首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although pelvic irradiation is effective for the treatment of various cancer types, many patients who receive radiotherapy experience serious complications. Gut microbial dysbiosis was hypothesized to be related to the occurrence of radiation-induced complications in cancer patients. Given the lack of clinical or experimental data on the impact of radiation on gut microbiota, a prospective observational study of gut microbiota was performed in gynecological cancer patients receiving pelvic radiotherapy. In the current study, the overall composition and alteration of gut microbiota in cancer patients receiving radiation were investigated by 454 pyrosequencing. Gut microbial composition showed significant differences (P < 0.001) between cancer patients and healthy individuals. The numbers of species-level taxa were severely reduced after radiotherapy (P < 0.045), and the abundance of each community largely changed. In particular, the phyla Firmicutes and Fusobacterium were significantly decreased by 10% and increased by 3% after radiation therapy, respectively. In addition, overall gut microbial composition was gradually remolded after the full treatment course of pelvic radiotherapy. In this set of cancer patients, dysbiosis of the gut microbiota was linked to health status, and the gut microbiota was influenced by pelvic radiotherapy. Although further studies are needed to elucidate the relationship between dysbiosis and complications induced by pelvic radiotherapy, the current study may offer insights into the treatment of cancer patients suffering from complications after radiation therapy.  相似文献   

2.
Radiation enteritis (RE) is the most common complication of radiotherapy for pelvic irradiation receivers. Herein we investigated the alterations in gut microbial profiles and their association with enteritis in patients undergoing pelvic radiotherapy. Faecal samples were collected from 18 cervical cancer patients during radiotherapy. Microbiota profiles were characterized based on 16S rRNA sequencing using the Illumina HiSeq platform. Epithelial inflammatory response was evaluated using bacterial‐epithelial co‐cultures. Dysbiosis was observed among patients with RE, which was characterized by significantly reduced α‐diversity but increased β‐diversity, relative higher abundance of Proteobacteria and Gammaproteobacteria and lower abundance of Bacteroides. Coprococcus was clearly enriched prior to radiotherapy in patients who later developed RE. Metastat analysis further revealed unique grade‐related microbial features, such as more abundant Virgibacillus and Alcanivorax in patients with mild enteritis. Additionally, using bacterial‐epithelial co‐cultures, RE patient‐derived microbiota induced epithelial inflammation and barrier dysfunction, enhanced TNF‐α and IL‐1β expression compared with control microbiota. Taken together, we define the overall picture of gut microbiota in patients with RE. Our results suggest that dysbiosis of gut microbiota may contribute to development and progression of RE. Gut microbiota can offer a set of biomarkers for prediction, disease activity evaluation and treatment selection in RE.  相似文献   

3.
Although COVID-19 affects mainly lungs with a hyperactive and imbalanced immune response, gastrointestinal and neurological symptoms such as diarrhea and neuropathic pains have been described as well in patients with COVID-19. Studies indicate that gut–lung axis maintains host homeostasis and disease development with the association of immune system, and gut microbiota is involved in the COVID-19 severity in patients with extrapulmonary conditions. Gut microbiota dysbiosis impairs the gut permeability resulting in translocation of gut microbes and their metabolites into the circulatory system and induce systemic inflammation which, in turn, can affect distal organs such as the brain. Moreover, gut microbiota maintains the availability of tryptophan for kynurenine pathway, which is important for both central nervous and gastrointestinal system in regulating inflammation. SARS-CoV-2 infection disturbs the gut microbiota and leads to immune dysfunction with generalized inflammation. It has been known that cytokines and microbial products crossing the blood-brain barrier induce the neuroinflammation, which contributes to the pathophysiology of neurodegenerative diseases including neuropathies. Therefore, we believe that both gut–lung and gut–brain axes are involved in COVID-19 severity and extrapulmonary complications. Furthermore, gut microbial dysbiosis could be the reason of the neurologic complications seen in severe COVID-19 patients with the association of dysbiosis-related neuroinflammation. This review will provide valuable insights into the role of gut microbiota dysbiosis and dysbiosis-related inflammation on the neuropathy in COVID-19 patients and the disease severity.  相似文献   

