共查询到20条相似文献,搜索用时 15 毫秒
1.
Zeynep M. Saygin David E. Osher Kami Koldewyn Rebecca E. Martin Amy Finn Rebecca Saxe John D.E. Gabrieli Margaret Sheridan 《PloS one》2015,10(4)
A large corpus of research suggests that there are changes in the manner and degree to which the amygdala supports cognitive and emotional function across development. One possible basis for these developmental differences could be the maturation of amygdalar connections with the rest of the brain. Recent functional connectivity studies support this conclusion, but the structural connectivity of the developing amygdala and its different nuclei remains largely unstudied. We examined age related changes in the DWI connectivity fingerprints of the amygdala to the rest of the brain in 166 individuals of ages 5-30. We also developed a model to predict age based on individual-subject amygdala connectivity, and identified the connections that were most predictive of age. Finally, we segmented the amygdala into its four main nucleus groups, and examined the developmental changes in connectivity for each nucleus. We observed that with age, amygdalar connectivity becomes increasingly sparse and localized. Age related changes were largely localized to the subregions of the amygdala that are implicated in social inference and contextual memory (the basal and lateral nuclei). The central nucleus’ connectivity also showed differences with age but these differences affected fewer target regions than the basal and lateral nuclei. The medial nucleus did not exhibit any age related changes. These findings demonstrate increasing specificity in the connectivity patterns of amygdalar nuclei across age. 相似文献
2.
3.
《Current biology : CB》2014,24(19):2314-2318
4.
带状疱疹后神经痛(postherpetic neuralgia,PHN)是一种常见的神经病理性疼痛,但其中枢机制尚不明了.杏仁核在疼痛反应中的作用近年来受到关注.本研究的目的在于通过功能磁共振成像,研究带状疱疹后神经痛患者杏仁核各个亚区功能连接(functional connectivity,FC)的改变,探索慢性神经病理性疼痛的中枢机制.8位带状疱疹后神经痛患者和8位健康者进行了普通核磁共振和静息态功能磁共振扫描.将杏仁核各个亚区分别进行的功能连接分析,并将功能连接和被试者的病程、视觉模拟评分(visual analog scale,VAS)进行了相关分析.与健康志愿者相比,PHN患者杏仁核的基底外侧部(laterobasal groups,LB)和皮质部(superficial groups,SF)与多个脑区的FC表现出增强,主要位于颞叶和额叶.同时SF与多个区域的FC出现减低,主要位于额叶和顶叶.颞叶和额叶部分区域与LB的FC强度、与病程长短和VAS评分表现出关联性.研究结果提示,PHN患者杏仁核功能连接的改变提示了在慢性神经病理性疼痛的产生和发展中,杏仁核以及多个涉及情绪、认知、注意的脑区发挥了重要作用. 相似文献
5.
6.
The brain active patterns were organized differently under resting states of eyes open (EO) and eyes closed (EC). The altered voxel-wise and regional-wise resting state active patterns under EO/EC were found by static analysis. More importantly, dynamical spontaneous functional connectivity has been observed in the resting brain. To the best of our knowledge, the dynamical mechanisms of intrinsic connectivity networks (ICNs) under EO/EC remain largely unexplored. The goals of this paper were twofold: 1) investigating the dynamical intra-ICN and inter-ICN temporal patterns during resting state; 2) analyzing the altered dynamical temporal patterns of ICNs under EO/EC. To this end, a cohort of healthy subjects with scan conditions of EO/EC were recruited from 1000 Functional Connectomes Project. Through Hilbert transform, time-varying phase synchronization (PS) was applied to evaluate the inter-ICN synchrony. Meanwhile, time-varying amplitude was analyzed as dynamical intra-ICN temporal patterns. The results found six micro-states of inter-ICN synchrony. The medial visual network (MVN) showed decreased intra-ICN amplitude during EC relative to EO. The sensory-motor network (SMN) and auditory network (AN) exhibited enhanced intra-ICN amplitude during EC relative to EO. Altered inter-ICN PS was found between certain ICNs. Particularly, the SMN and AN exhibited enhanced PS to other ICNs during EC relative to EO. In addition, the intra-ICN amplitude might influence the inter-ICN synchrony. Moreover, default mode network (DMN) might play an important role in information processing during EO/EC. Together, the dynamical temporal patterns within and between ICNs were altered during different scan conditions of EO/EC. Overall, the dynamical intra-ICN and inter-ICN temporal patterns could benefit resting state fMRI-related research, and could be potential biomarkers for human functional connectome. 相似文献
7.
