共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Cell component fractions (14C-labeled) were prepared from bacterial and fungal cultures isolated from the Pawnee National Grassland in northeastern Colorado and tested for seasonal changes in degradability. The decomposition of cell component fractions was monitored from May to December of 1977 and during March of 1978, using soil samples taken at 2- to 3-week intervals. The release of 14CO2 from bacterial and fungal cell walls was inversely related (P < 0.01) to the soil moisture content. Except for cytoplasm isolated from an Aspergillus sp., all other cytoplasmic and polysaccharide fractions did not demonstrate a significant relationship between soil moisture and decomposability. In general, bacterial cell walls and polysaccharides were more susceptible to decomposition than fungal cell walls, although the seasonal changes in decomposability for both fractions were similar. These patterns of cell component utilization indicate that the decomposition of cell wall material may be more closely linked, on an inverse basis, to the availability of soil moisture and release of soluble, low-molecular-weight organics resulting from primary production events. 相似文献
3.
Three fractions of mercury (mobile, semi-mobile, and non-mobile mercury) were detected in the soil of an estuarine wetland in Nansi Lake, which is on the east route of China's South-to-North Water Transfer Project. The correlations between these mercury fractions and soil properties were examined under different levels of toxicity. Furthermore, the effects of two flooding conditions (permanent flooding and seasonal flooding) on mercury mobility were analyzed. Results showed that soil pH was negatively correlated with mobile mercury, whereas semi-mobile mercury was positively correlated with total aluminum, iron, and manganese. Moreover, free alumina was positively correlated with all three fractions of mercury. Our study suggests that high contents of soil acid and free alumina might promote wetlands as “sinks” for mercury sequestration, along with low concentrations of organic matter and manganese. In addition, seasonally flooded wetland might limit the production of toxic mobile mercury more than permanently flooded wetland. Large areas of seasonally flooded wetlands in the watershed are permanently flooded by the water transfer project, which elevates the water level during the dry season. As a result, the potential toxicity of mercury may increase in the watershed during water transfer, which should gain more attention. 相似文献
4.
Agricultural practices have proven to be unsuitable in many cases, causing considerable reductions in soil quality. Land management practices can provide solutions to this problem and contribute to get a sustainable agriculture model. The main objective of this work was to assess the effect of different agricultural management practices on soil microbial community structure (evaluated as abundance of phospholipid fatty acids, PLFA). Five different treatments were selected, based on the most common practices used by farmers in the study area (eastern Spain): residual herbicides, tillage, tillage with oats and oats straw mulching; these agricultural practices were evaluated against an abandoned land after farming and an adjacent long term wild forest coverage. The results showed a substantial level of differentiation in the microbial community structure, in terms of management practices, which was highly associated with soil organic matter content. Addition of oats straw led to a microbial community structure closer to wild forest coverage soil, associated with increases in organic carbon, microbial biomass and fungal abundances. The microbial community composition of the abandoned agricultural soil was characterised by increases in both fungal abundances and the metabolic quotient (soil respiration per unit of microbial biomass), suggesting an increase in the stability of organic carbon. The ratio of bacteria:fungi was higher in wild forest coverage and land abandoned systems, as well as in the soil treated with oat straw. The most intensively managed soils showed higher abundances of bacteria and actinobacteria. Thus, the application of organic matter, such as oats straw, appears to be a sustainable management practice that enhances organic carbon, microbial biomass and activity and fungal abundances, thereby changing the microbial community structure to one more similar to those observed in soils under wild forest coverage. 相似文献
5.
Changes of Soil Bacterial Diversity as a Consequence of Agricultural Land Use in a Semi-Arid Ecosystem 总被引:1,自引:0,他引:1
Guo-Chun Ding Yvette M. Piceno Holger Heuer Nicole Weinert Anja B. Dohrmann Angel Carrillo Gary L. Andersen Thelma Castellanos Christoph C. Tebbe Kornelia Smalla 《PloS one》2013,8(3)
Natural scrublands in semi-arid deserts are increasingly being converted into fields. This results in losses of characteristic flora and fauna, and may also affect microbial diversity. In the present study, the long-term effect (50 years) of such a transition on soil bacterial communities was explored at two sites typical of semi-arid deserts. Comparisons were made between soil samples from alfalfa fields and the adjacent scrublands by two complementary methods based on 16S rRNA gene fragments amplified from total community DNA. Denaturing gradient gel electrophoresis (DGGE) analyses revealed significant effects of the transition on community composition of Bacteria, Actinobacteria, Alpha- and Betaproteobacteria at both sites. PhyloChip hybridization analysis uncovered that the transition negatively affected taxa such as Acidobacteria, Chloroflexi, Acidimicrobiales, Rubrobacterales, Deltaproteobacteria and Clostridia, while Alpha-, Beta- and Gammaproteobacteria, Bacteroidetes and Actinobacteria increased in abundance. Redundancy analysis suggested that the community composition of phyla responding to agricultural use (except for Spirochaetes) correlated with soil parameters that were significantly different between the agricultural and scrubland soil. The arable soils were lower in organic matter and phosphate concentration, and higher in salinity. The variation in the bacterial community composition was higher in soils from scrubland than from agriculture, as revealed by DGGE and PhyloChip analyses, suggesting reduced beta diversity due to agricultural practices. The long-term use for agriculture resulted in profound changes in the bacterial community and physicochemical characteristics of former scrublands, which may irreversibly affect the natural soil ecosystem. 相似文献
6.
