首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bonito  Gregory  Smith  Matthew E.  Brenneman  Timothy  Vilgalys  Rytas 《Plant and Soil》2012,356(1-2):357-366
Background and Aims

Recently, the truffle species Tuber lyonii Butters was found to be dominant in ectomycorrhizal (EcM) fungal communities of cultivated pecan (Carya illinoinensis (Wangenh.) K. Koch). Many truffle fungi exhibit the trait of effectively colonizing plant roots via spores. We hypothesized that T. lyonii would be well represented in the spore bank of pecan orchard soils where it is found.

Methods

We used axenically-grown pecan seedlings as trap-plants to bait for EcM associates in soils collected beneath truffle-producing pecan trees. EcM fungi on seedlings were characterized through rDNA sequencing and were compared to EcM communities of adult trees in these orchards.

Results

Tuber lyonii mycorrhizas were well formed on seedlings inoculated with truffle spores, but were limited to just a few of the trap-plants grown in field soils. We compared EcM communities of adult pecan orchard trees to those on trap-plants and found distinct communities on each, with a high degree of similarity at the ordinal but not species level.

Conclusions

Although species of Pezizales are abundant in pecan EcM communities and as propagules in their soil spore banks, only a low level of T. lyonii was detected in soil spore banks beneath orchard trees naturally colonized by T. lyonii. Other factors including land-use history or orchard management may better explain this truffle species presence and abundance in pecan EcM communities.

  相似文献   

2.
Carya illinoinensis (pecan) belongs to the Juglandaceae (walnut family) and is a major economic nut crop in the southern USA. Although evidence suggests that some species in the Juglandaceae are ectomycorrhizal, investigations on their ectomycorrhizal fungal symbionts are quite limited. Here we assessed the ectomycorrhizal fungal diversity in cultivated orchards of C. illinoinensis. Five pecan orchards in southern Georgia, USA, were studied, three of which were known to fruit the native edible truffle species Tuber lyonii. We sequenced rDNA from single ectomycorrhizal root tips sampled from a total of 50 individual trees. Mycorrhizae were identified by ITS and LSU rDNA sequence-based methods. Forty-four distinct ectomycorrhizal taxa were detected. Sequestrate taxa including Tuber and Scleroderma were particularly abundant. The two most abundant sequence types belonged to T. lyonii (17%) and an undescribed Tuber species (~20%). Because of our interest in the ecology of T. lyonii, we also conducted greenhouse studies to determine whether this species would colonize and form ectomycorrhizae on roots of pecan, oak, or pine species endemic to the region. T. lyonii ectomycorrhizae were formed on pecan and oak seedlings, but not pine, when these were inoculated with spores. That oak and pecan seedling roots were receptive to truffle spores indicates that spore slurry inoculation could be a suitable method for commercial use and that, ecologically, T. lyonii may function as a pioneer ectomycorrhizal species for these hosts.  相似文献   

3.
A survey was initiated to determine the incidence of Belonolaimus spp. (sting nematodes) in citrus orchards in the central ridge region of Florida, following widespread damage by these nematodes to young trees replanted after freezing weather in 1989-90. Sting nematodes were detected in 50% of 210 samples and in 64% of 84 orchards surveyed. More orchards in Polk County were infested with sting nematodes (82%) than in counties to the north (36%) or south (48%). Principal component analysis of morphometric data separated six of seven sting nematode populations in northeastern Polk County from six populations in adjacent regions. Stylet:tail ratio for nematodes in northeastern Polk County tend to be > 1.0 and were ≪ 1.0 for all other populations. Patchiness of nematodes within an orchard was associated with stunted trees (23% smaller), reduced root mass density (25% lower), and low fruit yield (57% reduction). Soil texture did not vary among trees of different size in the orchard, but soil water potential between irrigation events was highest beneath small trees with low root mass density. Results of the survey indicate that the incidence of sting nematodes in orchards on the central ridge is much higher than previously estimated and that sting nematodes can cause substantial damage in replanted orchards. Further research is needed to evaluate the significance of sting nematode population variability and its relationship to citrus crop loss in Florida.  相似文献   