4.
How the microbiota affects health and disease is a crucial question. In mice, gut Clostridium bacteria are potent inducers of colonic interleukin (IL)-10-producing Foxp3 regulatory T cells (Treg), which play key roles in the prevention of colitis and in systemic immunity. In humans, although gut microbiota dysbiosis is associated with immune disorders, the underlying mechanism remains unknown. In contrast with mice, the contribution of Foxp3 Treg in colitis prevention has been questioned, suggesting that other compensatory regulatory cells or mechanisms may exist. Here we addressed the regulatory role of the CD4CD8 T cells whose presence had been reported in the intestinal mucosa and blood. Using colonic lamina propria lymphocytes (LPL) and peripheral blood lymphocytes (PBL) from healthy individuals, and those with colon cancer and irritable bowel disease (IBD), we demonstrated that CD4CD8αα (DP8α) T lymphocytes expressed most of the regulatory markers and functions of Foxp3 Treg and secreted IL-10. Strikingly, DP8α LPL and PBL exhibited a highly skewed repertoire toward the recognition of Faecalibacterium prausnitzii, a major Clostridium species of the human gut microbiota, which is decreased in patients with IBD. Furthermore, the frequencies of DP8α PBL and colonic LPL were lower in patients with IBD than in healthy donors and in the healthy mucosa of patients with colon cancer, respectively. Moreover, PBL and LPL from most patients with active IBD failed to respond to F. prausnitzii in contrast to PBL and LPL from patients in remission and/or healthy donors. These data (i) uncover a Clostridium-specific IL-10-secreting Treg subset present in the human colonic LP and blood, (ii) identify F. prausnitzii as a major inducer of these Treg, (iii) argue that these cells contribute to the control or prevention of colitis, opening new diagnostic and therapeutic strategies for IBD, and (iv) provide new tools to address the systemic impact of both these Treg and the intestinal microbiota on the human immune homeostasis.  相似文献   

5.
Fatigue is a disabling symptom in patients with multiple sclerosis and Parkinson’s Disease, and is also common in patients with traumatic brain injury, cancer, and inflammatory disorders. Little is known about the neurobiology of fatigue, in part due to the lack of an approach to induce fatigue in laboratory animals. Fatigue is a common response to systemic challenge by pathogens, a response in part mediated through action of the pro-inflammatory cytokine interleukin-1 beta (IL-1β). We investigated the behavioral responses of mice to IL-1β. Female C57Bl/6J mice of 3 ages were administered IL-1β at various doses i.p. Interleukin-1β reduced locomotor activity, and sensitivity increased with age. Further experiments were conducted with middle-aged females. Centrally administered IL-1β dose-dependently reduced locomotor activity. Using doses of IL-1β that caused suppression of locomotor activity, we measured minimal signs of sickness, such as hyperthermia, pain or anhedonia (as measured with abdominal temperature probes, pre-treatment with the analgesic buprenorphine and through sucrose preference, respectively), all of which are responses commonly reported with higher doses. We found that middle-aged orexin-/- mice showed equivalent effects of IL-1β on locomotor activity as seen in wild-type controls, suggesting that orexins are not necessary for IL-1β -induced reductions in wheel-running. Given that the availability and success of therapeutic treatments for fatigue is currently limited, we examined the effectiveness of two potential clinical treatments, modafinil and methylphenidate. We found that these treatments were variably successful in restoring locomotor activity after IL-1β administration. This provides one step toward development of a satisfactory animal model of the multidimensional experience of fatigue, a model that could allow us to determine possible pathways through which inflammation induces fatigue, and could lead to novel treatments for reversal of fatigue.  相似文献   