How farmers perceive the state of their pastures is an important component of their management decisions and affects natural
resources in arid and semi-arid regions. In an explorative study conducted in the Rehoboth farm area of central Namibia, we
addressed the question whether the judgments of commercial farmers on pasture conditions are consistent with a botanical assessment
of these pastures based on measurements. The perceptions were inferred from the comparative statements of farmers on the pasture
quality of adjacent farm pairs. For the botanical assessment, biomass and plant species frequency counts of the same pastures
were used. The results of the statistical analysis show a large agreement between perceived and measured pasture states of
corresponding farm pairs, thus pasture quality dimensions perceived by the farmers agreed with the measured pasture quality
variables. We also discuss the problems of designing more elaborate studies of this type. 相似文献
7.
The Role of Livestock Mobility in the Livelihood Strategies of Rural Peoples in Semi-Arid West Africa 总被引:1,自引:0,他引:1
Matthew D. Turner John G. McPeak Augustine Ayantunde 《Human ecology: an interdisciplinary journal》2014,42(2):231-247
Over the past 10 years, mobility of livestock has been portrayed as increasing the resilience of rural households in semi-arid Africa to climate change and variability. With this recognition, there has been important work characterizing livestock mobility and the barriers to it. This paper adds to this work by addressing two gaps in the literature: 1. An understanding in the variation of livestock mobility practices among communities; and 2. An understanding of rural peoples’ views of the advantages and disadvantages of livestock mobility as well as the factors affecting their decisions about herd movements. A mixed-methods approach was adopted to analyze data collected by household survey and group interviews conducted in 32 multi-ethnic villages in Mali and Niger spanning the 12.5° N to 16.5° N latitudinal range. The results of regression and qualitative analyses show that: 1. A large fraction of rural households rely on livestock as part of their livelihood strategies; 2. Grazing management of a large majority of village livestock depends on movements outside of the village territory, especially during the rainy season; 3. The mobility of village livestock is not strongly influenced by the village’s sociprofessional composition (farmer, herder, fisher, artisan..etc.); and 4. The prevalence of extra-village movements of village livestock (sheep and cattle) is higher in areas of higher population density. Despite the advantages of livestock mobility cited by informants, longer-distance movements are inhibited by risks associated with climatic, land-use, and sociopolitical change. Herd managers make decisions using diverse information about potential destinations with greater trust of information gathered by themselves or close kin. The implications of these findings for livestock management and policy in the region are discussed. 相似文献
8.
Denitrification in Aquifer Soil and Nearshore Marine Sediments Influenced by Groundwater Nitrate 总被引:3,自引:2,他引:3
下载免费PDF全文

We estimated rates of denitrification at various depths in sediments known to be affected by submarine discharge of groundwater, and also in the parent aquifer. Surface denitrification was only measured in the autumn; at 40-cm depth, where groundwater-imported nitrate has been measured, denitrification occurred consistently throughout the year, at rates from 0.14 to 2.8 ng-atom of N g−1 day−1. Denitrification consistently occurred below the zone of sulfate reduction and was sometimes comparable to it in magnitude. Denitrification occurred deep (14 to 40 cm) in the sediments along 30 km of shoreline, with highest rates occurring where groundwater input was greatest. Denitrification rates decreased with distance offshore, as does groundwater influx. Added glucose greatly stimulated denitrification at depth, but added nitrate did not. High rates of denitrification were measured in the aquifer (17 ng-atom of N g−1 day−1), and added nitrate did stimulate denitrification there. The denitrification measured was enough to remove 46% of the nitrate decrease observed between 40- and 14-cm depth in the sediment. 相似文献
9.
