首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
As important members of nuclear receptor superfamily, Peroxisome proliferator-activated receptors (PPAR) play essential roles in regulating cellular differentiation, development, metabolism, and tumorigenesis of higher organisms. The PPAR receptors have 3 identified subtypes: PPARα, PPARβ and PPARγ, all of which have been treated as attractive targets for developing drugs to treat type 2 diabetes. Due to the undesirable side-effects, many PPAR agonists including PPARα/γ and PPARβ/γ dual agonists are stopped by US FDA in the clinical trials. An alternative strategy is to design novel pan-agonist that can simultaneously activate PPARα, PPARβ and PPARγ. Under such an idea, in the current study we adopted the core hopping algorithm and glide docking procedure to generate 7 novel compounds based on a typical PPAR pan-agonist LY465608. It was observed by the docking procedures and molecular dynamics simulations that the compounds generated by the core hopping and glide docking not only possessed the similar functions as the original LY465608 compound to activate PPARα, PPARβ and PPARγ receptors, but also had more favorable conformation for binding to the PPAR receptors. The additional absorption, distribution, metabolism and excretion (ADME) predictions showed that the 7 compounds (especially Cpd#1) hold high potential to be novel lead compounds for the PPAR pan-agonist. Our findings can provide a new strategy or useful insights for designing the effective pan-agonists against the type 2 diabetes.  相似文献   

2.
The peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of adipogenesis and is medically important for its connections to obesity and the treatment of type II diabetes. Activation of this receptor by certain natural or xenobiotic compounds has been shown to stimulate adipogenesis in vitro and in vivo. Obesogens are chemicals that ultimately increase obesity through a variety of potential mechanisms, including activation of PPARγ. The first obesogen for which a definitive mechanism of action has been elucidated is the PPARγ and RXR activator tributyltin; however, not all chemicals that activate PPARγ are adipogenic or correlated with obesity in humans. There are multiple mechanisms through which obesogens can target PPARγ that may not involve direct activation of the receptor. Ligand-independent mechanisms could act through obesogen-mediated post-translational modification of PPARγ which cause receptor de-repression or activation. PPARγ is active in multipotent stem cells committing to the adipocyte fate during fat cell development. By modifying chromatin structure early in development, obesogens have the opportunity to influence the promoter activity of PPARγ, or the ability of PPARγ to bind to its target genes, ultimately biasing the progenitor pool towards the fat lineage. Obesogens that act by directly or indirectly activating PPARγ, by increasing the levels of PPARγ protein, or enhancing its recruitment to promoters of key genes in the adipogenic pathway may ultimately play an important role in adipogenesis and obesity.  相似文献   

3.
Starting with a subtle blood glucose-lowering effect of a TGF-β inhibitor, we designed and synthesized a series of benzoylpyrrole-based carboxylic acids as PPARs activators. Among these compounds, 10sNa exhibited favorable blood glucose-lowering effect without body weight gain. We assume that the beneficial effect of 10sNa is attributed to not only its compound PPARα agonistic activity but also its PPARγ partial agonistic activity.  相似文献   

4.
5.
This study aimed to clone the peroxisome proliferator-activated receptor γ (PPARγ) gene of the Xuhuai goat and to make transgenic sheep using intratesticular injection, so as to improve the meat quality and flavor by increasing the intramuscular fat content. The coding sequence of the goat PPARγ gene was 1,428 bp, encoding 475 amino acids. Its similarity with other species was 81 (chicken), 89 (mouse), 92 (pig), 98 (cow), and 99% (sheep). The similarity of the corresponding amino acid sequences was 92.9, 97.3, 98.3, 99.6, and 99.8%, respectively. The signal peptide region of the PPARγ protein was not found in this study, demonstrating that the protein is not secreted. RT-PCR and western blot revealed that PPARγ was expressed in vitro, and the protein was localized in the cytoplasm. The PPARγ gene was expressed in F1 transgenic sheep at both the mRNA and the protein levels; the positive ratio was 13.7%.  相似文献   

6.

Aims

Protein kinase Cα (PKCα) is one of the predominant PKC isoforms that phosphorylate cardiac troponin. PKCα is implicated in heart failure and serves as a potential therapeutic target, however, the exact consequences for contractile function in human myocardium are unclear. This study aimed to investigate the effects of PKCα phosphorylation of cardiac troponin (cTn) on myofilament function in human failing cardiomyocytes and to resolve the potential targets involved.

Methods and Results

Endogenous cTn from permeabilized cardiomyocytes from patients with end-stage idiopathic dilated cardiomyopathy was exchanged (∼69%) with PKCα-treated recombinant human cTn (cTn (DD+PKCα)). This complex has Ser23/24 on cTnI mutated into aspartic acids (D) to rule out in vitro cross-phosphorylation of the PKA sites by PKCα. Isometric force was measured at various [Ca2+] after exchange. The maximal force (Fmax) in the cTn (DD+PKCα) group (17.1±1.9 kN/m2) was significantly reduced compared to the cTn (DD) group (26.1±1.9 kN/m2). Exchange of endogenous cTn with cTn (DD+PKCα) increased Ca2+-sensitivity of force (pCa50 = 5.59±0.02) compared to cTn (DD) (pCa50 = 5.51±0.02). In contrast, subsequent PKCα treatment of the cells exchanged with cTn (DD+PKCα) reduced pCa50 to 5.45±0.02. Two PKCα-phosphorylated residues were identified with mass spectrometry: Ser198 on cTnI and Ser179 on cTnT, although phosphorylation of Ser198 is very low. Using mass spectrometry based-multiple reaction monitoring, the extent of phosphorylation of the cTnI sites was quantified before and after treatment with PKCα and showed the highest phosphorylation increase on Thr143.