4.
The efficacy of pheromone‐based mating disruption for control of the peachtree borer Synanthedon exitiosa (Say) in small‐scale peach orchards (<0.1 ha) was evaluated in a total of six blocks at two locations in New Mexico, USA, from 2010 to 2015. In treated orchards, commercial pheromone dispensers were deployed at rates of approximately 500 or 600 per ha. Pheromone‐based monitoring traps were installed in each block (treated and untreated), and catches of male moths were recorded throughout each growing season to assess the effectiveness of pheromone treatments and to determine the pest's seasonal flight activity. Levels of larval trunk infestation were assessed twice yearly by inspecting all trees at and below soil level. Infestation levels in an unreplicated block of mature peaches at one site (Los Lunas) declined from 57.5% to 8.4% while under pheromone treatment (2010–2011). Pheromone treatments in this block were discontinued in 2012, and infestation levels subsequently increased to 16.9% by spring 2015. In a replicated study in four other peach blocks at the same site, annual application of pheromones from 2012 to 2014 resulted in a significant difference in larval infestations in treated blocks compared to untreated blocks. In addition, when a single block of infested peaches at a second site (Alcalde) was treated with pheromone dispensers for three consecutive years, trunk infestation levels declined significantly, but were not completely eliminated. These results indicate that mating disruption can help protect even very small orchards from damage by S. exitiosa. However, the technique is likely to be more effective where such orchards are relatively isolated and/or where the surrounding pest pressure is moderate or low.  相似文献   

5.
Foliar sprays of 4 μg/ml oxamyl on sweet orange trees in a greenhouse slightly depressed the number of Tylenchulus semipenetrans larvae obtained from roots and soil, but similar treatments were not effective in two orchards. Soil drench treatments decreased the number of citrus nematode larvae obtained from roots or soil of citrus plants grown itt a greenhouse and in orchards. Exposure to 5-10 μg/ml of oxamyl in water was lethal to only a few second-stage larvae treated 10 days, and many second-stage larvae in 2.0 μg/ml oxamyl recovered motility when transferred to fresh water. Aqueous solutions of 50 and 100 μg/ml of oxamyl were toxic to citrus nematode larvae. Additional observations indicate that oxamyl interfered with hatch of citrus nematode larvae and was nematistatic and/or protected sweet orange roots from infection. Oxamyl degraded at different rates in two soils. The number of citrus nematode larvae that infected and developed on sweet orange roots was increased by an undetermined product of the degradation of oxamyl in soil, water, and possibly within plants. This product apparently was translocated in roots.  相似文献   

6.
AimDrastic changes in fire regimes are altering plant communities, inspiring ecologists to better understand the relationship between fire and plant species diversity. We examined the impact of a 90,000‐ha wildfire on woody plant species diversity in an arid mountain range in southern Arizona, USA. We tested recent fire‐diversity hypotheses by addressing the impacts on diversity of fire severity, fire variability, historical fire regimes, and topography.LocationChiricahua National Monument, Chiricahua Mountains, Arizona, USA, part of the Sky Islands of the US–Mexico borderlands.TaxonWoody plant species.MethodsWe sampled woody plant diversity in 138 plots before (2002–2003) and after (2017–2018) the 2011 Horseshoe Two Fire in three vegetation types and across fire severity and topographic gradients. We calculated gamma, alpha, and beta diversity and examined changes over time in burned versus unburned plots and the shapes of the relationships of diversity with fire severity and topography.ResultsAlpha species richness declined, and beta and gamma diversity increased in burned but not unburned plots. Fire‐induced enhancement of gamma diversity was confined to low fire severity plots. Alpha diversity did not exhibit a clear continuous relationship with fire severity. Beta diversity was enhanced by variation in fire severity among plots and increased with fire severity up to very high severity, where it declined slightly.Main ConclusionsThe results reject the intermediate disturbance hypothesis for alpha diversity but weakly support it for gamma diversity. Spatial variation in fire severity promoted variation among plant assemblages, supporting the pyrodiversity hypothesis. Long‐term drought probably amplified fire‐driven diversity changes. Despite the apparent benign impact of the fire on diversity, the replacement of two large conifer species with a suite of drought‐tolerant shrubs signals the potential loss of functional diversity, a pattern that may warrant restoration efforts to retain these important compositional elements.  相似文献   