This investigation was designed to explore the relationships between lichen symbionts (phycobiont and mycobiont) and the substrate on which they grow by examining the chemical and ultrastructural features of the lichen-soil interface. These lichens form an integral part of microbiotic soil crusts. Fragments of three different lichen biotypes growing over gypsum crystals and marls were fixed and embedded in resin. The lichen-substratum interface was then examined by scanning electron microscopy with backscattered electron imaging. In situ observation, microanalytical (EDS), and FT-Raman plus infrared spectroscopy of the lichen-substratum interface indicated that different ultrastructural features of the mycobiont were related to biogeochemical processes and Ca 2+ distribution in the soil crust. Phycobionts were observed to make direct contact with the substratum and to be surrounded by a nondifferentiated thallus structure. These observations suggest that they can grow outside the thallus in the early stages of lichen development in the semi-arid conditions of their habitat. The particular ultrastructural features of the lichen thallus and of the lichen-substratum interface appear to have marked effects on runoff phenomena and ponding generation of the surface. 相似文献
10.
11.
The effect of resource pulses, such as rainfall events, on soil respiration plays an important role in controlling grassland carbon balance, but how shifts in long-term precipitation regime regulate rain pulse effect on soil respiration is still unclear. We first quantified the influence of rainfall event on soil respiration based on a two-year (2006 and 2009) continuously measured soil respiration data set in a temperate steppe in northern China. In 2006 and 2009, soil carbon release induced by rainfall events contributed about 44.5% (83.3 g C m−2) and 39.6% (61.7 g C m−2) to the growing-season total soil respiration, respectively. The pulse effect of rainfall event on soil respiration can be accurately predicted by a water status index (WSI), which is the product of rainfall event size and the ratio between antecedent soil temperature to moisture at the depth of 10 cm (r
2 = 0.92, P<0.001) through the growing season. It indicates the pulse effect can be enhanced by not only larger individual rainfall event, but also higher soil temperature/moisture ratio which is usually associated with longer dry spells. We then analyzed a long-term (1953–2009) precipitation record in the experimental area. We found both the extreme heavy rainfall events (>40 mm per event) and the long dry-spells (>5 days) during the growing seasons increased from 1953–2009. It suggests the shift in precipitation regime has increased the contribution of rain pulse effect to growing-season total soil respiration in this region. These findings highlight the importance of incorporating precipitation regime shift and its impacts on the rain pulse effect into the future predictions of grassland carbon cycle under climate change. 相似文献
12.
We have constructed a mutant of the cyanobacterium Synechococcus sp. PCC7942 deficient in the Photosystem I subunit PsaL. As has been shown in other cyanobacteria, we find that Photosystem I is exclusively monomeric in the PsaL(-) mutant: no Photosystem I trimers can be isolated. The mutation does not significantly alter pigment composition, photosystem stoichiometry, or the steady-state light-harvesting properties of the cells. In agreement with a study in Synechococcus sp. PCC7002 [Schluchter et al. (1996) Photochem Photobiol 64: 53-66], we find that state transitions, a physiological adaptation of light-harvesting function, occur significantly faster in the PsaL(-) mutant than in the wild-type. To explore the reasons for this, we have used fluorescence recovery after photobleaching (FRAP) to measure the diffusion of phycobilisomes in vivo. We find that phycobilisomes diffuse, on average, nearly three times faster in the PsaL(-) mutant than in the wild-type. We discuss the implications for the mechanism of state transitions in cyanobacteria. 相似文献
13.
Photosynthesis and Transpiration in Rice as Influenced by Soil Moisture and Air Humidity 总被引:4,自引:0,他引:4
The paper describes the effect of soil moisture content andair humidity on CO2 exchange (PN), CO2 diffusion resistance(Cr) and transpiration (E) in four varieties of japonica rice(Oryza sativa L.). A decrease in soil moisture content reducedthe rate of photosynthesis to a varying degree in the varieties.Reduction in photosynthesis was attributed to increase in Cr.The effect of low soil moisture on photosynthesis and CO2 diffusionwas further intensified by decrease in air humidity. By maintaininga high humidity in the air around the leaves however, the effectof soil moisture deficiency was reduced considerably, exceptin Rikuto Norin 21 which was very sensitive to soil-moisturedeficiency alone. Dryness of the air enhanced the transpirationrate, although the increase was relatively less in the plantsfacing a simultaneous water crisis at the root surface. In plantsgrowing under flooded conditions, a decrease in air humiditycaused a slight depression in PN despite the simultaneous decreasein Cr. Oryza sativa L., rice, photosynthesis, transpiration, diffusion resistance, soil moisture, air humidity 相似文献
14.
