首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 84 毫秒
1.
People are capable of robust evaluations of their decisions: they are often aware of their mistakes even without explicit feedback, and report levels of confidence in their decisions that correlate with objective performance. These metacognitive abilities help people to avoid making the same mistakes twice, and to avoid overcommitting time or resources to decisions that are based on unreliable evidence. In this review, we consider progress in characterizing the neural and mechanistic basis of these related aspects of metacognition-confidence judgements and error monitoring-and identify crucial points of convergence between methods and theories in the two fields. This convergence suggests that common principles govern metacognitive judgements of confidence and accuracy; in particular, a shared reliance on post-decisional processing within the systems responsible for the initial decision. However, research in both fields has focused rather narrowly on simple, discrete decisions-reflecting the correspondingly restricted focus of current models of the decision process itself-raising doubts about the degree to which discovered principles will scale up to explain metacognitive evaluation of real-world decisions and actions that are fluid, temporally extended, and embedded in the broader context of evolving behavioural goals.  相似文献   

2.
Metacognition is the ability to reflect on, and evaluate, our cognition and behaviour. Distortions in metacognition are common in mental health disorders, though the neural underpinnings of such dysfunction are unknown. One reason for this is that models of key components of metacognition, such as decision confidence, are generally specified at an algorithmic or process level. While such models can be used to relate brain function to psychopathology, they are difficult to map to a neurobiological mechanism. Here, we develop a biologically-plausible model of decision uncertainty in an attempt to bridge this gap. We first relate the model’s uncertainty in perceptual decisions to standard metrics of metacognition, namely mean confidence level (bias) and the accuracy of metacognitive judgments (sensitivity). We show that dissociable shifts in metacognition are associated with isolated disturbances at higher-order levels of a circuit associated with self-monitoring, akin to neuropsychological findings that highlight the detrimental effect of prefrontal brain lesions on metacognitive performance. Notably, we are able to account for empirical confidence judgements by fitting the parameters of our biophysical model to first-order performance data, specifically choice and response times. Lastly, in a reanalysis of existing data we show that self-reported mental health symptoms relate to disturbances in an uncertainty-monitoring component of the network. By bridging a gap between a biologically-plausible model of confidence formation and observed disturbances of metacognition in mental health disorders we provide a first step towards mapping theoretical constructs of metacognition onto dynamical models of decision uncertainty. In doing so, we provide a computational framework for modelling metacognitive performance in settings where access to explicit confidence reports is not possible.  相似文献   

3.
While perceptual learning increases objective sensitivity, the effects on the constant interaction of the process of perception and its metacognitive evaluation have been rarely investigated. Visual perception has been described as a process of probabilistic inference featuring metacognitive evaluations of choice certainty. For visual motion perception in healthy, naive human subjects here we show that perceptual sensitivity and confidence in it increased with training. The metacognitive sensitivity–estimated from certainty ratings by a bias-free signal detection theoretic approach–in contrast, did not. Concomitant 3Hz transcranial alternating current stimulation (tACS) was applied in compliance with previous findings on effective high-low cross-frequency coupling subserving signal detection. While perceptual accuracy and confidence in it improved with training, there were no statistically significant tACS effects. Neither metacognitive sensitivity in distinguishing between their own correct and incorrect stimulus classifications, nor decision confidence itself determined the subjects’ visual perceptual learning. Improvements of objective performance and the metacognitive confidence in it were rather determined by the perceptual sensitivity at the outset of the experiment. Post-decision certainty in visual perceptual learning was neither independent of objective performance, nor requisite for changes in sensitivity, but rather covaried with objective performance. The exact functional role of metacognitive confidence in human visual perception has yet to be determined.  相似文献   

4.
Current dominant views hold that perceptual confidence reflects the probability that a decision is correct. Although these views have enjoyed some empirical support, recent behavioral results indicate that confidence and the probability of being correct can be dissociated. An alternative hypothesis suggests that confidence instead reflects the magnitude of evidence in favor of a decision while being relatively insensitive to the evidence opposing the decision. We considered how this alternative hypothesis might be biologically instantiated by developing a simple neural network model incorporating a known property of sensory neurons: tuned inhibition. The key idea of the model is that the level of inhibition that each accumulator unit receives from units with the opposite tuning preference, i.e. its inhibition ‘tuning’, dictates its contribution to perceptual decisions versus confidence judgments, such that units with higher tuned inhibition (computing relative evidence for different perceptual interpretations) determine perceptual discrimination decisions, and units with lower tuned inhibition (computing absolute evidence) determine confidence. We demonstrate that this biologically plausible model can account for several counterintuitive findings reported in the literature where confidence and decision accuracy dissociate. By comparing model fits, we further demonstrate that a full complement of behavioral data across several previously published experimental results—including accuracy, reaction time, mean confidence, and metacognitive sensitivity—is best accounted for when confidence is computed from units without, rather than units with, tuned inhibition. Finally, we discuss predictions of our results and model for future neurobiological studies. These findings suggest that the brain has developed and implements this alternative, heuristic theory of perceptual confidence computation by relying on the diversity of neural resources available.  相似文献   