Fu-Jung Hsiao Hsiang-Yu Yu Wei-Ta Chen Shang-Yeong Kwan Chien Chen Der-Jen Yen Chun-Hing Yiu Yang-Hsin Shih Yung-Yang Lin 《PloS one》2015,10(6)
The electrophysiological signature of resting state oscillatory functional connectivity within the default mode network (DMN) during spike-free periods in temporal lobe epilepsy (TLE) remains unclear. Using magnetoencephalographic (MEG) recordings, this study investigated how the connectivity within the DMN was altered in TLE, and we examined the effect of lateralized TLE on functional connectivity. Sixteen medically intractable TLE patients and 22 controls participated in this study. Whole-scalp 306-channel MEG epochs without interictal spikes generated from both MEG and EEG data were analyzed using a minimum norm estimate (MNE) and source-based imaginary coherence analysis. With this processing, we obtained the cortical activation and functional connectivity within the DMN. The functional connectivity was increased between DMN and the right medial temporal (MT) region at the delta band and between DMN and the bilateral anterior cingulate cortex (ACC) regions at the theta band. The functional change was associated with the lateralization of TLE. The right TLE showed enhanced DMN connectivity with the right MT while the left TLE demonstrated increased DMN connectivity with the bilateral MT. There was no lateralization effect of TLE upon the DMN connectivity with ACC. These findings suggest that the resting-state functional connectivity within the DMN is reinforced in temporal lobe epilepsy during spike-free periods. Future studies are needed to examine if the altered functional connectivity can be used as a biomarker for treatment responses, cognitive dysfunction and prognosis in patients with TLE. 相似文献
8.
Zhuo Wang Marco A. Ocampo Raina D. Pang Mihail Bota Sylvie Bradesi Emeran A. Mayer Daniel P. Holschneider 《PloS one》2013,8(3)
Repeated water avoidance stress (WAS) induces sustained visceral hyperalgesia (VH) in rats measured as enhanced visceromotor response to colorectal distension (CRD). This model incorporates two characteristic features of human irritable bowel syndrome (IBS), VH and a prominent role of stress in the onset and exacerbation of IBS symptoms. Little is known regarding central mechanisms underlying the stress-induced VH. Here, we applied an autoradiographic perfusion method to map regional and network-level neural correlates of VH. Adult male rats were exposed to WAS or sham treatment for 1 hour/day for 10 days. The visceromotor response was measured before and after the treatment. Cerebral blood flow (CBF) mapping was performed by intravenous injection of radiotracer ([14C]-iodoantipyrine) while the rat was receiving a 60-mmHg CRD or no distension. Regional CBF-related tissue radioactivity was quantified in autoradiographic images of brain slices and analyzed in 3-dimensionally reconstructed brains with statistical parametric mapping. Compared to sham rats, stressed rats showed VH in association with greater CRD-evoked activation in the insular cortex, amygdala, and hypothalamus, but reduced activation in the prelimbic area (PrL) of prefrontal cortex. We constrained results of seed correlation analysis by known structural connectivity of the PrL to generate structurally linked functional connectivity (SLFC) of the PrL. Dramatic differences in the SLFC of PrL were noted between stressed and sham rats under distension. In particular, sham rats showed negative correlation between the PrL and amygdala, which was absent in stressed rats. The altered pattern of functional brain activation is in general agreement with that observed in IBS patients in human brain imaging studies, providing further support for the face and construct validity of the WAS model for IBS. The absence of prefrontal cortex-amygdala anticorrelation in stressed rats is consistent with the notion that impaired corticolimbic modulation acts as a central mechanism underlying stress-induced VH. 相似文献
9.
