共查询到20条相似文献,搜索用时 8 毫秒
1.
Blanc V Henderson JO Kennedy S Davidson NO 《The Journal of biological chemistry》2001,276(49):46386-46393
C to U editing of apolipoprotein B (apoB) RNA requires a multicomponent holoenzyme complex in which minimal constituents include apobec-1 and apobec-1 complementation factor (ACF). We have examined the predicted functional domains in ACF in binding apoB RNA, interaction with apobec-1, and complementation of RNA editing. We demonstrate that apoB RNA binding and apobec-1-interacting domains are defined by two partially overlapping regions containing the NH(2)-terminal RNA recognition motifs of ACF. Both apoB RNA binding and apobec-1 interaction are required for editing complementation activity. ACF is a nuclear protein that upon cotransfection with apobec-1 results in nuclear colocalization and redistribution of apobec-1 from the cytoplasm. ACF constructs with deletions or mutations in the putative nuclear localization signal (NLS) still localize in the nucleus of transfected cells but do not colocalize with apobec-1, the latter remaining predominantly cytoplasmic. These observations suggest that the putative NLS motif in ACF is not responsible for its nucleo-cytoplasmic trafficking. By contrast, protein-protein interaction is important for the nuclear import of apobec-1. Taken together, these data suggest that functional complementation of C to U RNA editing by apobec-1 involves the NH(2)-terminal 380 residues of ACF. 相似文献
2.
Anant S Henderson JO Mukhopadhyay D Navaratnam N Kennedy S Min J Davidson NO 《The Journal of biological chemistry》2001,276(50):47338-47351
Mammalian apolipoprotein B (apoB) mRNA editing is mediated by a multicomponent holoenzyme containing apobec-1 and ACF. We have now identified CUGBP2, a 54-kDa RNA-binding protein, as a component of this holoenzyme. CUGBP2 and ACF co-fractionate in bovine liver S-100 extracts, and addition of recombinant apobec-1 leads to assembly of a holoenzyme. Immunodepletion of CUGBP2 co-precipitates ACF, and these proteins co-localize the nucleus of transfected cells, suggesting that CUGBP2 and ACF are bound in vivo. CUGBP2 binds apoB RNA, specifically an AU-rich sequence located immediately upstream of the edited cytidine. ApoB RNA from McA cells, bound to CUGBP2, was more extensively edited than the unbound fraction. However, addition of recombinant CUGBP2 to a reconstituted system demonstrated a dose-dependent inhibition of C to U RNA editing, which was rescued with either apobec-1 or ACF. Antisense CUGBP2 knockout increased endogenous apoB RNA editing, whereas antisense knockout of either apobec-1 or ACF expression eliminated apoB RNA editing, establishing the absolute requirement of these components of the core enzyme. These data suggest that CUGBP2 plays a role in apoB mRNA editing by forming a regulatory complex with the three components of the minimal editing enzyme, apobec-1, ACF, and apoB RNA. 相似文献
3.
Blanc V Navaratnam N Henderson JO Anant S Kennedy S Jarmuz A Scott J Davidson NO 《The Journal of biological chemistry》2001,276(13):10272-10283
C to U editing of apolipoprotein B (apoB) mRNA involves the interaction of a multicomponent editing enzyme complex with a requisite RNA sequence embedded within an AU-rich context. This enzyme complex includes apobec-1, an RNA-specific cytidine deaminase, and apobec-1 complementation factor (ACF), a novel 65-kDa RNA-binding protein, that together represent the minimal core of the editing enzyme complex. The precise composition of the holo-enzyme, however, remains unknown. We have previously isolated an enriched fraction of S100 extracts, prepared from chicken intestinal cells, that displays apoB RNA binding and which, following supplementation with apobec-1, permits efficient C to U editing. Peptide sequencing of this most active fraction reveals the presence of ACF as well as GRY-RBP, an RNA-binding protein with approximately 50% homology to ACF. GRY-RBP was independently isolated from a two-hybrid screen of chicken intestinal cDNA. GRY-RBP binds to ACF, to apobec-1, and also binds apoB RNA. Experiments using recombinant proteins demonstrate that GRY-RBP binds to ACF and inhibits both the binding of ACF to apoB RNA and C to U RNA editing. This competitive inhibition is rescued by addition of ACF, suggesting that GRY-RBP binds to and sequesters ACF. As further evidence of the role of GRY-RBP, rat hepatoma cells treated with an antisense oligonucleotide to GRY-RBP demonstrated an increase in C to U editing of endogenous apoB RNA. ACF and GRY-RBP colocalize in the nucleus of transfected cells and, in cotransfection experiments with apobec-1, each appears to colocalize in a predominantly nuclear distribution. Taken together, the results indicate that GRY-RBP is a member of the ACF gene family that may function to modulate C to U RNA editing through binding either to ACF or to apobec-1 or, alternatively, to the target RNA itself. 相似文献
4.