Conclusion

PKCα-mediated phosphorylation of the cTn complex decreases Fmax and increases myofilament Ca2+-sensitivity, while subsequent treatment with PKCα in situ decreased myofilament Ca2+-sensitivity. The known PKC sites as well as two sites which have not been previously linked to PKCα are phosphorylated in human cTn complex treated with PKCα with a high degree of specificity for Thr143.  相似文献   

7.
RhoA plays a pivotal role in regulating cell shape and movement. Protein kinase A (PKA) inhibits RhoA signaling and thereby induces a characteristic morphological change, cell rounding. This has been considered to result from cAMP-induced phosphorylation of RhoA at Ser-188, which induces a stable RhoA-GTP-RhoGDIα complex and sequesters RhoA to the cytosol. However, few groups have shown RhoA phosphorylation in intact cells. Here we show that phosphorylation of RhoGDIα but not RhoA plays an essential role in the PKA-induced inhibition of RhoA signaling and in the morphological changes using cardiac fibroblasts. The knockdown of RhoGDIα by siRNA blocks cAMP-induced cell rounding, which is recovered by RhoGDIα-WT expression but not when a RhoGDIα-S174A mutant is expressed. PKA phosphorylates RhoGDIα at Ser-174 and the phosphorylation of RhoGDIα is likely to induce the formation of a active RhoA-RhoGDIα complex. Our present results thus reveal a principal molecular mechanism underlying Gs/cAMP-induced cross-talk with Gq/G13/RhoA signaling.  相似文献   

8.
Qiang L  Accili D 《Cell》2012,148(3):397-398
Peptide hormone fibroblast growth factor-21 (FGF21) has insulin-mimetic properties. Dutchak et?al. now suggest that FGF21 also acts in an autocrine fashion in adipocytes and is required to mediate effects of the PPARγ agonist class of antidiabetic drugs. Does this new property improve FGF21's fledgling clinical prospects or endorse a clinical resuscitation of PPARγ agonists?  相似文献   

9.
过氧化物酶体增殖物激活受体(peroxisome proliferator-activated receptors,PPARs)是核受体超家族中的一类配体依赖的核转录因子,其中两种重要的亚型PPARα和PPARγ在脂肪细胞分化、能量代谢和炎症过程中都发挥重要作用。研究显示,PPARα和PPARγ的配体激动剂不仅可以改善包括糖尿病、高血压和肥胖等在内的胰岛素抵抗综合征,而且还可以通过作用于血管壁从而减缓动脉粥样硬化的进程。本文将就PPARα和PPARγ及其双激动剂与动脉粥样硬化发病机制和治疗的相关研究进展进行概括介绍。  相似文献   

10.
Human equilibrative nucleoside transporter 1 (hENT1) is an important determinant for nucleoside analog based chemotherapy success. Preliminary data suggest hENT1 regulation by PPARs. Using A2780 cells, we investigated the role of PPARs on hENT1 expression and activity. PPARα and PPARγ agonists, Wy14,643 and RGZ, increased hENT1 expression, but only PPARα activation or overexpression resulted in higher hENT1 transport activity. On the other hand, promoter analysis showed two putative PPRE in hENT1 promoter and luciferase-coupled promoter constructs were generated and analyzed. Our results suggest that PPARα-but not PPARγ-mediated expression regulation of hENT1 is PPRE-dependent. In conclusion, PPARα and PPARγ activation modulate hENT1 expression.  相似文献   

11.
Cannabinoids exert antiproliferative effects in a wide range of tumoral cells, including hepatocellular carcinoma (HCC) cells. In this study, we examined whether the PPARγ-activated pathway contributed to the antitumor effect of two cannabinoids, Δ9-tetrahydrocannabinol (THC) and JWH-015, against HepG2 and HUH-7 HCC cells. Both cannabinoids increased the activity and intracellular level of PPARγ mRNA and protein, which was abolished by the PPARγ inhibitor GW9662. Moreover, genetic ablation with small interfering RNA (siRNA), as well as pharmacological inhibition of PPARγ decreased the cannabinoid-induced cell death and apoptosis. Likewise, GW9662 totally blocked the antitumoral action of cannabinoids in xenograft-induced HCC tumors in mice. In addition, PPARγ knockdown with siRNA caused accumulation of the autophagy markers LC3-II and p62, suggesting that PPARγ is necessary for the autophagy flux promoted by cannabinoids. Interestingly, downregulation of the endoplasmic reticulum stress-related protein tribbles homolog 3 (TRIB3) markedly reduced PPARγ expression and induced p62 accumulation, which was counteracted by overexpression of PPARγ in TRIB3-knocked down cells. Taken together, we demonstrate for the first time that the antiproliferative action of the cannabinoids THC and JWH-015 on HCC, in vitro and in vivo, are modulated by upregulation of PPARγ-dependent pathways.  相似文献   