Luca Passamonti Graeme Fairchild Alex Fornito Ian M. Goodyer Ian Nimmo-Smith Cindy C. Hagan Andrew J. Calder 《PloS one》2012,7(11)
Objective
Previous research suggested that structural and functional abnormalities within the amygdala and orbitofrontal cortex contribute to the pathophysiology of Conduct Disorder (CD). Here, we investigated whether the integrity of the white-matter pathways connecting these regions is abnormal and thus may represent a putative neurobiological marker for CD.Methods
Diffusion Tensor Imaging (DTI) was used to investigate white-matter microstructural integrity in male adolescents with childhood-onset CD, compared with healthy controls matched in age, sex, intelligence, and socioeconomic status. Two approaches were employed to analyze DTI data: voxel-based morphometry of fractional anisotropy (FA), an index of white-matter integrity, and virtual dissection of white-matter pathways using tractography.Results
Adolescents with CD displayed higher FA within the right external capsule relative to controls (T = 6.08, P<0.05, Family-Wise Error, whole-brain correction). Tractography analyses showed that FA values within the uncinate fascicle (connecting the amygdala and orbitofrontal cortex) were abnormally increased in individuals with CD relative to controls. This was in contrast with the inferior frontal-occipital fascicle, which showed no significant group differences in FA. The finding of increased FA in the uncinate fascicle remained significant when factoring out the contribution of attention-deficit/hyperactivity disorder symptoms. There were no group differences in the number of streamlines in either of these anatomical tracts.Conclusions
These results provide evidence that CD is associated with white-matter microstructural abnormalities in the anatomical tract that connects the amygdala and orbitofrontal cortex, the uncinate fascicle. These results implicate abnormal maturation of white-matter pathways which are fundamental in the regulation of emotional behavior in CD. 相似文献10.
The amygdala has been regarded as a key substrate for emotion processing. However, the engagement of the left and right amygdala during the early perceptual processing of different emotional faces remains unclear. We investigated the temporal profiles of oscillatory gamma activity in the amygdala and effective connectivity of the amygdala with the thalamus and cortical areas during implicit emotion-perceptual tasks using event-related magnetoencephalography (MEG). We found that within 100 ms after stimulus onset the right amygdala habituated to emotional faces rapidly (with duration around 20–30 ms), whereas activity in the left amygdala (with duration around 50–60 ms) sustained longer than that in the right. Our data suggest that the right amygdala could be linked to autonomic arousal generated by facial emotions and the left amygdala might be involved in decoding or evaluating expressive faces in the early perceptual emotion processing. The results of effective connectivity provide evidence that only negative emotional processing engages both cortical and subcortical pathways connected to the right amygdala, representing its evolutional significance (survival). These findings demonstrate the asymmetric engagement of bilateral amygdala in emotional face processing as well as the capability of MEG for assessing thalamo-cortico-limbic circuitry. 相似文献
11.
Yongcong Shao Yu Lei Lubin Wang Tianye Zhai Xiao Jin Wei Ni Yue Yang Shuwen Tan Bo Wen Enmao Ye Zheng Yang 《PloS one》2014,9(11)
Objectives
Recent neuroimaging studies have identified a potentially critical role of the amygdala in disrupted emotion neurocircuitry in individuals after total sleep deprivation (TSD). However, connectivity between the amygdala and cerebral cortex due to TSD remains to be elucidated. In this study, we used resting-state functional MRI (fMRI) to investigate the functional connectivity changes of the basolateral amygdala (BLA) and centromedial amygdala (CMA) in the brain after 36 h of TSD.Materials and Methods
Fourteen healthy adult men aged 25.9±2.3 years (range, 18–28 years) were enrolled in a within-subject crossover study. Using the BLA and CMA as separate seed regions, we examined resting-state functional connectivity with fMRI during rested wakefulness (RW) and after 36 h of TSD.Results
TSD resulted in a significant decrease in the functional connectivity between the BLA and several executive control regions (left dorsolateral prefrontal cortex [DLPFC], right dorsal anterior cingulate cortex [ACC], right inferior frontal gyrus [IFG]). Increased functional connectivity was found between the BLA and areas including the left posterior cingulate cortex/precuneus (PCC/PrCu) and right parahippocampal gyrus. With regard to CMA, increased functional connectivity was observed with the rostral anterior cingulate cortex (rACC) and right precentral gyrus.Conclusion
These findings demonstrate that disturbance in amygdala related circuits may contribute to TSD psychophysiology and suggest that functional connectivity studies of the amygdala during the resting state may be used to discern aberrant patterns of coupling within these circuits after TSD. 相似文献12.