7.
The pecan nut casebearer, Acrobasis nuxvorella Nuenzig (Lepidoptera: Pyralidae), is the most damaging insect pest of pecan, Carya illinoinensis (Wang) K. Koch (Juglandaceae), in the USA and Mexico. A pheromone monitoring program for A. nuxvorella has been developed to assist pecan growers in the timing of insecticide applications. The discovery that there are two pheromone types produced by A. nuxvorella has led to complications in the implementation of pheromone monitoring programs. One pheromone (referred to as standard) is attractive to moths in the southern USA, but not in Mexico. The other pheromone (referred to as Mexican) is attractive to moths in the southern USA and in Mexico. Because most male lepidopterans respond only to a specific pheromone, it was suspected that there were two pheromone strains of A. nuxvorella, one exclusively present in the northern distribution of A. nuxvorella (USA strain) and the other widely distributed from Sonora, Chihuahua, and Durango in northern Mexico to Texas, Georgia, and Oklahoma in the USA (Mexican strain). The goal of this research was to determine whether differences in pheromone response are sufficient to genetically isolate A. nuxvorella into pheromone strains. To confirm the existence of the two alleged pheromone strains, amplified fragment length polymorphism (AFLP) markers were obtained and analyzed. Four primer combinations were used to obtain a total of 483 polymorphic AFLP markers. Our results indicated that the standard and Mexican pheromones did not group A. nuxvorella into pheromone strains. However, three genetically distinct populations of A. nuxvorella were identified. Two of those three populations are sympatric throughout the southern USA and one is allopatric relative to the other two and occurs exclusively in pecan growing regions of Mexico.  相似文献   

8.
Soil infertility is the main barrier to dryland agricultural production in China. To provide a basis for the establishment of a soil amelioration technical system for rainfed fields in the semiarid area of northwest China, we conducted a four—year (2007–2011) field experiment to determine the effects of wheat straw incorporation on the arid soil nutrient levels of cropland cultivated with winter wheat after different straw incorporation levels. Three wheat straw incorporation levels were tested (H: 9000 kg hm-2, M: 6000 kg hm-2, and L: 3000 kg hm-2) and no straw incorporation was used as the control (CK). The levels of soil nutrients, soil organic carbon (SOC), soil labile organic carbon (LOC), and enzyme activities were analyzed each year after the wheat harvest. After straw incorporation for four years, the results showed that variable straw amounts had different effects on the soil fertility indices, where treatment H had the greatest effect. Compared with CK, the average soil available N, available P, available K, SOC, and LOC levels were higher in the 0–40 cm soil layers after straw incorporation treatments, i.e., 9.1–30.5%, 9.8–69.5%, 10.3–27.3%, 0.7–23.4%, and 44.4–49.4% higher, respectively. On average, the urease, phosphatase, and invertase levels in the 0–40 cm soil layers were 24.4–31.3%, 9.9–36.4%, and 42.9–65.3% higher, respectively. Higher yields coupled with higher nutrient contents were achieved with H, M and L compared with CK, where these treatments increased the crop yields by 26.75%, 21.51%, and 7.15%, respectively.  相似文献   

9.
  • 1 The pecan nut casebearer Acrobasis nuxvorella Neunzig (Lepidoptera: Pyralidae) is an important, monophagous pest of pecan Carya illinoinensis (Fagales: Juglandaceae).
  • 2 This pest is native from Louisiana west to the eastern edge of New Mexico and north to Illinois in the U.S.A. and as far west as Chihuahua and south to Oaxaca in Mexico.
  • 3 Recently, this pest has expanded beyond the native range of pecan into regions where pecan has been introduced for cultivation.
  • 4 Amplified fragment length polymorphism markers were used to determine the population genetic structure of this insect pest across its current geographical distribution.
  • 5 Population genetic analyses indicate a great degree of genetic structure in the pecan nut casebearer across its geographical distribution, with genetically distinct populations occurring in those areas where the pecan nut casebearer is not native but has been invasive.
  相似文献   