12.
目的研究PPARα激活后对PPARγ诱导小鼠脂肪肝的影响。方法以4~5周龄C57BL/6J小鼠为模型,实验分为4组:正常饮食组;0.125%Wy-14,643处理组;PPARγ腺病毒(Ad/PPARγ)注射组;先给予0.125%Wy-14,643饮食再注射Ad/PPARγ组。实验结束时,收集肝脏组织称重、照相,HE、油红O染色观察PPARα激活后对PPARγ诱导肝脏脂肪变性的影响。结果野生型小鼠给予PPARα激动剂Wy-14,643处理8 d,与对照组相比,处理组小鼠肝脏明显增大,呈现过氧化物酶体增殖反应;野生型小鼠给予Ad/PPARγ5 d,小鼠肝脏显著增大,出现脂肪肝;给予PPARα激动剂Wy-14,643 3 d,再给予Ad/PPARγ5 d,小鼠肝脏增大更加显著,HE染色、油红O染色结果显示小鼠肝脏脂肪变性明显减轻。结论激活PPARα能够缓解PPARγ诱导的小鼠肝脏脂肪变,为脂肪肝的预防和治疗提供了新的研究思路和靶点。  相似文献   

13.
14.
Comment on: PPARα blocks glucocorticoid receptor α-mediated transactivation but cooperates with the activated glucocorticoid receptor alpha for transrepression on NFκB. Bougarne N, Paumelle R, Caron S, Hennuyer N, Mansouri R, Gervois P, Staels B, Haegeman G, De Bosscher K. Proc Natl Acad Sci USA 2009; 106:7397-402. PMID: 19376972  相似文献   

15.
The thiazolidinedione class PPARγ agonists as antidiabetic agents are restricted in clinical use because of the side effects such as edema, weight gain, and heart failure. The single and selective agonism of PPARγ is the main cause of side effects. The multi-target cooperative PPARα/γ dual agonist development is a hot topic in the antidiabetic medicinal chemistry field. Saroglitazar is the first approved PPARα/γ dual agonist, available in India for the treatment of diabetic dyslipidemia. It got rid of these side effects. With the aim of finding more protent PPARα/γ dual agonists, the scaffold hopping was used to replace α-o phenylpropionic acid skeleton of saroglitazar with L-tyrosine skeleton. Then, the structural modification was carried out designing 72 compounds. Considering the importance of chirality, opposite configuration of 72 compounds was also studied. 12 compounds with better -cdocker energy were screened by molecular docking. Subsequently, the pharmacokinetic properties and toxicity evaluated by ADMET prediction, 11 of them showed better properties. Comp#L-17-1 and comp#L-3-1 were regarded as representatives to study the binding stability by molecular dynamics (MD) simulations. The MD simulation results of comp#L-17-1-PPARs (α, γ) and comp#L-3-1-PPARs (α, γ) provided structure reference for the research and development of novel PPARα/γ dual agonists.  相似文献   

16.
17.
Aci-Sèche S  Genest M  Garnier N 《FEBS letters》2011,585(16):2599-2603
To address the question of ligand entry process, we report targeted molecular dynamics simulations of the entry of the flexible ionic ligand GW0072 in the ligand binding domain of the nuclear receptor PPARγ. Starting with the ligand outside the receptor the simulations led to a ligand docked inside the binding pocket resulting in a structure very close to the holo-form of the complex. The results showed that entry process is guided by hydrophobic interactions and that entry pathways are very similar to exit pathways. We suggest that TMD method may help in discriminating between ligands generated by in silico docking.  相似文献   

18.
As the prevalence of obesity has increased explosively over the last several decades, associated metabolic disorders, including type 2 diabetes, dyslipidemia, hypertension, and cardiovascular diseases, have been also increased. Thus, new strategies for preventing and treating them are needed. The nuclear peroxisome proliferator-activated receptors (PPARs) are involved fundamentally in regulating energy homeostasis; thus, they have been considered attractive drug targets for addressing metabolic disorders. Among the PPARs, PPARγ is a master regulator of gene expression for metabolism, inflammation, and other pathways in many cell types, especially adipocytes. It is a physiological receptor of the potent anti-diabetic drugs of the thiazolidinediones (TZDs) class, including rosiglitazone (Avandia). However, TZDs have undesirable and severe side effects, such as weight gain, fluid retention, and cardiovascular dysfunction. Recently, many reports have suggested that PPARγ could be modulated by post-translational modifications (PTMs), and modulation of PTM has been considered as novel approaches for treating metabolic disorders with fewer side effects than the TZDs. In this review, we discuss how PTM of PPARγ may be regulated and issues to be considered in making novel anti-diabetic drugs that can modulate the PTM of PPARγ. [BMB Reports 2014; 47(11): 599-608]  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号