6.
7.
Despite antiretroviral therapy (ART), some HIV-infected persons maintain lower than normal CD4+ T-cell counts in peripheral blood and in the gut mucosa. This incomplete immune restoration is associated with higher levels of immune activation manifested by high systemic levels of biomarkers, including sCD14 and D-dimer, that are independent predictors of morbidity and mortality in HIV infection. In this 12-week, single-arm, open-label study, we tested the efficacy of IL-7 adjunctive therapy on T-cell reconstitution in peripheral blood and gut mucosa in 23 ART suppressed HIV-infected patients with incomplete CD4+ T-cell recovery, using one cycle (consisting of three subcutaneous injections) of recombinant human IL-7 (r-hIL-7) at 20 µg/kg. IL-7 administration led to increases of both CD4+ and CD8+ T-cells in peripheral blood, and importantly an expansion of T-cells expressing the gut homing integrin α4β7. Participants who underwent rectosigmoid biopsies at study baseline and after treatment had T-cell increases in the gut mucosa measured by both flow cytometry and immunohistochemistry. IL-7 therapy also resulted in apparent improvement in gut barrier integrity as measured by decreased neutrophil infiltration in the rectosigmoid lamina propria 12 weeks after IL-7 administration. This was also accompanied by decreased TNF and increased FOXP3 expression in the lamina propria. Plasma levels of sCD14 and D-dimer, indicative of systemic inflammation, decreased after r-hIL-7. Increases of colonic mucosal T-cells correlated strongly with the decreased systemic levels of sCD14, the LPS coreceptor - a marker of monocyte activation. Furthermore, the proportion of inflammatory monocytes expressing CCR2 was decreased, as was the basal IL-1β production of peripheral blood monocytes. These data suggest that administration of r-hIL-7 improves the gut mucosal abnormalities of chronic HIV infection and attenuates the systemic inflammatory and coagulation abnormalities that have been linked to it.  相似文献   

8.
IntroductionRadiation therapy for the management of intrahepatic malignancies can adversely affect liver function. Liver damage has been associated with increased levels of inflammatory cytokines, including tumor necrosis factor alpha (TNFα). We hypothesized that an inflammatory state, characterized by increased soluble TNFα receptor (sTNFR1), mediates sensitivity of the liver to radiation.Materials/MethodsPlasma samples collected during 3 trials of liver radiation for liver malignancies were assayed for sTNFR1 level via enzyme-linked immunosorbent assay (ELISA). Univariate and multivariate logistic regression and longitudinal models were used to characterize associations between liver toxicity (defined as a ≥2-point increase in Child-Pugh [CP] score within 6 months of radiation treatment) and sTNFR1 levels, ALBI score, biocorrected mean liver dose (MLD), age, and baseline laboratory values.ResultsSamples from 78 patients given liver stereotactic body radiation therapy [SBRT] (92%) or hypofractionated radiation were examined. There was a significant association between liver toxicity and sTNFR1 levels, and higher values were associated with increased toxicity over a range of mean liver doses. When ALBI score and biocorrected dose were included in the model with sTNFR1, baseline ALBI score and change in ALBI (ΔALBI) were significantly associated with toxicity, but sTNFR1 was not. Baseline aminotransferase levels also predicted toxicity but not independently of ALBI score.ConclusionsElevated plasma sTNFR1 levels are associated with liver injury after liver radiation, suggesting that elevated inflammatory cytokine activity is a predictor of radiation-induced liver dysfunction. Future studies should determine whether administration of agents that decrease inflammation prior to treatment is warranted.  相似文献   