10.
Global surface temperature is predicted to increase by at least 1.5°C by the end of this century. However, the response of soil microbial communities to global warming is still poorly understood, especially in high-elevation grasslands. We therefore conducted an experiment on three types of alpine grasslands on the Qinghai-Tibet Plateau to study the effect of experimental warming on abundance and composition of soil microbial communities at 0–10 and 10–20 cm depths. Plots were passively warmed for 3 years using open-top chambers and compared to adjacent control plots at ambient temperature. Soil microbial communities were assessed using phospholipid fatty acid (PLFA) analysis. We found that 3 years of experimental warming consistently and significantly increased microbial biomass at the 0–10 cm soil depth of alpine swamp meadow (ASM) and alpine steppe (AS) grasslands, and at both the 0–10 and 10–20 cm soil depths of alpine meadow (AM) grasslands, due primarily to the changes in soil temperature, moisture, and plant coverage. Soil microbial community composition was also significantly affected by warming at the 0–10 cm soil depth of ASM and AM and at the 10–20 cm soil depth of AM. Warming significantly decreased the ratio of fungi to bacteria and thus induced a community shift towards bacteria at the 0–10 cm soil depth of ASM and AM. While the ratio of arbuscular mycorrhizal fungi to saprotrophic fungi (AMF/SF) was significantly decreased by warming at the 0–10 cm soil depth of ASM, it was increased at the 0–10 cm soil depth of AM. These results indicate that warming had a strong influence on soil microbial communities in the studied high-elevation grasslands and that the effect was dependent on grassland type.  相似文献   

11.
《Ecological Indicators》2007,7(2):277-289
Eutrophication in subtropical wetland ecosystems can lead to extensive displacements of vegetative communities and as a result changes in overall environmental conditions (loss of indigenous habitat, substrate quality, etc.). This has generated a demand for a set of sensitive indicator(s) that prelude these structural changes. The functional response of bacterial communities may indicate the effect and extent of the impact on the overall system. The effects of nutrient enrichment on the microbial community and its ecophysiology were measured in a subtropical marsh (Water Conservation Area 2a) in the northern Everglades, USA. We investigated the microbially mediated organic matter decomposition processes and nutrient cycling in three areas of the marsh, a nutrient enriched site, an intermediate site and a unimpacted (oligotrophic) site. We chose measures associated to the hydrolytic enzyme activities of alkaline phosphatase, β-glucosidase and aminopeptidase. We also monitored microbial biomass carbon (C), nitrogen (N) and phosphorus (P) and the associated elemental turnover rates (C, N and P). We found a significant (α = 0.05) spike in microbial biomass C, N, and P in the intermediate site. The elemental turnover rates (C, N and P) where significantly higher in the impacted and intermediate site when compared to the unimpacted site. The enzymatic profiles at the unimpacted site illustrate a system regulated for optimal use of P. In the intermediate zone between the overall P-limited and P-impacted areas, the nutrient inputs alleviates the stress imposed by the P-limitation. Microbial biomass increased dramatically without a decrease in the overall microbial metabolic efficiency. The metabolic coefficients (particularly q-Potentially Mineralizable P – qPMP and qCO2) indicated that after the disturbance, the impacted areas in the Everglades are characterized by relatively open, inefficient nutrient cycles. The nonlinear shifts (threshold behavior) in microbial parameters indicate that microbial indicators function effectively as early warning signals.  相似文献   

12.
A variety of environmental processes, including topography, edaphic and disturbance factors can influence vegetation composition. The relative influence of these patterns has been known to vary with scale, however, few studies have focused on environmental drivers of composition at the mesoscale. This study examined the relative importance of topography, catchment flow and soil in influencing tree assemblages in Karawatha Forest Park; a South-East Queensland subtropical eucalypt forest embedded in an urban matrix that is part of the Terrestrial Ecosystem Research Network South-East Queensland Peri-urban SuperSite. Thirty-three LTER plots were surveyed at the mesoscale (909 ha), where all woody stems ≥1.3 m high rooted within plots were sampled. Vegetation was divided into three cohorts: small (≥1–10 cm DBH), intermediate (≥10–30 cm DBH), and large (≥30 cm DBH). Plot slope, aspect, elevation, catchment area and location and soil chemistry and structure were also measured. Ordinations and smooth surface modelling were used to determine drivers of vegetation assemblage in each cohort. Vegetation composition was highly variable among plots at the mesoscale (plots systematically placed at 500 m intervals). Elevation was strongly related to woody vegetation composition across all cohorts (R2: 0.69–0.75). Other topographic variables that explained a substantial amount of variation in composition were catchment area (R2: 0.43–0.45) and slope (R2: 0.23–0.61). Soil chemistry (R2: 0.09–0.75) was also associated with woody vegetation composition. While species composition differed substantially between cohorts, the environmental variables explaining composition did not. These results demonstrate the overriding importance of elevation and other topographic features in discriminating tree assemblage patterns irrespective of tree size. The importance of soil characteristics to tree assemblages was also influenced by topography, where ridge top sites were typically drier and had lower soil nutrient levels than riparian areas.  相似文献   

