首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Based on the enzyme specificity of matriptase, a type II transmembrane serine protease (TTSP) overexpressed in epithelial tumors, we screened a cDNA library expressing variants of the protease inhibitor eglin c in order to identify potent matriptase inhibitors. The most potent of these, R1K4′-eglin, which had the wild-type Pro45 (P1 position) and Tyr49 (P4′ position) residues replaced with Arg and Lys, respectively, led to the production of a selective, high affinity (Ki of 4 nM) and proteolytically stable inhibitor of matriptase. Screening for eglin c variants could yield specific, potent and stable inhibitors to matriptase and to other members of the TTSP family.  相似文献   

3.
The DNA recombination and repair machinery of Mycoplasma pneumoniae is composed of a limited set of approximately 11 proteins. Two of these proteins were predicted to be encoded by neighboring open reading frames (ORFs) MPN340 and MPN341. Both ORFs were found to have sequence similarity with genes that encode proteins belonging to the DNA helicase superfamily 1 (SF1). Interestingly, while a homolog of the MPN341 ORF is present in the genome of Mycoplasma genitalium (ORF MG244), MPN340 is an M. pneumoniae-specific ORF that is not found in other mycoplasmas. Moreover, the length of MPN340 (1590 base pairs [bp]) is considerably shorter than that of MPN341 (2148 bp). Examination of the MPN340-encoded amino acid sequence indicated that it may lack a so-called 2B subdomain, which is found in most SF1 DNA helicases. Also, the MPN340-encoded amino acid sequence was found to differ between subtype 1 strain M129 and subtype 2 strain FH at three amino acid positions. Both protein variants, which were termed PcrAs M129 and PcrAs FH, respectively, as well as the MPN341- and MG244-encoded proteins (PcrAMpn and PcrAMge, respectively), were purified, and tested for their ability to interact with DNA. While PcrAMpn and PcrAMge were found to bind preferentially to single-stranded DNA, both PcrAs M129 and PcrAs FH did not demonstrate significant DNA binding. However, all four proteins were found to have divalent cation- and ATP-dependent DNA helicase activity. The proteins displayed highest activity on partially double-stranded DNA substrates carrying 3′ single-stranded extensions.  相似文献   

4.
Acid-sensing ion channel 1 (ASIC1) is a H+-gated channel of the amiloride-sensitive epithelial Na+ channel (ENaC)/degenerin family. ASIC1 is expressed mostly in the central and peripheral nervous system neurons. ENaC and ASIC function is regulated by several serine proteases. The type II transmembrane serine protease matriptase activates the prototypical αβγENaC channel, but we found that matriptase is expressed in glioma cells and its expression is higher in glioma compared with normal astrocytes. Therefore, the goal of this study was to test the hypothesis that matriptase regulates ASIC1 function. Matriptase decreased the acid-activated ASIC1 current as measured by two-electrode voltage clamp in Xenopus oocytes and cleaved ASIC1 expressed in oocytes or CHO K1 cells. Inactive S805A matriptase had no effect on either the current or the cleavage of ASIC1. The effect of matriptase on ASIC1 was specific, because it did not affect the function of ASIC2 and no matriptase-specific ASIC2 fragments were detected in oocytes or in CHO cells. Three matriptase recognition sites were identified in ASIC1 (Arg-145, Lys-185, and Lys-384). Site-directed mutagenesis of these sites prevented matriptase cleavage of ASIC1. Our results show that matriptase is expressed in glioma cells and that matriptase specifically cleaves ASIC1 in heterologous expression systems.  相似文献   

5.
Matriptase is a type II transmembrane serine protease comprising 855 amino acid residues. The extracellular region of matriptase comprises a noncatalytic stem domain (containing two tandem repeats of complement proteases C1r/C1s-urchin embryonic growth factor-bone morphogenetic protein (CUB) domain) and a catalytic serine protease domain. The stem domain of matriptase contains site(s) for facilitating the interaction of this protease with the endogenous inhibitor, hepatocyte growth factor activator inhibitor type-1 (HAI-1). The present study aimed to identify these site(s). Analyses using a secreted variant of recombinant matriptase comprising the entire extracellular domain (MAT), its truncated variants, and a recombinant HAI-1 variant with an entire extracellular domain (HAI-1–58K) revealed that the second CUB domain (CUB domain II, Cys340–Pro452) likely contains the site(s) of interest. We also found that MAT undergoes cleavage between Lys379 and Val380 within CUB domain II and that the C-terminal residues after Val380 are responsible for facilitating the interaction with HAI-1–58K. A synthetic peptide corresponding to Val380–Asp390 markedly increased the matriptase-inhibiting activity of HAI-1–58K, whereas the peptides corresponding to Val380–Val389 and Phe382–Asp390 had no effect. HAI-1–58K precipitated with immobilized streptavidin resins to which a synthetic peptide Val380–Pro392 with a biotinylated lysine residue at its C terminus was bound, suggesting direct interaction between CUB domain II and HAI-1. These results led to the identification of the matriptase CUB domain II, which facilitates the primary inhibitory interaction between this protease and HAI-1.  相似文献   