9.
BackgroundInflammation is recognized as a hallmark feature of cancer development and progression. The aim of our study was to investigate the significance of serum nuclear factor kappa-B (NF-κB) levels as a circulating marker in the monitoring of inflammation in breast and colon cancer; to show the relationship between NF-κB with inflammatory parameters as tumour necrosis factor-α (TNF-α), soluble TNF-related apoptosis-inducing ligand (sTRAIL), interleukin-6 (IL-6), pentraxin-3 (PTX-3), procalcitonin (PCT), and C-reactive protein (CRP) levels.MethodsSerum NF-κB, TNF-α, sTRAIL, IL-6, PTX-3, PCT, and serum CRP levels were measured using enzyme-linked immunosorbent assay (ELISA) in 40 patients with breast cancer, 40 patients with colon cancer and 30 healthy controls.ResultsThe serum NF-κB, TNF-α, IL-6, PTX-3, PCT, and serum CRP concentration was significantly higher, and the serum sTRAIL concentration was significantly lower in the patients with breast and colon cancer than in healthy controls. NF-κB was positively correlated with CRP and negatively correlated with sTRAIL.ConclusionsThese results suggest that increased NF-κB may decrease the clinical efficacy of sTRAIL in solid tumour cells. There is a relationship between inflammation and carcinogenesis so that the development of cancer occurs with chronic inflammation in breast and colon. The study results have shown that colon and breast cancer patients have increased systemic inflammation, as measured by increased circulating cytokines, and acute-phase proteins, or by abnormalities in circulating cells. NF-κB may combine with other markers of the systemic inflammatory response in prognostic scores in cancer. In addition to surgical resection of the tumour, and conventional radio and chemotherapy for cancer treatment, the use of sTRAIL or other agonists for cancer therapy appeared a new potential therapy.  相似文献   

10.
Crohn’s disease, an incurable chronic inflammatory bowel disease, has been attributed to both genetic predisposition and environmental factors. A dysbiosis of the gut microbiota, observed in numerous patients but also in at least one hundred unaffected first-degree relatives, was proposed to have a causal role. Gut microbiota β-D-glucuronidases (EC 3.2.1.33) hydrolyse β-D-glucuronate from glucuronidated compounds. They include a GUS group, that is homologous to the Escherichia coli GusA, and a BG group, that is homologous to metagenomically identified H11G11 BG and has unidentified natural substrates. H11G11 BG is part of the functional core of the human gut microbiota whereas GusA, known to regenerate various toxic products, is variably found in human subjects. We investigated potential risk markers for Crohn’s disease using DNA-sequence-based exploration of the β-D-glucuronidase loci (GUS or Firmicute H11G11-BG and the respective co-encoded glucuronide transporters). Crohn’s disease-related microbiomes revealed a higher frequency of a C7D2 glucuronide transporter (12/13) compared to unrelated healthy subjects (8/32). This transporter was in synteny with the potential harmful GUS β-D-glucuronidase as only observed in a Eubacterium eligens plasmid. A conserved NH2-terminal sequence in the transporter (FGDFGND motif) was found in 83% of the disease-related subjects and only in 12% of controls. We propose a microbiota-pathology hypothesis in which the presence of this unique β-glucuronidase locus may contribute to an increase risk for Crohn’s disease.  相似文献   

11.
Glycosylation is an essential post-translational modification, which determines the function of proteins and important processes such as inflammation. β-1,4-galactosyltransferase I (βGalT1) is a key enzyme involved in the addition of galactose moieties to glycoproteins. Intestinal mucins are glycoproteins that protect the gut barrier against invading pathogens and determine the composition of the intestinal microbiota. Proper glycosylation of mucus is important in this regard. By using ubiquitously expressing βGalT1 transgenic mice, we found that this enzyme led to strong galactosylation of mucus proteins, isolated from the gut of mice. This galactosylation was associated with a drastic change in composition of gut microbiota, as TG mice had a significantly higher Firmicutes to Bacteroidetes ratio. TG mice were strongly protected against TNF-induced systemic inflammation and lethality. Moreover, βGalT1 transgenic mice were protected in a model of DSS-induced colitis, at the level of clinical score, loss of body weight, colon length and gut permeability. These studies put βGalT1 forward as an essential protective player in exacerbated intestinal inflammation. Optimal galactosylation of N-glycans of mucus proteins, determining the bacterial composition of the gut, is a likely mechanism of this function.  相似文献   