13.
Aragüés  R.  Puy  J.  Isidoro  D. 《Plant and Soil》2004,258(1):69-80
High-density olive orchards are increasing around the world, many of which may be potentially affected by salinity and waterlogging (hypoxia), two important stresses common in irrigated fields in arid and semi-arid climates. However, the response of olive to these stresses under field conditions is not well established. Therefore, our objective was to evaluate the vegetative growth response of young olive trees (Olea europaea L., cv. Arbequina) grown in a spatially variable waterlogged, saline-sodic field. We monitored the growth in trunk diameter of 341, 3-year-old olives between September 1999 and September 2000. Field contour maps were developed delineating soil salinity (ECa), relative ground elevation (RGE) and water table depth (WTD). Soil samples were also collected and analyzed for ECe and SARe in order to characterize the salinity and sodicity profiles and develop the ECa-ECe calibration equation. The infiltration rate (IR) of the crusted and uncrusted soil and the penetration resistance (PR) were also measured. The field was characterized by spatially variable ECe (2–15 dS m–1), SARe (3–40), RGE (–4 to +4 cm) and WTD (0.5–1.9 m, with corresponding ground water EC values between 12 and 6 dS m–1). Steady-state IR of crusted soil was only 7% of the uncrusted soil. Since the field was heavily irrigated by flooding, waterlogging conditions were related to low RGE values. Soil salinity was negatively correlated (R 2 = 0.83, P<0.001) with RGE (ponded water) and WTD (upward flux), due to the evapo-concentration of water and salts at the soil surface. Thus, inverted salinity profiles developed in high salinity areas. Fifty-five percent of the olives were dead 3.5 years after planted, and most of them were located in areas of high ECe (> 10 dS m–1), low RGE (< – 1.5 cm) and low WTD (< 1.2 m). The surviving trees had vegetative salinity tolerance values of ECe threshold = 4 dS m–1 and slope = –12% (i.e., percent decline per unit increase in ECe above the treshold), indicating that the Arbequina olive is moderately tolerant to salinity. The RGE and WTD thresholds for olive's survival were > 0.1 cm and > 1.6 m, respectively. Thus, very small changes in ground elevation had a significant effect on olive's survival or death. The coupled effects of salinity and waterlogging (hypoxia) stresses were most detrimental for olive's growth.  相似文献   

14.
The degree of tree-crop competition for nitrogen (N) and its effect on fertilizer-use efficiency and N movement were examined in a pecan (Carya illinoensis K. Koch)-cotton (Gossypium hirsutum L.) alley cropping system. Assessment of competition was accomplished via the installation of a belowground polyethylene root barrier in half the number of plots in order to provide two treatments–barrier and non-barrier. The percentage of N derived from fertilizer (NDF) and fertilizer-use efficiency (UFN) were determined using 15N-enriched ammonium sulfate (5% atom enrichment) applied at 89.6 kg N ha–1. In cotton, the barrier treatment resulted in higher leaf (38%), stem (66%), seed cotton (55%) and total (58%) biomass compared to the non-barrier treatment. Total N content in leaf, stem and seed cotton was 67% higher in barrier compared to non-barrier treatment. Percentage of NDF in cotton leaf and stem was significantly lower in barrier (15.8% and 17.3%, respectively) compared to non-barrier treatment (20.4% and 21.2%, respectively). For UFN, this trend was reversed, with plants in barrier treatment having a higher percentage of UFN. Root trenching did not affect pecan foliar N concentration, canopy N content, NDF or UFN. In soil, N recovery at 90–120 cm depth was lower in non-barrier treatment, indicating tree root uptake of fertilizer N. Although tree roots in non-barrier treatment had access to fertilizer N, competition was mainly for N already in the soil, since fertilizer was applied after major seasonal nutrient demands of the trees had been met. Overall, the alley cropping system in this study exhibits potential for efficient N cycling, given the apparent ability of pecan trees to intercept and uptake N fertilizer from deeper soil layers and return to surface soil via litterfall.  相似文献   