Maki S. Koyama Adriana Di Martino Clare Kelly Devika R. Jutagir Jessica Sunshine Susan J. Schwartz Francisco X. Castellanos Michael P. Milham 《PloS one》2013,8(2)
This observational, cross-sectional study investigates cortical signatures of developmental dyslexia, particularly from the perspective of behavioral remediation. We employed resting-state fMRI, and compared intrinsic functional connectivity (iFC) patterns of known reading regions (seeds) among three dyslexia groups characterized by (a) no remediation (current reading and spelling deficits), (b) partial remediation (only reading deficit remediated), and (c) full remediation (both reading and spelling deficits remediated), and a group of age- and IQ-matched typically developing children (TDC) (total N = 44, age range = 7–15 years). We observed significant group differences in iFC of two seeds located in the left posterior reading network – left intraparietal sulcus (L.IPS) and left fusiform gyrus (L.FFG). Specifically, iFC between L.IPS and left middle frontal gyrus was significantly weaker in all dyslexia groups, irrespective of remediation status/literacy competence, suggesting that persistent dysfunction in the fronto-parietal attention network characterizes dyslexia. Additionally, relative to both TDC and the no remediation group, the remediation groups exhibited stronger iFC between L.FFG and right middle occipital gyrus (R.MOG). The full remediation group also exhibited stronger negative iFC between the same L.FFG seed and right medial prefrontal cortex (R.MPFC), a core region of the default network These results suggest that behavioral remediation may be associated with compensatory changes anchored in L.FFG, which reflect atypically stronger coupling between posterior visual regions (L.FFG-R.MOG) and greater functional segregation between task-positive and task-negative regions (L.FFG-R.MPFC). These findings were bolstered by significant relationships between the strength of the identified functional connections and literacy scores. We conclude that examining iFC can reveal cortical signatures of dyslexia with particular promise for monitoring neural changes associated with behavioral remediation. 相似文献
13.
Chris Baeken Daniele Marinazzo Peter Van Schuerbeek Guo-Rong Wu Johan De Mey Robert Luypaert Rudi De Raedt 《PloS one》2014,9(4)
Background
The left and right amygdalae are key regions distinctly involved in emotion-regulation processes. Individual differences, such as personality features, may affect the implicated neurocircuits. The lateralized amygdala affective processing linked with the temperament dimension Harm Avoidance (HA) remains poorly understood. Resting state functional connectivity imaging (rsFC) may provide more insight into these neuronal processes.Methods
In 56 drug-naive healthy female subjects, we have examined the relationship between the personality dimension HA on lateralized amygdala rsFC.Results
Across all subjects, left and right amygdalae were connected with distinct regions mainly within the ipsilateral hemisphere. Females scoring higher on HA displayed stronger left amygdala rsFC with ventromedial prefrontal cortical (vmPFC) regions involved in affective disturbances. In high HA scorers, we also observed stronger right amygdala rsFC with the dorsomedial prefrontal cortex (dmPFC), which is implicated in negative affect regulation.Conclusions
In healthy females, left and right amygdalae seem implicated in distinct mPFC brain networks related to HA and may represent a vulnerability marker for sensitivity to stress and anxiety (disorders). 相似文献14.
Michelle Hampson Fuyuze Tokoglu Xilin Shen Dustin Scheinost Xenophon Papademetris R. Todd Constable 《PloS one》2012,7(9)
Age-related variations in resting state connectivity of the human brain were examined from young adulthood through middle age. A voxel-based network measure, degree, was used to assess age-related differences in tissue connectivity throughout the brain. Increases in connectivity with age were found in paralimbic cortical and subcortical regions. Decreases in connectivity were found in cortical regions, including visual areas and the default mode network. These findings differ from those of recent developmental studies examining earlier growth trajectories, and are consistent with known changes in cognitive function and emotional processing during mature aging. The results support and extend previous findings that relied on a priori definitions of regions of interest for their analyses. This approach of applying a voxel-based measure to examine the functional connectivity of individual tissue elements over time, without the need for a priori region of interest definitions, provides an important new tool in brain science. 相似文献
15.