Influence of Soil on Fecal Indicator Organisms in a Tidally Influenced Subtropical Environment 总被引:4,自引:7,他引:4
下载免费PDF全文

Timothy R. Desmarais Helena M. Solo-Gabriele Carol J. Palmer 《Applied microbiology》2002,68(3):1165-1172
The potential regrowth of fecal indicator bacteria released into coastal environments in recreational water bodies has been of concern, especially in tropical and subtropical areas where the number of these bacteria can be artificially elevated beyond that from fecal impacts alone. The task of determining the factors that influence indicator bacterial regrowth was addressed though a series of field sampling and laboratory experiments using in situ densities of Escherichia coli, enterococci, and Clostridium perfringens in river water, sediment, and soil. Field sampling efforts included the collection of surface sediments along the cross section of a riverbank, a 20-cm-deep soil core, and additional surface soils from remote locations. In addition to field sampling, two types of laboratory experiments were conducted. The first experiment investigated the survival of bacteria already present in river water with the addition of sterile and unsterile sediment. The second experiment was designed to simulate the wetting and drying effects due to tidal cycles. The results from the sampling study found elevated numbers of E. coli and C. perfringens in surficial sediments along the riverbank near the edge of the water. C. perfringens was found in high numbers in the subsurface samples obtained from the soil core. Results from laboratory experiments revealed a significant amount of regrowth for enterococci and E. coli with the simulation of tides and addition of sterile sediment. Regrowth was not observed for C. perfringens. This study demonstrates the need to further evaluate the characteristics of indicator microbes within tropical and subtropical water systems where natural vegetation, soil embankments, and long-term sediment accumulation are present. In such areas, the use of traditional indicator microbes to regulate recreational uses of a water body may not be appropriate. 相似文献
15.
To quantify the effects of water table drawdown and soil warming on CH4 fluxes, we used a static chamber technique during the growing seasons (May–October) of 2011–2013 at hollow and hummock microforms at three sites of a continental bog near the town of Wandering River, Alberta, Canada: (1) Control, (2) Experimental drained, and (3) old Drained. To simulate climatic warming, we used open top chambers to passively warm half of the hollows and half of the hummocks at each of the water level treatment sites. Water table drawdown significantly reduced CH4 flux by 50% in 3 years and 76% in 13 years of drainage. The hollows showed greater reduction of efflux as compared to hummocks. A persistent functional relationship of CH4 flux with water level was found across all sites in all years. The relationship revealed that the contribution of change in vegetation type at hollows and hummocks to CH4 production and emission was relatively less important than that of the water level. Hummocks and hollows responded to warming differently. At the control, experimental and drained sites, warming increased flux at hollows by 16, 21 and 26%, and reduced flux at hummocks by 4, 37, and 56%, respectively. The combined effect of lowered water table and warming on CH4 emission was overall negative, although the interaction between the two contributing factors was not significant. Therefore, whereas climatic warming and subsequent lowering of water table are expected to reduce CH4 efflux from dry ombrotrophic bogs of Alberta, different microforms at these bogs may respond differently with accelerated emissions at warmed, wetter (hollows) and reduced emissions at warmed, drier (hummocks) microforms. Overall, CH4 efflux from Alberta’s dry continental bogs that are not underlain by permafrost might be affected only slightly by the direct effect of predicted climate warming, although initial water table position will be an important control on the overall response. 相似文献
16.
The impedance of erythrocytes of man, cattle, sheep, dog, cat, rabbit, and chicken was measured in the range from 0.5 to 250 Mc. The dielectric constant of the red cell interior is 50 at 250 Mc, varies but little with species, and can readily be accounted for by the cells' hemoglobin content. The electrical conductivity of the red cell interior was determined between 70 and 100 Mc. The values differ from species to species within the rather limited range from 4.4 to 5.3 mmho/cm. Removal of the cell membranes does not affect the conductivity. Hence, the cell interior behaves, from an electrical point of view, like a highly concentrated hemoglobin solution. A theoretical value for the electrical conductivity of erythrocyte interiors, which is calculated on the basis of the salt content of the cell, ion mobility, and the volume concentration of the hemoglobin, is roughly twice as large as the measured value. This discrepancy is typical not only of the red blood cell. Pertinent measurements show that it is probably caused by hydrodynamic and possibly by electrostatic effects also, which lower the mobility of the ions. From the lower electrical mobility it appears that a lowered diffusion constant of the electrolytes and nonelectrolytes within the cell is indicated. 相似文献
17.