Molecular cloning of apobec-1 complementation factor, a novel RNA-binding protein involved in the editing of apolipoprotein B mRNA 总被引:13,自引:0,他引:13 下载免费PDF全文
The C-to-U editing of apolipoprotein B (apo-B) mRNA is catalyzed by a multiprotein complex that recognizes an 11-nucleotide mooring sequence downstream of the editing site. The catalytic subunit of the editing enzyme, apobec-1, has cytidine deaminase activity but requires additional unidentified proteins to edit apo-B mRNA. We purified a 65-kDa protein that functionally complements apobec-1 and obtained peptide sequence information which was used in molecular cloning experiments. The apobec-1 complementation factor (ACF) cDNA encodes a novel 64.3-kDa protein that contains three nonidentical RNA recognition motifs. ACF and apobec-1 comprise the minimal protein requirements for apo-B mRNA editing in vitro. By UV cross-linking and immunoprecipitation, we show that ACF binds to apo-B mRNA in vitro and in vivo. Cross-linking of ACF is not competed by RNAs with mutations in the mooring sequence. Coimmunoprecipitation experiments identified an ACF-apobec-1 complex in transfected cells. Immunodepletion of ACF from rat liver extracts abolished editing activity. The immunoprecipitated complexes contained a functional holoenzyme. Our results support a model of the editing enzyme in which ACF binds to the mooring sequence in apo-B mRNA and docks apobec-1 to deaminate its target cytidine. The fact that ACF is widely expressed in human tissues that lack apobec-1 and apo-B mRNA suggests that ACF may be involved in other RNA editing or RNA processing events. 相似文献
5.
6.
Metabolic regulation of apoB mRNA editing is associated with phosphorylation of APOBEC-1 complementation factor 总被引:1,自引:1,他引:1
Apolipoprotein B (apoB) mRNA editing is a nuclear event that minimally requires the RNA substrate, APOBEC-1 and APOBEC-1 Complementation Factor (ACF). The co-localization of these macro-molecules within the nucleus and the modulation of hepatic apoB mRNA editing activity have been described following a variety of metabolic perturbations, but the mechanism that regulates editosome assembly is unknown. APOBEC-1 was effectively co-immunoprecipitated with ACF from nuclear, but not cytoplasmic extracts. Moreover, alkaline phosphatase treatment of nuclear extracts reduced the amount of APOBEC-1 co-immunoprecipitated with ACF and inhibited in vitro editing activity. Ethanol stimulated apoB mRNA editing was associated with a 2- to 3-fold increase in ACF phosphorylation relative to that in control primary hepatocytes. Significantly, phosphorylated ACF was restricted to nuclear extracts where it co-sedimented with 27S editing competent complexes. Two-dimensional phosphoamino acid analysis of ACF immunopurified from hepatocyte nuclear extracts demonstrated phosphorylation of serine residues that was increased by ethanol treatment. Inhibition of protein phosphatase I, but not PPIIA or IIB, stimulated apoB mRNA editing activity coincident with enhanced ACF phosphorylation in vivo. These data demonstrate that ACF is a metabolically regulated phosphoprotein and suggest that this post-translational modification increases hepatic apoB mRNA editing activity by enhancing ACF nuclear localization/retention, facilitating the interaction of ACF with APOBEC-1 and thereby increasing the probability of editosome assembly and activity. 相似文献
7.