12.
Inflammatory bowel diseases are associated with dysregulated electrolyte and water transport and resultant diarrhea. Aquaporins are transmembrane proteins that function as water channels in intestinal epithelial cells. We investigated the effect of the inflammatory cytokine, interferon-γ, which is a major player in inflammatory bowel diseases, on aquaporin-1 expression in a mouse colonic epithelial cell line, CMT93. CMT93 monolayers were exposed to 10 ng/mL interferon-γ and aquaporin-1 mRNA and protein expressions were measured by real-time PCR and western blot, respectively. In other experiments, CMT93 cells were pretreated with inhibitors or were transfected with siRNA to block the effects of Janus kinases, STATs 1 and 3, or interferon regulatory factor 2, prior to treatment with interferon-γ. Interferon-γ decreased aquaporin-1 expression in mouse intestinal epithelial cells in a manner that did not depend on the classical STAT1/JAK2/IRF-1 pathway, but rather, on an alternate Janus kinase (likely JAK1) as well as on STAT3. The pro-inflammatory cytokine, interferon-γ may contribute to diarrhea associated with intestinal inflammation in part through regulation of the epithelial aquaporin-1 water channel via a non-classical JAK/STAT receptor signalling pathway.  相似文献   

13.
Radiotherapy is the current frontline cancer treatment, but the resulting severe side effects often pose a significant threat to cancer patients, raising a pressing need for the development of effective strategies for radiotherapy protection. We exploited the distinct metabolic characteristics between normal and malignant cells for a metabolic mechanism of normal tissue protection. We showed that low doses of arsenic induce HIF-1α, which activates a metabolic shift from oxidative phosphorylation to glycolysis, resulting in increased cellular resistance to radiation. Of importance is that low-dose arsenic-induced HIF-1α requires functional p53, limiting the glycolytic shift to normal cells. Using tumor-bearing mice, we provide proof of principle for selective normal tissue protection against radiation injury.  相似文献   

14.
Analysis of microbiota in various biological and environmental samples under a variety of conditions has recently become more practical due to remarkable advances in next-generation sequencing. Changes leading to specific biological states including some of the more complex diseases can now be characterized with relative ease. It is known that gut microbiota is involved in the pathogenesis of inflammatory bowel disease (IBD), mainly Crohn''s disease and ulcerative colitis, exhibiting symptoms in the gastrointestinal tract. Recent studies also showed increased frequency of oral manifestations among IBD patients, indicating aberrations in the oral microbiota. Based on these observations, we analyzed the composition of salivary microbiota of 35 IBD patients by 454 pyrosequencing of the bacterial 16S rRNA gene and compared it with that of 24 healthy controls (HCs). The results showed that Bacteroidetes was significantly increased with a concurrent decrease in Proteobacteria in the salivary microbiota of IBD patients. The dominant genera, Streptococcus, Prevotella, Neisseria, Haemophilus, Veillonella, and Gemella, were found to largely contribute to dysbiosis (dysbacteriosis) observed in the salivary microbiota of IBD patients. Analysis of immunological biomarkers in the saliva of IBD patients showed elevated levels of many inflammatory cytokines and immunoglobulin A, and a lower lysozyme level. A strong correlation was shown between lysozyme and IL-1β levels and the relative abundance of Streptococcus, Prevotella, Haemophilus and Veillonella. Our data demonstrate that dysbiosis of salivary microbiota is associated with inflammatory responses in IBD patients, suggesting that it is possibly linked to dysbiosis of their gut microbiota.  相似文献   