5.
Pupil dilation is implicated as a marker of decision-making as well as of cognitive and emotional processes. Here we tested whether individuals can exploit another’s pupil to their advantage. We first recorded the eyes of 3 "opponents", while they were playing a modified version of the "rock-paper-scissors" childhood game. The recorded videos served as stimuli to a second set of participants. These "players" played rock-paper-scissors against the pre-recorded opponents in a variety of conditions. When players just observed the opponents’ eyes without specific instruction their probability of winning was at chance. When informed that the time of maximum pupil dilation was indicative of the opponents’ choice, however, players raised their winning probability significantly above chance. When just watching the reconstructed area of the pupil against a gray background, players achieved similar performance, showing that players indeed exploited the pupil, rather than other facial cues. Since maximum pupil dilation was correct about the opponents’ decision only in 60% of trials (chance 33%), we finally tested whether increasing this validity to 100% would allow spontaneous learning. Indeed, when players were given no information, but the pupil was informative about the opponent’s response in all trials, players performed significantly above chance on average and half (5/10) reached significance at an individual level. Together these results suggest that people can in principle use the pupil to detect cognitive decisions in another individual, but that most people have neither explicit knowledge of the pupil’s utility nor have they learnt to use it despite a lifetime of exposure.  相似文献   

6.
In humans and some other species perceptual decision-making is complemented by the ability to make confidence judgements about the certainty of sensory evidence. While both forms of decision process have been studied empirically, the precise relationship between them remains poorly understood. We performed an experiment that combined a perceptual decision-making task (identifying the category of a faint visual stimulus) with a confidence-judgement task (wagering on the accuracy of each perceptual decision). The visual stimulation paradigm required steady fixation, so we used eye-tracking to control for stray eye movements. Our data analyses revealed an unexpected and counterintuitive interaction between the steadiness of fixation (prior to and during stimulation), perceptual decision making, and post-decision wagering: greater variability in gaze direction during fixation was associated with significantly increased visual-perceptual sensitivity, but significantly decreased reliability of confidence judgements. The latter effect could not be explained by a simple change in overall confidence (i.e. a criterion artifact), but rather was tied to a change in the degree to which high wagers predicted correct decisions (i.e. the sensitivity of the confidence judgement). We found no evidence of a differential change in pupil diameter that could account for the effect and thus our results are consistent with fixational eye movements being the relevant covariate. However, we note that small changes in pupil diameter can sometimes cause artefactual fluctuations in measured gaze direction and this possibility could not be fully ruled out. In either case, our results suggest that perceptual decisions and confidence judgements can be processed independently and point toward a new avenue of research into the relationship between them.  相似文献   

7.
Studies on cognitive effort have shown that pupil dilation is a reliable indicator of memory load. However, it is conceivable that there are other sources of effort involved in memory that also affect pupil dilation. One of these is the ease with which an item can be retrieved from memory. Here, we present the results of an experiment in which we studied the way in which pupil dilation acts as an online marker for memory processing during the retrieval of paired associates while reducing confounds associated with motor responses. Paired associates were categorized into sets containing either 4 or 7 items. After learning the paired associates once, pupil dilation was measured during the presentation of the retrieval cue during four repetitions of each set. Memory strength was operationalized as the number of repetitions (frequency) and set-size, since having more items per set results in a lower average recency. Dilation decreased with increased memory strength, supporting the hypothesis that the amplitude of the evoked pupillary response correlates positively with retrieval effort. Thus, while many studies have shown that “memory load” influences pupil dilation, our results indicate that the task-evoked pupillary response is also sensitive to the experimentally manipulated memory strength of individual items. As these effects were observed well before the response had been given, this study also suggests that pupil dilation can be used to assess an item’s memory strength without requiring an overt response.  相似文献   