6.
A study was conducted to compare astaxanthin binding ability of solubilized muscle proteins of Atlantic salmon (Salmo salar L.), haddock (Melanogrammus aeglefinus L.) and Atlantic halibut (Hippoglossus hippoglossus L.). Muscle proteins of juvenile Atlantic salmon, haddock and halibut were solubilized by sequential extraction of muscle tissue using low ionic strength solutions. Electrophoretic protein profiles of the six solubilized fractions from these species were similar. Each solubilized fraction from the three species was examined for its relative astaxanthin binding capacity. The amount of bound astaxanthin was significantly different (P < 0.05) among the six fractions of each species. Significant differences in astaxanthin binding were only found for fractions A and E among the species. The amount of bound astaxanthin in various fractions of each species showed a good correlation (R2 = 0.80–0.92) with the ANS (8-anilino-1-naphthalenesulfonate) fluorescence intensity of those fractions. The pattern and extent of astaxanthin binding to the muscle proteins of juvenile salmon, haddock and halibut is comparable to that reported previously for adult Atlantic salmon [Saha, M.R., Ross, N.W., Gill, T.A., Olsen, R.E., Lall, S.P., 2005. Development of a method to assess binding of astaxanthin to Atlantic salmon S. salar L. muscle proteins. Aquacult. Res. 36, 336–343.]. These combined observations suggest that the carotenoid binding capacity of the muscle proteins of salmon is not the limiting factor in the deposition of carotenoid in their flesh.  相似文献   

7.
Berbeco  Minda R.  Melillo  Jerry M.  Orians  Colin M. 《Plant and Soil》2012,352(1-2):405-417

Aims

There is evidence that increased N inputs to boreal forests, via atmospheric deposition or intentional fertilization, may impact negatively on ectomycorrhizal (ECM) fungi leading to a reduced flux of plant-derived carbon (C) back to the atmosphere via ECM. Our aim was to investigate the impact of N fertilization of a Pinus sylvestris (L.) forest stand on the return of recently photoassimilated C via the ECM component of soil respiration.

Methods

We used an in situ, large-scale, 13C-CO2 isotopic pulse labelling approach and monitored the 13C label return using soil gas efflux chambers placed over three different types of soil collar to distinguish between heterotrophic (RH), autotrophic (RA; partitioned further into contributions from ECM hyphae and total RA) and total (RS) soil respiration.

Results

The impact of N fertilization was to significantly reduce RA, particularly respiration via extramatrical ECM hyphae. ECM hyphal flux in control plots showed substantial spatial variability, resulting in mean flux estimates exceeding estimates of total RA, while ECM contributions to RA in N treated plots were estimated at around 30%.

Conclusion

Significant impacts on soil C cycling may be caused by reduced plant C allocation to ECM fungi in response to increased N inputs to boreal forests; ecosystem models so far lack this detail.  相似文献   

8.

Background

Residual Kidney Function (RKF) is associated with survival benefits in haemodialysis (HD) but is difficult to measure without urine collection. Middle molecules such as Cystatin C and β2-microglobulin accumulate in renal disease and plasma levels have been used to estimate kidney function early in this condition. We investigated their use to estimate RKF in patients on HD.

Design

Cystatin C, β2-microglobulin, urea and creatinine levels were studied in patients on incremental high-flux HD or hemodiafiltration(HDF). Over sequential HD sessions, blood was sampled pre- and post-session 1 and pre-session 2, for estimation of these parameters. Urine was collected during the whole interdialytic interval, for estimation of residual GFR (GFRResidual = mean of urea and creatinine clearance). The relationships of plasma Cystatin C and β2-microglobulin levels to GFRResidual and urea clearance were determined.

Results

Of the 341 patients studied, 64% had urine output>100ml/day, 32.6% were on high-flux HD and 67.4% on HDF. Parameters most closely correlated with GFRResidual were 1/β2-micoglobulin (r2 0.67) and 1/Cystatin C (r2 0.50). Both these relationships were weaker at low GFRResidual. The best regression model for GFRResidual, explaining 67% of the variation, was: GFRResidual=160.3(1β2m)4.2 Where β2m is the pre-dialysis β2 microglobulin concentration (mg/L). This model was validated in a separate cohort of 50 patients using Bland-Altman analysis. Areas under the curve in Receiver Operating Characteristic analysis aimed at identifying subjects with urea clearance≥2ml/min/1.73m2 was 0.91 for β2-microglobulin and 0.86 for Cystatin C. A plasma β2-microglobulin cut-off of ≤19.2mg/L allowed identification of patients with urea clearance ≥2ml/min/1.73m2 with 90% specificity and 65% sensitivity.