J. T. Walker 《Journal of nematology》1969,1(3):260-264
Numbers of Pratylenchus penetrans in sterilized soil decreased significantly 2 weeks after the addition of 1% w/w (700 ppm N) nonsterile soybean meal (SBM), or sterilized SBM in combination with selected microorganisms. Sterilized SBM had no effect on nematode populations in steamed soil. Bacteria and fungi in the presence of SBM were more effective than the actinomycetes tested, causing up to 96-100% reduction in nematode populations. Simpler nitrogenous compounds included KNO₂, Ca(NO₃)₂, NH₄NO₃, (NH₄)₂CO₃, urea, and peptone, decreased nematode populations with variable effectiveness when added to steamed soil at 700 ppm N; KNO₂ was the most nematicidal. 相似文献
18.
Characterization of soil water content (SWC) profiles at catchment scale has profound implications for understanding hydrological processes of the terrestrial water cycle, thereby contributing to sustainable water management and ecological restoration in arid and semi-arid regions. This study described the vertical profiles of SWC at the small catchment scale on the hilly and gully Loess Plateau in Northeast China, and evaluated the influences of selected environmental factors (land-use type, topography and landform) on average SWC within 300 cm depth. Soils were sampled from 101 points across a small catchment before and after the rainy season. Cluster analysis showed that soil profiles with high-level SWC in a stable trend (from top to bottom) were most commonly present in the catchment, especially in the gully related to terrace. Woodland soil profiles had low-level SWC with vertical variations in a descending or stable trend. Most abandoned farmland and grassland soil profiles had medium-level SWC with vertical variations in varying trends. No soil profiles had low-level SWC with vertical variations in an ascending trend. Multi-regression analysis showed that average SWC was significantly affected by land-use type in different soil layers (0–20, 20–160, and 160–300 cm), generally in descending order of terrace, abandoned farmland, grassland, and woodland. There was a significant negative correlation between average SWC and gradient along the whole profile (P<0.05). Landform significantly affected SWC in the surface soil layer (0–20 cm) before the rainy season but throughout the whole profile after the rainy season, with lower levels on the ridge than in the gully. Altitude only strongly affected SWC after the rainy season. The results indicated that land-use type, gradient, landform, and altitude should be considered in spatial SWC estimation and sustainable water management in these small catchments on the Loess Plateau as well as in other complex terrains with similar settings. 相似文献
19.
Ethanol has a profound impact on biological systems and is moreover used in various medical and nonmedical applications. Its interaction with the lipid part of biological membranes has been the subject of intensive studies, but surprisingly, to our knowledge, no study has examined the influence of ethanol on lipid bilayer nanomechanics. We performed atomic force microscopy-based measurements to assess the influence of ethanol on the nanomechanical properties of fluid supported lipid bilayers. Ethanol significantly reduces membrane stability, bilayer thickness, Young’s modulus, area stretch modulus, and bending stiffness. Altogether, our data suggest that ethanol addition to supported lipid bilayers supports both the hydrophobic and the hydrophilic permeation pathways by a decrease of bilayer thickness and reduced stability, respectively. 相似文献
20.
Afforestation of former croplands has been proposed as a promising way to mitigate rising atmospheric CO2 concentration in view of the commitment to the Kyoto Protocol. Central to this C sequestration is the dynamics of soil organic C (SOC) storage and stability with the development of afforested plantations. Our previous study showed that SOC storage was not changed after afforestation except for the 0–10 cm layer in a semi-arid region of Keerqin Sandy Lands, northeast China. In this study, soil organic C was further separated into light and heavy fractions using the density fractionation method, and their organic C concentration and 13C signature were analyzed to investigate the turnover of old vs. new SOC in the afforested soils. Surface layer (0–10 cm) soil samples were collected from 14 paired plots of poplar (Populus × xiaozhuanica W. Y. Hsu & Liang) plantations with different stand basal areas (the sum of the cross-sectional area of all live trees in a stand), ranging from 0.2 to 32.6 m2 ha−1, and reference maize (Zea mays L.) croplands at the same sites as our previous study. Soil ΔC stocks (ΔC refers to the difference in SOC content between a poplar plantation and the paired cropland) in bulk soil and light fraction were positively correlated with stand basal area (R2 = 0.48, p<0.01 and R2 = 0.40, p = 0.02, respectively), but not for the heavy fraction. SOCcrop (SOC derived from crops) contents in the light and heavy fractions in poplar plantations were significantly lower as compared with SOC contents in croplands, but tree-derived C in bulk soil, light and heavy fraction pools increased gradually with increasing stand basal area after afforestation. Our study indicated that cropland afforestation could sequester new C derived from trees into surface mineral soil, but did not enhance the stability of SOC due to a fast turnover of SOC in this semi-arid region. 相似文献