8.
Many decisions in life are sequential and constrained by a time window. Although mathematically derived optimal solutions exist, it has been reported that humans often deviate from making optimal choices. Here, we used a secretary problem, a classic example of finite sequential decision-making, and investigated the mechanisms underlying individuals’ suboptimal choices. Across three independent experiments, we found that a dynamic programming model comprising subjective value function explains individuals’ deviations from optimality and predicts the choice behaviors under fewer and more opportunities. We further identified that pupil dilation reflected the levels of decision difficulty and subsequent choices to accept or reject the stimulus at each opportunity. The value sensitivity, a model-based estimate that characterizes each individual’s subjective valuation, correlated with the extent to which individuals’ physiological responses tracked stimuli information. Our results provide model-based and physiological evidence for subjective valuation in finite sequential decision-making, rediscovering human suboptimality in subjectively optimal decision-making processes.  相似文献   

9.
Learning in a stochastic environment consists of estimating a model from a limited amount of noisy data, and is therefore inherently uncertain. However, many classical models reduce the learning process to the updating of parameter estimates and neglect the fact that learning is also frequently accompanied by a variable “feeling of knowing” or confidence. The characteristics and the origin of these subjective confidence estimates thus remain largely unknown. Here we investigate whether, during learning, humans not only infer a model of their environment, but also derive an accurate sense of confidence from their inferences. In our experiment, humans estimated the transition probabilities between two visual or auditory stimuli in a changing environment, and reported their mean estimate and their confidence in this report. To formalize the link between both kinds of estimate and assess their accuracy in comparison to a normative reference, we derive the optimal inference strategy for our task. Our results indicate that subjects accurately track the likelihood that their inferences are correct. Learning and estimating confidence in what has been learned appear to be two intimately related abilities, suggesting that they arise from a single inference process. We show that human performance matches several properties of the optimal probabilistic inference. In particular, subjective confidence is impacted by environmental uncertainty, both at the first level (uncertainty in stimulus occurrence given the inferred stochastic characteristics) and at the second level (uncertainty due to unexpected changes in these stochastic characteristics). Confidence also increases appropriately with the number of observations within stable periods. Our results support the idea that humans possess a quantitative sense of confidence in their inferences about abstract non-sensory parameters of the environment. This ability cannot be reduced to simple heuristics, it seems instead a core property of the learning process.  相似文献   

10.

Background

Adoption of new and underutilized vaccines by national immunization programs is an essential step towards reducing child mortality. Policy decisions to adopt new vaccines in high mortality countries often lag behind decisions in high-income countries. Using the case of Haemophilus influenzae type b (Hib) vaccine, this paper endeavors to explain these delays through the analysis of country-level economic, epidemiological, programmatic and policy-related factors, as well as the role of the Global Alliance for Vaccines and Immunisation (GAVI Alliance).

Methods and Findings

Data for 147 countries from 1990 to 2007 were analyzed in accelerated failure time models to identify factors that are associated with the time to decision to adopt Hib vaccine. In multivariable models that control for Gross National Income, region, and burden of Hib disease, the receipt of GAVI support speeded the time to decision by a factor of 0.37 (95% CI 0.18–0.76), or 63%. The presence of two or more neighboring country adopters accelerated decisions to adopt by a factor of 0.50 (95% CI 0.33–0.75). For each 1% increase in vaccine price, decisions to adopt are delayed by a factor of 1.02 (95% CI 1.00–1.04). Global recommendations and local studies were not associated with time to decision.

Conclusions

This study substantiates previous findings related to vaccine price and presents new evidence to suggest that GAVI eligibility is associated with accelerated decisions to adopt Hib vaccine. The influence of neighboring country decisions was also highly significant, suggesting that approaches to support the adoption of new vaccines should consider supply- and demand-side factors. Please see later in the article for the Editors'' Summary  相似文献   

11.
We successfully manipulated decision confidence in a probabilistic prediction task by means of stress as induced by excessive cognitive demands. In particular, our results indicate that decisions (based on high and low, but not intermediate levels of uncertainty) made under stress (confirmed by skin conductance measures) are associated with increased confidence when outcome probabilities are incompletely known (20% residual uncertainty). A different pattern was found when outcome probabilities were completely known (0% residual uncertainty). Here, stress led to decreased decision confidence when decisions were associated with intermediate levels of uncertainty but had no effect in case of high and low levels of uncertainty. In addition we provide evidence for ambiguity—(understood as implicit-risk) assessment being impaired under stress conditions.  相似文献   

