inhibited by syngeneic cells expressing gag gene or env gene coded Ag. Inhibition was, however, more consistent and more dominant by cells with gag gene than those with env gene. Syngeneic cells with pX gene and MHC class I incompatible cells with gag, env, or pX gene did not inhibit cytotoxicity.  相似文献   

20.
Influenza viruses are a major public health threat worldwide, and options for antiviral therapy are limited by the emergence of drug-resistant virus strains. The influenza virus glycoprotein hemagglutinin (HA) plays critical roles in the early stage of virus infection, including receptor binding and membrane fusion, making it a potential target for the development of anti-influenza drugs. Using pseudotype virus-based high-throughput screens, we have identified several new small molecules capable of inhibiting influenza virus entry. We prioritized two novel inhibitors, MBX2329 and MBX2546, with aminoalkyl phenol ether and sulfonamide scaffolds, respectively, that specifically inhibit HA-mediated viral entry. The two compounds (i) are potent (50% inhibitory concentration [IC50] of 0.3 to 5.9 μM); (ii) are selective (50% cytotoxicity concentration [CC50] of >100 μM), with selectivity index (SI) values of >20 to 200 for different influenza virus strains; (iii) inhibit a wide spectrum of influenza A viruses, which includes the 2009 pandemic influenza virus A/H1N1/2009, highly pathogenic avian influenza (HPAI) virus A/H5N1, and oseltamivir-resistant A/H1N1 strains; (iv) exhibit large volumes of synergy with oseltamivir (36 and 331 μM2 % at 95% confidence); and (v) have chemically tractable structures. Mechanism-of-action studies suggest that both MBX2329 and MBX2546 bind to HA in a nonoverlapping manner. Additional results from HA-mediated hemolysis of chicken red blood cells (cRBCs), competition assays with monoclonal antibody (MAb) C179, and mutational analysis suggest that the compounds bind in the stem region of the HA trimer and inhibit HA-mediated fusion. Therefore, MBX2329 and MBX2546 represent new starting points for chemical optimization and have the potential to provide valuable future therapeutic options and research tools to study the HA-mediated entry process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号