Wei Liao Zhiqiang Zhang Zhengyong Pan Dante Mantini Jurong Ding Xujun Duan Cheng Luo Guangming Lu Huafu Chen 《PloS one》2010,5(1)
Background
The functional architecture of the human brain has been extensively described in terms of functional connectivity networks, detected from the low–frequency coherent neuronal fluctuations that can be observed in a resting state condition. Little is known, so far, about the changes in functional connectivity and in the topological properties of functional networks, associated with different brain diseases.Methodology/Principal Findings
In this study, we investigated alterations related to mesial temporal lobe epilepsy (mTLE), using resting state functional magnetic resonance imaging on 18 mTLE patients and 27 healthy controls. Functional connectivity among 90 cortical and subcortical regions was measured by temporal correlation. The related values were analyzed to construct a set of undirected graphs. Compared to controls, mTLE patients showed significantly increased connectivity within the medial temporal lobes, but also significantly decreased connectivity within the frontal and parietal lobes, and between frontal and parietal lobes. Our findings demonstrated that a large number of areas in the default-mode network of mTLE patients showed a significantly decreased number of connections to other regions. Furthermore, we observed altered small-world properties in patients, along with smaller degree of connectivity, increased n-to-1 connectivity, smaller absolute clustering coefficients and shorter absolute path length.Conclusions/Significance
We suggest that the mTLE alterations observed in functional connectivity and topological properties may be used to define tentative disease markers. 相似文献16.
Yoshinori Itoh Ryozo Oishi Masahiro Nishibori Kiyomi Saeki 《Journal of neurochemistry》1989,53(3):844-848
An HPLC method using fluorescence detection for the determination of tele-methylhistamine (t-MH) was improved to a sensitivity level which enabled the detection of 0.05 pmol of tissue t-MH. The t-MH contents and the histamine turnover rates in various nuclei of the rat hypothalamus and amygdala were subsequently measured. The histamine turnover rates were estimated from pargyline-induced t-MH accumulation. Both the t-MH levels and the histamine turnover rates were shown to be relatively high in the nuclei dorsomedialis and premammillaris ventralis of the hypothalamus, and also in the nucleus medialis of the amygdala. The steady-state t-MH levels in various nuclei of the hypothalamus and amygdala correlated well with the histamine turnover rates in these nuclei. 相似文献
17.
Adrián Ponce-Alvarez Gustavo Deco Patric Hagmann Gian Luca Romani Dante Mantini Maurizio Corbetta 《PLoS computational biology》2015,11(2)
Spatial patterns of coherent activity across different brain areas have been identified during the resting-state fluctuations of the brain. However, recent studies indicate that resting-state activity is not stationary, but shows complex temporal dynamics. We were interested in the spatiotemporal dynamics of the phase interactions among resting-state fMRI BOLD signals from human subjects. We found that the global phase synchrony of the BOLD signals evolves on a characteristic ultra-slow (<0.01Hz) time scale, and that its temporal variations reflect the transient formation and dissolution of multiple communities of synchronized brain regions. Synchronized communities reoccurred intermittently in time and across scanning sessions. We found that the synchronization communities relate to previously defined functional networks known to be engaged in sensory-motor or cognitive function, called resting-state networks (RSNs), including the default mode network, the somato-motor network, the visual network, the auditory network, the cognitive control networks, the self-referential network, and combinations of these and other RSNs. We studied the mechanism originating the observed spatiotemporal synchronization dynamics by using a network model of phase oscillators connected through the brain’s anatomical connectivity estimated using diffusion imaging human data. The model consistently approximates the temporal and spatial synchronization patterns of the empirical data, and reveals that multiple clusters that transiently synchronize and desynchronize emerge from the complex topology of anatomical connections, provided that oscillators are heterogeneous. 相似文献
18.