15.
The root systems of apple trees from five orchards ranging in age from 1.5-y to 14-y were sampled to depths of between one and two metres using soil cores. Although trees came from orchards which differed in soil-type, tree spacings and management, consistent patterns were found in root systems. In orchards of 4-y and older, roots of adjacent trees met so that soil volumes within the planting grids (i.e, tree spacings of approximately 5 m inter-row×4 m intra-row distances) were completely explored, although not completely occupied by roots. Mean root-length densities declined with depth for these orchards. In the 1.5-y orchard, roots from adjacent trees did not meet and root-length densities declined with radial distance from the stem as well as with depth.Root-length densities in the top 1 m ranged from zero to about 1.0 cm.cm–3 in all orchards and were highly variable. The proportions of core samples having zero values for root-length density were used to subdivide the root zone into volumes in which all samples contained roots, and volumes in which some samples had no roots.Results suggest that roots in an average tree penetrate to at least one metre depth in all but very young orchards so that soil in this volume is fully explored. Volumes filled by roots and volumes occupied at any particular root-length density appear to reach a maximum at about 4 years. Volumes of soil occupied at any particular root-length density were equal in all orchards older than 4 years. This suggests that root growth was balanced by root death. In contrast woody roots continue to accumulate with time.  相似文献   

16.
The effects of temperature on rates of mineralization of [14C]lignocellulose were investigated in water and sediment from a thermally impacted stream and from a nearby unimpacted swamp at the Savannah River Plant, South Carolina. The temperature optimum for lignocellulose mineralization remained near 35°C at the unimpacted site throughout the sampling period from November 1986 to May 1987. The temperature optimum for lignocellulose mineralization in the thermally impacted stream was near 45°C when thermal effluents from a nuclear reactor were released to the stream, and was near 35°C when the reactor was not operating. Microbial populations capable of rapidly degrading lignocellulose at higher temperatures (45–55°C) developed between 9 and 27 days under conditions of thermal stress, indicating that under favorable conditions thermophilic microorganisms became dominant components of the microbiota. Removal of thermal stress for periods of 75 days or less resulted in a collapse of the thermophilic degrading population.  相似文献   

17.
Apple replant disease (ARD) is a soil-disease syndrome of complex etiology that affects apple tree roots in replanted orchards, resulting in stunted tree growth and reduced yields. To investigate whether different groundcover management systems (GMSs) influence subsequent ARD severity, we grew apple seedlings in an outdoor nursery in pots containing orchard soil from field plots where four GMSs had been maintained for 14 years in an orchard near Ithaca, NY, USA. The GMS treatments were: (1) pre-emergence herbicide (Pre-H), bare soil strips maintained by applying tank-mixed glyphosate, norflurazon and diuron herbicides annually; (2) post-emergence herbicide (Post-H), sparse weed cover maintained by applying glyphosate in May and July each year; (3) mowed sod grass (Mowed Sod); and (4) bark mulch (Mulch). Soils were also sampled from the grass drive lane maintained between the trees in the orchard (Grass Lane). Sampled soils (Orchard soil) were either pasteurized or left untreated, placed into 4-L pots, and planted with one apple seedling per pot. After 3 months of growth, soil (Bioassay soil) and apple tree roots (Bioassay roots) were sampled from each pot and microbial populations colonizing samples were characterized. Seedling growth was reduced in soils sampled from all four GMS treatments compared to the Grass Lane soils. Among the GMS treatments, seedling biomass was greater in Pre-H than in the Post-H soil. Soil microbial communities and nutrient availability differed among all four GMS treatments and the Grass Lane. Root-lesion (Pratylenchus sp.) nematode populations were higher in the Mowed Sod than in the other GMS treatments. Soil bacterial and fungal community composition was assessed in Orchard and Bioassay soils and Bioassay roots with a DNA fingerprinting method (T-RFLP). Redundancy analysis indicated that soils sampled from the different GMS treatments differentially influenced seedling biomass. A clone library of 267 soil bacteria was developed from sampled Orchard soils and Bioassay roots. These communities were dominated by Acidobacteria (25% of sequences), Actinobacteria (19%), δ-Proteobacteria (12%), β-Proteobacteria (10%), and these ratios differed among the GMS soils. Members of the family Comamonadaceae were detected only in tree-row soil, not in the Grass Lanes. The dominant sequences among 145 cloned fungi associated with apple seedling roots were Fusarium oxysporum (16% of sequences), an uncultured soil fungus submitted under DQ420986 (12%), and Rhodotorula mucilaginosa (9%). In a redundancy analysis, factors including fungal and oomycete community compositions, soil respiration rates, population sizes of culturable bacteria and fungi, soil organic matter content, and nutrient availability, were not significant predictors of apple seedling biomass in these soils. Different GMS treatments used by apple growers may influence subsequent ARD severity in replanted trees, but edaphic factors commonly associated with soil fertility may not reliably predict tree-root health and successful establishment of replanted orchards.  相似文献   