Lau PP Villanueva H Kobayashi K Nakamuta M Chang BH Chan L 《The Journal of biological chemistry》2001,276(49):46445-46452
Mammalian homologues of DnaJ proteins, also known as Hsp40 proteins, are co-chaperonins that complement Hsp70 chaperone function. Using the yeast two-hybrid system, we cloned an apolipoprotein (apo) B mRNA editing complementation protein, called apobec-1-binding protein-2 (ABBP-2), and found that it is a Class II DnaJ homologue. ABBP-2 binds to apobec-1, the mammalian apoB mRNA editase, via its J domain and neighboring G/F domain. It is a ubiquitously expressed protein, and, by transfection analysis of GFP-ABBP-2, we found that the protein is located in both the nucleus and cytosol of transfected cells, with predominance in the nucleus. Down-regulation of ABBP-2 expression in cultured cells inhibits endogenous apobec-1-mediated apoB mRNA editing. Like other Hsp40 proteins, ABBP-2 binds to Hsp70 and has ATPase-stimulating activity. Apobec-1-mediated apoB mRNA editing activity of in vitro tissue extracts requires the presence of Hsp70/ABBP-2. Although exogenously added ATP is not required for editing activity, removal of the endogenous ATP present in these extracts, which disrupts ABBP-2-Hsp70 interaction, completely inhibits editing. ABBP-2 differs from previously described auxiliary proteins (ABBP-1, ACF, and GRY-RBP) in that it does not contain any RNA recognition motifs. Not only is ABBP-2 required for efficient apoB mRNA editing, this newly discovered apobec-1-binding protein may help determine the subcellular distribution and trafficking of apobec-1 via its interaction with the chaperonin Hsp70. 相似文献
8.
Tian N Yang Y Sachsenmaier N Muggenhumer D Bi J Waldsich C Jantsch MF Jin Y 《Nucleic acids research》2011,39(13):5669-5681
RNA editing by adenosine deaminases acting on RNAs (ADARs) can be both specific and non-specific, depending on the substrate. Specific editing of particular adenosines may depend on the overall sequence and structural context. However, the detailed mechanisms underlying these preferences are not fully understood. Here, we show that duplex structures mimicking an editing site in the Gabra3 pre-mRNA unexpectedly fail to support RNA editing at the Gabra3 I/M site, although phylogenetic analysis suggest an evolutionarily conserved duplex structure essential for efficient RNA editing. These unusual results led us to revisit the structural requirement for this editing by mutagenesis analysis. In vivo nuclear injection experiments of mutated editing substrates demonstrate that a non-conserved structure is a determinant for editing. This structure contains bulges either on the same or the strand opposing the edited adenosine. The position of these bulges and the distance to the edited base regulate editing. Moreover, elevated folding temperature can lead to a switch in RNA editing suggesting an RNA structural change. Our results indicate the importance of RNA tertiary structure in determining RNA editing. 相似文献
9.
10.
11.
12.
Andrew B. Gipson Maureen R. Hanson Stphane Bentolila 《The Plant journal : for cell and molecular biology》2022,109(1):215-226
In the chloroplast, organelle zinc finger 1 (OZ1) is a RanBP2-type zinc finger (Znf) protein required for many RNA editing events, a process by which specific cytosines are enzymatically converted to uracils as a correction mechanism for missense mutations in the organelle genomes. RNA editing is carried out by a large multi-protein complex called the ‘editosome’ that contains members of the pentatricopeptide repeat (PPR) protein family, the RNA editing factor interacting protein (also known as MORF) family and the organelle RNA-recognition motif (ORRM) family, in addition to OZ1. OZ1 is an 82-kDa protein with distinct domains, including a pair of Znf domains and a unique C-terminal region. To elucidate the functions of these domains, we have generated truncations of OZ1 for use in protein–protein interaction assays that identified the C-terminal region of OZ1, as well as the Znf domains as the primary interactors with PPR proteins, which are factors required for site-specificity and enzymatic editing. Expression of these OZ1 truncations in vivo showed that the Znf domains were required to restore chloroplast RNA editing in oz1 knockout plants. Mutation of key structural residues in the Znf domains showed that they are necessary for editing and required for interaction with ORRM1, a general editing factor with an RNA-binding domain. These functional characterizations of the Znfs and novel C-terminal domain contribute to our understanding of the model for the chloroplast plant editosome. 相似文献
13.