Leonardo Crema Michele Schlabitz Bárbara Tagliari Aline Cunha Fabrício Simão Rachel Krolow Letícia Pettenuzzo Christianne Salbego Deusa Vendite Angela T. S. Wyse Carla Dalmaz 《Neurochemical research》2010,35(11):1787-1795
In this study, we examined the effects of two chronic stress regimens upon anxiety-like behavior, Na+, K+-ATPase activity and immunocontent, and oxidative stress parameters (antioxidant enzymes and reactive oxygen species production) in the amygdala. Male rats were subjected to chronic unpredictable and to chronic restraint stress for 40 days. Subsequently, anxiety-like behavior was examined. Both stressed groups presented increased anxiety-like behavior. Reduced amygdalal Na+, K+-ATPase activity in the synaptic plasma membranes was also observed, without alterations in the amygdala immunocontent. In addition, when analyzing oxidative stress parameters, only superoxide dismutase activity was decreased in the amygdala of animals subjected to unpredictable stress. We conclude that both models of chronic stress lead to anxiety-like behavior and decreased amygdalal Na+, K+-ATPase activity, which appears not to be related to oxidative imbalance. The relationship between this decreased activity and anxiety-like behavior remains to be studied. 相似文献
19.
Background
Previous studies have shown that the activity of the amygdala is elevated in people experiencing clinical and subclinical levels of anxiety and depression (negative affect). It has been proposed that a reduction in inhibitory input to the amygdala from the prefrontal cortex and resultant over-activity of the amygdala underlies this association. Prior studies have found relationships between negative affect and 1) amygdala over-activity and 2) reduced amygdala-prefrontal connectivity. However, it is not known whether elevated amygdala activity is associated with decreased amygdala-prefrontal connectivity during negative affect states.Methods
Here we used resting-state arterial spin labeling (ASL) and blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) in combination to test this model, measuring the activity (regional cerebral blood flow, rCBF) and functional connectivity (correlated fluctuations in the BOLD signal) of one subregion of the amygdala with strong connections with the prefrontal cortex, the basolateral nucleus (BLA), and subsyndromal anxiety levels in 38 healthy subjects.Results
BLA rCBF was strongly correlated with anxiety levels. Moreover, both BLA rCBF and anxiety were inversely correlated with the strength of the functional coupling of the BLA with the caudal ventromedial prefrontal cortex. Lastly, BLA perfusion was found to be a mediator of the relationship between BLA-prefrontal connectivity and anxiety.Conclusions
These results show that both perfusion of the BLA and a measure of its functional coupling with the prefrontal cortex directly index anxiety levels in healthy subjects, and that low BLA-prefrontal connectivity may lead to increased BLA activity and resulting anxiety. Thus, these data provide key evidence for an often-cited circuitry model of negative affect, using a novel, multi-modal imaging approach. 相似文献20.
Novel stimuli often require a rapid reallocation of sensory processing resources to determine the significance of the event, and the appropriate behavioral response. Both the amygdala and the visual cortex are central elements of the neural circuitry responding to novelty, demonstrating increased activity to new as compared to highly familiarized stimuli. Further, these brain areas are intimately connected, and thus the amygdala may be a key region for directing sensory processing resources to novel events. Although knowledge regarding the neurocircuit of novelty detection is gradually increasing, we still lack a basic understanding of the conditions that are necessary and sufficient for novelty-specific responses in human amygdala and the visual cortices, and if these brain areas interact during detection of novelty. In the present study, we investigated the response of amygdala and the visual cortex to novelty, by comparing functional MRI activity between 1st and 2nd time presentation of a series of emotional faces in an event-related task. We observed a significant decrease in amygdala and visual cortex activity already after a single stimulus exposure. Interestingly, this decrease in responsiveness was less for subjects with a high score on state anxiety. Further, novel faces stimuli were associated with a relative increase in the functional coupling between the amygdala and the inferior occipital gyrus (BA 18). Thus, we suggest that amygdala is involved in fast sensory boosting that may be important for attention reallocation to novel events, and that the strength of this response depends on individual state anxiety. 相似文献