12.
Does knowing when mental arithmetic judgments are right—and when they are wrong—lead to more accurate judgments over time? We hypothesize that the successful detection of errors (and avoidance of false alarms) may contribute to the development of mental arithmetic performance. Insight into error detection abilities can be gained by examining the “calibration” of mental arithmetic judgments—that is, the alignment between confidence in judgments and the accuracy of those judgments. Calibration may be viewed as a measure of metacognitive monitoring ability. We conducted a developmental longitudinal investigation of the relationship between the calibration of children''s mental arithmetic judgments and their performance on a mental arithmetic task. Annually between Grades 5 and 8, children completed a problem verification task in which they rapidly judged the accuracy of arithmetic expressions (e.g., 25+50 = 75) and rated their confidence in each judgment. Results showed that calibration was strongly related to concurrent mental arithmetic performance, that calibration continued to develop even as mental arithmetic accuracy approached ceiling, that poor calibration distinguished children with mathematics learning disability from both low and typically achieving children, and that better calibration in Grade 5 predicted larger gains in mental arithmetic accuracy between Grades 5 and 8. We propose that good calibration supports the implementation of cognitive control, leading to long-term improvement in mental arithmetic accuracy. Because mental arithmetic “fluency” is critical for higher-level mathematics competence, calibration of confidence in mental arithmetic judgments may represent a novel and important developmental predictor of future mathematics performance.  相似文献   

13.
The mismatch negativity (MMN) is an event related potential evoked by violations of regularity. Here, we present a model of the underlying neuronal dynamics based upon the idea that auditory cortex continuously updates a generative model to predict its sensory inputs. The MMN is then modelled as the superposition of the electric fields evoked by neuronal activity reporting prediction errors. The process by which auditory cortex generates predictions and resolves prediction errors was simulated using generalised (Bayesian) filtering – a biologically plausible scheme for probabilistic inference on the hidden states of hierarchical dynamical models. The resulting scheme generates realistic MMN waveforms, explains the qualitative effects of deviant probability and magnitude on the MMN – in terms of latency and amplitude – and makes quantitative predictions about the interactions between deviant probability and magnitude. This work advances a formal understanding of the MMN and – more generally – illustrates the potential for developing computationally informed dynamic causal models of empirical electromagnetic responses.  相似文献   

14.
Decisions are said to be ‘risky’ when they are made in environments with uncertainty caused by nature. By contrast, a decision is said to be ‘trusting’ when its outcome depends on the uncertain decisions of another person. A rapidly expanding literature reveals economically important differences between risky and trusting decisions, and further suggests these differences are due to ‘betrayal aversion’. While its neural foundations have not been previously illuminated, the prevailing hypothesis is that betrayal aversion stems from a desire to avoid negative emotions that arise from learning one''s trust was betrayed. Here, we provide evidence from an fMRI study that supports this hypothesis. In particular, our data indicate that the anterior insula modulates trusting decisions that involve the possibility of betrayal.  相似文献   

15.
ObjectivesUnderstanding the preferences of patients with multiple sclerosis (MS) for disease-modifying drugs and involving these patients in clinical decision making can improve the concordance between medical decisions and patient values and may, subsequently, improve adherence to disease-modifying drugs. This study aims first to identify which characteristics–or attributes–of disease-modifying drugs influence patients´ decisions about these treatments and second to quantify the attributes’ relative importance among patients.MethodsFirst, three focus groups of relapsing-remitting MS patients were formed to compile a preliminary list of attributes using a nominal group technique. Based on this qualitative research, a survey with several choice tasks (best-worst scaling) was developed to prioritize attributes, asking a larger patient group to choose the most and least important attributes. The attributes’ mean relative importance scores (RIS) were calculated.ResultsNineteen patients reported 34 attributes during the focus groups and 185 patients evaluated the importance of the attributes in the survey. The effect on disease progression received the highest RIS (RIS = 9.64, 95% confidence interval: [9.48–9.81]), followed by quality of life (RIS = 9.21 [9.00–9.42]), relapse rate (RIS = 7.76 [7.39–8.13]), severity of side effects (RIS = 7.63 [7.33–7.94]) and relapse severity (RIS = 7.39 [7.06–7.73]). Subgroup analyses showed heterogeneity in preference of patients. For example, side effect-related attributes were statistically more important for patients who had no experience in using disease-modifying drugs compared to experienced patients (p < .001).ConclusionsThis study shows that, on average, patients valued effectiveness and unwanted effects as most important. Clinicians should be aware of the average preferences but also that attributes of disease-modifying drugs are valued differently by different patients. Person-centred clinical decision making would be needed and requires eliciting individual preferences.  相似文献   