RBM5 is a known putative tumor suppressor gene that has been shown to function in cell growth inhibition by modulating apoptosis. RBM5 also plays a critical role in alternative splicing as an RNA binding protein. However, it is still unclear which domains of RBM5 are required for RNA binding and related functional activities. We hypothesized the two putative RNA recognition motif (RRM) domains of RBM5 spanning from amino acids 98–178 and 231–315 are essential for RBM5-mediated cell growth inhibition, apoptosis regulation, and RNA binding. To investigate this hypothesis, we evaluated the activities of the wide-type and mutant RBM5 gene transfer in low-RBM5 expressing A549 cells. We found that, unlike wild-type RBM5 (RBM5-wt), a RBM5 mutant lacking the two RRM domains (RBM5-ΔRRM), is unable to bind RNA, has compromised caspase-2 alternative splicing activity, lacks cell proliferation inhibition and apoptosis induction function in A549 cells. These data provide direct evidence that the two RRM domains of RBM5 are required for RNA binding and the RNA binding activity of RBM5 contributes to its function on apoptosis induction and cell growth inhibition. 相似文献
14.
ETR-3 and CELF4 protein domains required for RNA binding and splicing activity in vivo 总被引:1,自引:0,他引:1 下载免费PDF全文
Members of the CUG-BP and ETR-3 like factor (CELF) protein family bind within conserved intronic elements (called MSEs) flanking the cardiac troponin T (cTNT) alternative exon 5 and promote exon inclusion in vivo and in vitro. Here we use a comparative deletion analysis of two family members (ETR-3 and CELF4) to identify separate domains required for RNA binding and splicing activity in vivo. CELF proteins contain two adjacent RNA binding domains (RRM1 and RRM2) near the N-terminus and one RRM (RRM3) near the C-terminus, which are separated by a 160–230 residue divergent domain of unknown function. Either RRM1 or RRM2 of CELF4 are necessary and sufficient for binding MSE RNA and RRM2 plus an additional 66 amino acids of the divergent domain are as effective as full-length protein in activating MSE-dependent splicing in vivo. Non-overlapping N- and C-terminal regions of ETR-3 containing either RRM1 and RRM2 or RRM3 plus segments of the adjacent divergent domain activate MSE-dependent exon inclusion demonstrating an unusual functional redundancy of the N- and C-termini of the protein. These results identify specific regions of ETR-3 and CELF4 that are likely targets of protein–protein interactions required for splicing activation. 相似文献
15.
Identification of GBF1 as a cellular factor required for hepatitis E virus RNA replication 下载免费PDF全文
Rayan Farhat Maliki Ankavay Nadjet Lebsir Jérôme Gouttenoire Catherine L. Jackson Czeslaw Wychowski Darius Moradpour Jean Dubuisson Yves Rouillé Laurence Cocquerel 《Cellular microbiology》2018,20(1)
The hepatitis E virus (HEV) genome is a single‐stranded, positive‐sense RNA that encodes three proteins including the ORF1 replicase. Mechanisms of HEV replication in host cells are unclear, and only a few cellular factors involved in this step have been identified so far. Here, we used brefeldin A (BFA) that blocks the activity of the cellular Arf guanine nucleotide exchange factors GBF1, BIG1, and BIG2, which play a major role in reshuffling of cellular membranes. We showed that BFA inhibits HEV replication in a dose‐dependent manner. The use of siRNA and Golgicide A identified GBF1 as a host factor critically involved in HEV replication. Experiments using cells expressing a mutation in the catalytic domain of GBF1 and overexpression of wild type GBF1 or a BFA‐resistant GBF1 mutant rescuing HEV replication in BFA‐treated cells, confirmed that GBF1 is the only BFA‐sensitive factor required for HEV replication. We demonstrated that GBF1 is likely required for the activity of HEV replication complexes. However, GBF1 does not colocalise with the ORF1 protein, and its subcellular distribution is unmodified upon infection or overexpression of viral proteins, indicating that GBF1 is likely not recruited to replication sites. Together, our results suggest that HEV replication involves GBF1‐regulated mechanisms. 相似文献
16.
17.