15.
Epidemiological studies indicate long-term risks of ionizing radiation on the heart, even at moderate doses. In this study, we investigated the inflammatory, thrombotic and fibrotic late responses of the heart after low-dose irradiation (IR) with specific emphasize on the dose rate. Hypercholesterolemic ApoE-deficient mice were sacrificed 3 and 6 months after total body irradiation (TBI) with 0.025, 0.05, 0.1, 0.5 or 2 Gy at low (1 mGy/min) or high dose rate (150 mGy/min). The expression of inflammatory and thrombotic markers was quantified in frozen heart sections (CD31, E-selectin, thrombomodulin, ICAM-1, VCAM-1, collagen IV, Thy-1, and CD45) and in plasma samples (IL6, KC, MCP-1, TNFα, INFγ, IL-1β, TGFβ, INFγ, IL-10, sICAM-1, sE-selectin, sVCAM-1 and fibrinogen) by fluorescence analysis and ELISA. We found that even very low irradiation doses induced adaptive late responses, such as increases of capillary density and changes in collagen IV and Thy-1 levels indicating compensatory regulation. Slight decreases of ICAM-1 levels and reduction of Thy 1 expression at 0.025–0.5 Gy indicate anti-inflammatory effects, whereas at the highest dose (2 Gy) increased VCAM-1 levels on the endocardium may represent a switch to a pro-inflammatory response. Plasma samples partially confirmed this pattern, showing a decrease of proinflammatory markers (sVCAM, sICAM) at 0.025–2.0 Gy. In contrast, an enhancement of MCP-1, TNFα and fibrinogen at 0.05–2.0 Gy indicated a proinflammatory and prothrombotic systemic response. Multivariate analysis also revealed significant age-dependent increases (KC, MCP-1, fibrinogen) and decreases (sICAM, sVCAM, sE-selectin) of plasma markers. This paper represents local and systemic effects of low-dose irradiation, including also age- and dose rate-dependent responses in the ApoE-/- mouse model. These insights in the multiple inflammatory/thrombotic effects caused by low-dose irradiation might facilitate an individual evaluation and intervention of radiation related, long-term side effects but also give important implications for low dose anti-inflammatory radiotherapy.  相似文献   

16.
17.
An optimal treatment regimen for localized prostate cancer (PCa) is yet to be determined. Increasing evidence reveals a lower α/β ratio for PCa with hypofractionated radiation therapy (HFRT) regimens introduced to exploit this change in therapeutic ratio. HFRT also results in shortened overall treatment times of 4 to 5 weeks, thus reducing staffing and machine burden, and, more importantly, patient stress. This review evaluates pretreatment characteristics, outcomes, and toxicity for 15 HFRT studies on localized PCa. HFRT results in comparable or better biochemical relapse-free survival and toxicity and is a viable option for localized PCa.Key words: Localized prostate cancer, Hypofractionation, Short-course radiotherapy, Dose escalation, Biologic equivalenceMultiple randomized dose-escalation trials for localized prostate cancer (PCa) have shown improved biochemical relapse-free survival (bRFS) rates for higher total doses using conventionally fractionated radiotherapy (CFRT), though at a cost of longer treatment duration.14 The increased treatment time requires increased access to radiation treatment facilities, with additional burden on both patients and staff. To address the issue of prolonged treatment duration while maintaining equivalent bRFS, an increasing number of studies have pursued the role of hypofractionated radiotherapy (HFRT) with higher daily doses delivered in a shorter total amount of time. This treatment paradigm assumes a low α/β ratio for PCa, as demonstrated in several recent studies, with higher α/β ratios for normal surrounding tissues.57 By employing HFRT, the increased daily radiation doses exploit the aforementioned α/β ratios by allowing equivalent tumor kill as with CFRT, while also allowing for normal tissue repair.With longer-term and randomized HFRT data now reported in the literature, it seems appropriate to address whether the time has come to make HFRT the new standard. This article seeks to review the current literature and the role of HFRT in the modern era of radiotherapy for localized PCa.  相似文献   

18.

Background and Aims

It is known that postnatal functional maturation of the small intestine is facilitated by microbial colonization of the gut. Preterm infants exhibit defects in gut maturation, weak innate immunity against intestinal infection and increased susceptibility to inflammatory disorders, all of which may be related to the inappropriate microbial colonization of their immature intestines. The earliest microbes to colonize the preterm infant gut encounter a naïve, immature intestine. Thus this earliest microbiota potentially has the greatest opportunity to fundamentally influence intestinal development and immune function. The aim of this study was to characterize the effect of early microbial colonization on global gene expression in the distal small intestine during postnatal gut development.

Methods

Gnotobiotic mouse models with experimental colonization by early (prior to two weeks of life) intestinal microbiota from preterm human infants were utilized. Microarray analysis was used to assess global gene expression in the intestinal epithelium.