18.
The international conference ‘Social Biomimicry: Insect Societies and Human Design’, hosted by Arizona State University, USA, 18–20 February 2010, explored how the collective behaviour and nest architecture of social insects can inspire innovative and effective solutions to human design challenges. It brought together biologists, designers, engineers, computer scientists, architects and businesspeople, with the dual aims of enriching biology and advancing biomimetic design.  相似文献   

19.
Capture of male lesser peachtree borer, Synanthedon pictipes (Grote & Robinson), and peachtree borer, S. exitiosa (Say) (Lepidoptera: Sesiidae), in pheromone traps positioned from 0 m to 6 m above ground was affected by surrounding tree height. In a peach orchard with a 3 m canopy height, more S. pictipes were captured within the canopy zone at 1.8 m than above at 5.5 m. Trap capture was similar for S. pictipes in a mating disruption orchard with more caught at 2 m than at 4 m or 6 m. Capture at 1.8–5.5 m in mixed deciduous woods, with an average canopy height of 22 m, was not significantly different. In orchards, more S. exitiosa were captured at 1.8 m rather than at 5.5 m but no difference was detected in numbers captured from 0 m to 5.5 m in mixed deciduous woods. In a peach-pecan interplanted orchard, where pecan trees were three times taller but only one-ninth the density of peach, capture of both species was similar to capture in peach orchards when traps were entirely surrounded by peach. However, when traps were adjacent to a single, taller non-host pecan tree, capture was similar to mixed deciduous woods. These data suggest that habitat structure supersedes presence/absence of host plants affecting vertical flight activity of male S. pictipes and S. exitiosa.  相似文献   

20.
Understanding the changes of soil respiration under increasing N fertilizer in cropland ecosystems is crucial to accurately predicting global warming. This study explored seasonal variations of soil respiration and its controlling biochemical properties under a gradient of Nitrogen addition during two consecutive winter wheat growing seasons (2013–2015). N was applied at four different levels: 0, 120, 180 and 240 kg N ha-1 year-1 (denoted as N0, N12, N18 and N24, respectively). Soil respiration exhibited significant seasonal variation and was significantly affected by soil temperature with Q10 ranging from 2.04 to 2.46 and from 1.49 to 1.53 during 2013–2014 and 2014–2015 winter wheat growing season, respectively. Soil moisture had no significant effect on soil respiration during 2013–2014 winter wheat growing season but showed a significant and negative correlation with soil respiration during 2014–2015 winter wheat growing season. Soil respiration under N24 treatment was significantly higher than N0 treatment. Averaged over the two growing seasons, N12, N18 and N24 significantly increased soil respiration by 13.4, 16.4 and 25.4% compared with N0, respectively. N addition also significantly increased easily extractable glomalin-related soil protein (EEG), soil organic carbon (SOC), total N, ammonium N and nitrate N contents. In addition, soil respiration was significantly and positively correlated with β-glucosidase activity, EEG, SOC, total N, ammonium N and nitrate N contents. The results indicated that high N fertilization improved soil chemical properties, but significantly increased soil respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号