Most mitochondrial mRNAs are edited in Trypano soma brucei by a series of steps that are catalyzed by a multienzyme complex that is in its initial stages of characterization. RNA interference (RNAi)-mediated repression of the expression of TbMP81, a zinc finger protein component of the complex, inhibited growth of bloodstream and insect forms, and blocked in vivo RNA editing. This repression preferentially inhibited insertion editing compared with deletion editing in vitro. It resulted in reduced specific endoribonucleolytic cleavage and a greater reduction of U addition and associated RNA ligation activities than U removal and associated RNA ligation activities. The repressed cells retained 20S editing complexes with several demonstrable proteins and adenylatable TbMP52 RNA ligase, but adenlyatable TbMP48 was not detected. Elimination of TbMP48 by RNAi repression did not inhibit cell growth or in vivo editing in either bloodstream or procyclic forms. These results indicate that TbMP81 is required for RNA editing and suggest that the editing complex is functionally partitioned. 相似文献
18.
ARCD-1, an apobec-1-related cytidine deaminase, exerts a dominant negative effect on C to U RNA editing 总被引:3,自引:0,他引:3
Anant Shrikant; Mukhopadhyay Debnath; Sankaranand Vakadappu; Kennedy Susan; Henderson Jeffrey O.; Davidson Nicholas O. 《American journal of physiology. Cell physiology》2001,281(6):C1904
Mammalian apolipoproteinB (apoB) C to U RNA editing is catalyzed by a multicomponent holoenzymecontaining a single catalytic subunit, apobec-1. We have characterizedan apobec-1 homologue, ARCD-1, located on chromosome 6p21.1, anddetermined its role in apoB mRNA editing. ARCD-1 mRNA is ubiquitouslyexpressed; phylogenetic analysis reveals it to be a distant member ofthe RNA editing family. Recombinant ARCD-1 demonstrates cytidinedeaminase and apoB RNA binding activity but does not catalyze C to URNA editing, either in vitro or in vivo. Although not competent itselfto mediate deamination of apoB mRNA, ARCD-1 inhibits apobec-1-mediatedC to U RNA editing. ARCD-1 interacts and heterodimerizes with both apobec-1 and apobec-1 complementation factor (ACF) and localizes toboth the nucleus and cytoplasm of transfected cells. Together, the datasuggest that ARCD-1 is a novel cytidine deaminase that interacts withapobec-1 and ACF to inhibit apoB mRNA editing, possibly throughinteraction with other protein components of the apoB RNA editing holoenzyme. 相似文献
19.
K Stuart 《Trends in biochemical sciences》1991,16(2):68-72
The editing of mRNA coding sequences by the modification, removal or addition of nucleotides has recently been recognized as another form of RNA processing. Studies of the extensive editing of mitochondrial mRNAs in trypanosomatids have revealed the involvement of small guide RNAs (gRNAs) which are encoded by the minicircles of kinetoplast DNA. 相似文献
20.
《Biochimica et Biophysica Acta (BBA)/General Subjects》2020,1864(11):129678
BackgroundThe guanine-rich RNA sequence binding factor 1 (GRSF1) is an RNA-binding protein of the hnRNP H/F family, which has been implicated in erythropoiesis, regulation of the redox homeostasis, embryonic brain development, mitochondrial function and cellular senescence. The molecular basis for GRSF1-RNA interaction has extensively been studied in the past but for the time being GRSF1 binding proteins have not been identified.MethodsTo search for GRSF1 binding proteins we first employed the yeast two-hybrid system and screened a cDNA library of human fetal brain for potential GRSF1 binding proteins. Subsequently, we explored the protein-protein-interaction of the recombiant proteins, carried out immunoprecipitation experiments to confirm the interaction of the native proteins in living cells and performed truncation studies to identify the protein-binding motif of GRSF1.ResultsUsing the yeast two-hybrid system we identified the COMM-domain containing protein 1 (COMMD1) as specific GRSF1 binding protein and in vitro truncation studies suggested that COMMD1 interacts with the alanine-rich domain of GRSF1. Co-immunoprecipitation strategies indicated that COMMD1-GRSF1 interaction was RNA independent and also occurred in living cells expressing the two native proteins.ConclusionIn mammalian cells the COMM-domain containing protein 1 (COMMD1) specifically interacts with the Ala-rich domain of GRSF1 in an RNA-independent manner.General significanceThis is the first report describing a specific GRSF1 binding protein. 相似文献