16.
Decision making between several alternatives is thought to involve the gradual accumulation of evidence in favor of each available choice. This process is profoundly variable even for nominally identical stimuli, yet the neuro-cognitive substrates that determine the magnitude of this variability are poorly understood. Here, we demonstrate that arousal state is a powerful determinant of variability in perceptual decision making. We measured pupil size, a highly sensitive index of arousal, while human subjects performed a motion-discrimination task, and decomposed task behavior into latent decision making parameters using an established computational model of the decision process. In direct contrast to previous theoretical accounts specifying a role for arousal in several discrete aspects of decision making, we found that pupil diameter was uniquely related to a model parameter representing variability in the rate of decision evidence accumulation: Periods of increased pupil size, reflecting heightened arousal, were characterized by greater variability in accumulation rate. Pupil diameter also correlated trial-by-trial with specific patterns of behavior that collectively are diagnostic of changing accumulation rate variability, and explained substantial individual differences in this computational quantity. These findings provide a uniquely clear account of how arousal state impacts decision making, and may point to a relationship between pupil-linked neuromodulation and behavioral variability. They also pave the way for future studies aimed at augmenting the precision with which people make decisions.  相似文献   

17.
Individuals in groups, whether composed of humans or other animal species, often make important decisions collectively, including avoiding predators, selecting a direction in which to migrate and electing political leaders. Theoretical and empirical work suggests that collective decisions can be more accurate than individual decisions, a phenomenon known as the ‘wisdom of crowds’. In these previous studies, it has been assumed that individuals make independent estimates based on a single environmental cue. In the real world, however, most cues exhibit some spatial and temporal correlation, and consequently, the sensory information that near neighbours detect will also be, to some degree, correlated. Furthermore, it may be rare for an environment to contain only a single informative cue, with multiple cues being the norm. We demonstrate, using two simple models, that taking this natural complexity into account considerably alters the relationship between group size and decision-making accuracy. In only a minority of environments do we observe the typical wisdom of crowds phenomenon (whereby collective accuracy increases monotonically with group size). When the wisdom of crowds is not observed, we find that a finite, and often small, group size maximizes decision accuracy. We reveal that, counterintuitively, it is the noise inherent in these small groups that enhances their accuracy, allowing individuals in such groups to avoid the detrimental effects of correlated information while exploiting the benefits of collective decision-making. Our results demonstrate that the conventional view of the wisdom of crowds may not be informative in complex and realistic environments, and that being in small groups can maximize decision accuracy across many contexts.  相似文献   

18.
19.
A combination of signals across modalities can facilitate sensory perception. The audiovisual facilitative effect strongly depends on the features of the stimulus. Here, we investigated how sound frequency, which is one of basic features of an auditory signal, modulates audiovisual integration. In this study, the task of the participant was to respond to a visual target stimulus by pressing a key while ignoring auditory stimuli, comprising of tones of different frequencies (0.5, 1, 2.5 and 5 kHz). A significant facilitation of reaction times was obtained following audiovisual stimulation, irrespective of whether the task-irrelevant sounds were low or high frequency. Using event-related potential (ERP), audiovisual integration was found over the occipital area for 0.5 kHz auditory stimuli from 190–210 ms, for 1 kHz stimuli from 170–200 ms, for 2.5 kHz stimuli from 140–200 ms, 5 kHz stimuli from 100–200 ms. These findings suggest that a higher frequency sound signal paired with visual stimuli might be early processed or integrated despite the auditory stimuli being task-irrelevant information. Furthermore, audiovisual integration in late latency (300–340 ms) ERPs with fronto-central topography was found for auditory stimuli of lower frequencies (0.5, 1 and 2.5 kHz). Our results confirmed that audiovisual integration is affected by the frequency of an auditory stimulus. Taken together, the neurophysiological results provide unique insight into how the brain processes a multisensory visual signal and auditory stimuli of different frequencies.  相似文献   

20.
The literature has been relatively silent about post-conflict processes. However, understanding the way humans deal with post-conflict situations is a challenge in our societies. With this in mind, we focus the present study on the rationality of cooperative decision making after an intergroup conflict, i.e., the extent to which groups take advantage of post-conflict situations to obtain benefits from collaborating with the other group involved in the conflict. Based on dual-process theories of thinking and affect heuristic, we propose that intergroup conflict hinders the rationality of cooperative decision making. We also hypothesize that this rationality improves when groups are involved in an in-group deliberative discussion. Results of a laboratory experiment support the idea that intergroup conflict –associated with indicators of the activation of negative feelings (negative affect state and heart rate)– has a negative effect on the aforementioned rationality over time and on both group and individual decision making. Although intergroup conflict leads to sub-optimal decision making, rationality improves when groups and individuals subjected to intergroup conflict make decisions after an in-group deliberative discussion. Additionally, the increased rationality of the group decision making after the deliberative discussion is transferred to subsequent individual decision making.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号