Results and Conclusion

Multiple intestinal genes involved in metabolism, cell cycle regulation, cell-cell or cell-extracellular matrix communication, and immune function are developmental- and intestinal microbiota- regulated. Using a humanized gnotobiotic mouse model, we demonstrate that certain early preterm infant microbiota from prior to 2 weeks of life specifically induce increased NF-κB activation and a phenotype of increased inflammation whereas other preterm microbiota specifically induce decreased NF-κB activation. These fundamental differences correlate with altered clinical outcomes and suggest the existence of optimal early microbial communities to improve health outcomes.  相似文献   

19.

Background

Bone metastasis is the most lethal form of several cancers. The β2-microglobulin (β2-M)/hemochromatosis (HFE) complex plays an important role in cancer development and bone metastasis. We demonstrated previously that overexpression of β2-M in prostate, breast, lung and renal cancer leads to increased bone metastasis in mouse models. Therefore, we hypothesized that β2-M is a rational target to treat prostate cancer bone metastasis.

Results

In this study, we demonstrate the role of β2-M and its binding partner, HFE, in modulating radiation sensitivity and chemo-sensitivity of prostate cancer. By genetic deletion of β2-M or HFE or using an anti-β2-M antibody (Ab), we demonstrate that prostate cancer cells are sensitive to radiation in vitro and in vivo. Inhibition of β2-M or HFE sensitized prostate cancer cells to radiation by increasing iron and reactive oxygen species and decreasing DNA repair and stress response proteins. Using xenograft mouse model, we demonstrate that anti-β2-M Ab sensitizes prostate cancer cells to radiation treatment. Additionally, anti-β2-M Ab was able to prevent tumor growth in an immunocompetent spontaneous prostate cancer mouse model. Since bone metastasis is lethal, we used a bone xenograft model to test the ability of anti-β2-M Ab and radiation to block tumor growth in the bone. Combination treatment significantly prevented tumor growth in the bone xenograft model by inhibiting β2-M and inducing iron overload. In addition to radiation sensitive effects, inhibition of β2-M sensitized prostate cancer cells to chemotherapeutic agents.

Conclusion

Since prostate cancer bone metastatic patients have high β2-M in the tumor tissue and in the secreted form, targeting β2-M with anti-β2-M Ab is a promising therapeutic agent. Additionally, inhibition of β2-M sensitizes cancer cells to clinically used therapies such as radiation by inducing iron overload and decreasing DNA repair enzymes.  相似文献   

20.
Vγ9/Vδ2 T cells are a minor subset of T cells in human blood and differ from other T cells by their immediate responsiveness to microbes. We previously demonstrated that the primary target for Vγ9/Vδ2 T cells is (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), an essential metabolite produced by a large range of pathogens. Here we wished to study the consequence of this unique responsiveness in microbial infection. The majority of peripheral Vγ9/Vδ2 T cells shares migration properties with circulating monocytes, which explains the presence of these two distinct blood cell types in the inflammatory infiltrate at sites of infection and suggests that they synergize in anti-microbial immune responses. Our present findings demonstrate a rapid and HMB-PP-dependent crosstalk between Vγ9/Vδ2 T cells and autologous monocytes that results in the immediate production of inflammatory mediators including the cytokines interleukin (IL)-6, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and oncostatin M (OSM); the chemokines CCL2, CXCL8, and CXCL10; and TNF-related apoptosis-inducing ligand (TRAIL). Moreover, under these co-culture conditions monocytes differentiate within 18 hours into inflammatory dendritic cells (DCs) with antigen-presenting functions. Addition of further microbial stimuli (lipopolysaccharide, peptidoglycan) induces CCR7 and enables these inflammatory DCs to trigger the generation of CD4+ effector αβ T cells expressing IFN-γ and/or IL-17. Importantly, our in vitro model replicates the responsiveness to microbes of effluent cells from peritoneal dialysis (PD) patients and translates directly to episodes of acute PD-associated bacterial peritonitis, where Vγ9/Vδ2 T cell numbers and soluble inflammatory mediators are elevated in patients infected with HMB-PP-producing pathogens. Collectively, these findings suggest a direct link between invading pathogens, microbe-responsive γδ T cells, and monocytes in the inflammatory infiltrate, which plays a crucial role in the early response and the generation of microbe-specific immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号