Conclusion

Plasma pre-dialysis β2-microglobulin levels can provide estimates of RKF which may have clinical utility and appear superior to cystatin C. Use of cut-off levels to identify patients with RKF may provide a simple way to individualise dialysis dose based on RKF.  相似文献   

9.
Human tyrosine hydroxylase activity is regulated by phosphorylation of its N-terminus and by an interaction with the modulator 14-3-3 proteins. We investigated the binding of singly or doubly phosphorylated and thiophosphorylated peptides, comprising the first 50 amino acids of human tyrosine hydroxylase, isoform 1 (hTH1), that contain the critical interaction domain, to 14-3-3ζ, by 31P NMR. Single phosphorylation at S19 generates a high affinity 14-3-3ζ binding epitope, whereas singly S40-phosphorylated peptide interacts with 14-3-3ζ one order-of-magnitude weaker than the S19-phosphorylated peptide. Analysis of the binding data revealed that the 14-3-3ζ dimer and the S19- and S40-doubly phosphorylated peptide interact in multiple ways, with three major complexes formed: 1), a single peptide bound to a 14-3-3ζ dimer via the S19 phosphate with the S40 phosphate occupying the other binding site; 2), a single peptide bound to a 14-3-3ζ dimer via the S19 phosphorous with the S40 free in solution; or 3), a 14-3-3ζ dimer with two peptides bound via the S19 phosphorous to each binding site. Our system and data provide information as to the possible mechanisms by which 14-3-3 can engage binding partners that possess two phosphorylation sites on flexible tails. Whether these will be realized in any particular interacting pair will naturally depend on the details of each system.  相似文献   

10.
Fibulin-1 (FBLN-1) is a secreted glycoprotein that is associated with extracellular matrix (ECM) formation and rebuilding. Abnormal and exaggerated deposition of ECM proteins is a hallmark of many fibrotic diseases, such as chronic obstructive pulmonary disease (COPD) where small airway fibrosis occurs. The aim of this study was to investigate the regulation of FBLN-1 by transforming growth factor beta 1 (TGF-β1) (a pro-fibrotic stimulus) in primary human airway smooth muscle (ASM) cells from volunteers with and without COPD. Human ASM cells were seeded at a density of 1×104 cells/cm2, and stimulated with or without TGF-β1 (10 ng/ml) for 72 hours before FBLN-1 deposition and soluble FBLN-1 were measured. Fold change in FBLN-1 mRNA was measured at 4, 8, 24, 48, 72 hours. In some experiments, cycloheximide (0.5 µg/ml) was used to assess the regulation of FBLN-1 production. TGF-β1 decreased the amount of soluble FBLN-1 both from COPD and non-COPD ASM cells. In contrast, the deposition of FBLN-1 into the ECM was increased in ASM cells obtained from both groups. TGF-β1 did not increase FBLN-1 gene expression at any of the time points. There were no differences in the TGF-β1 induced FBLN-1 levels between cells from people with or without COPD. Cycloheximide treatment, which inhibits protein synthesis, decreased both the constitutive release of soluble FBLN-1, and TGF-β1 induced ECM FBLN-1 deposition. Furthermore, in cycloheximide treated cells addition of soluble FBLN-1 resulted in incorporation of FBLN-1 into the ECM. Therefore the increased deposition of FBLN-1 by ASM cells into the ECM following treatment with TGF-β1 is likely due to incorporation of soluble FBLN-1 rather than de-novo synthesis.  相似文献   

11.
Extracellular acidosis often rapidly causes intracellular acidification, alters ion channel activities, and activates G protein-coupled receptors. In this report, we demonstrated a novel cellular response to acidosis: induction of the zymogen activation of matriptase. Acid-induced matriptase activation is ubiquitous among epithelial and carcinoma cells and is characterized by rapid onset, fast kinetics, and the magnitude of activation seen. Trace amounts of activated matriptase can be detected 1 min after cells are exposed to pH 6.0 buffer, and the vast majority of latent matriptase within the cells is converted to activated matriptase within 20 min. Matriptase activation may be a direct response to proton exposure because acid-induced matriptase activation also occurs in an in vitro, cell-free setting in which intracellular signaling molecules and ion channel activities are largely absent. Acid-induced matriptase activation takes place both on the cell surface and inside the cells, likely due to the parallel intracellular acidification that activates intracellular matriptase. Following matriptase activation, the active enzyme is immediately inhibited by binding to hepatocyte growth factor activator inhibitor 1, resulting in stable matriptase-hepatocyte growth factor activator inhibitor 1 complexes that are rapidly secreted. As an early response to acidosis, matriptase activation can also be induced by perturbation of intracellular pH homeostasis by 5-(N-methyl-N-isobutyl)-amiloride and 5-(N-ethyl-N-isopropyl)-amiloride, both of which inhibit Na+/H+ exchangers, and diisothiocyanostilbene-2,2′-disulfonic acid, which can inhibit other acid-base ion channels. This study uncovers a novel mechanism regulating proteolysis in epithelial and carcinoma cells, and also demonstrates that a likely function of matriptase is as an early response to acidosis.  相似文献   

12.
During last decades, stripe rust has emerged as a major disease of wheat causing considerable yield loss in northern western plain and northern hill zones of India. Considering significant impact of the disease on wheat crop, field experiments were conducted during rabi seasons of 2013 and 2015 to evaluate the effect of different abiotic factors in different varieties (HD 2967, RSP 561, Agra Local and PBW 343) on the progress and spread of the disease as well as development of a predictive model to predict the disease initiation and spread in the field. Statistical analysis of data revealed that existing of low temperature (10–12 °C), high relative humidity (90%) along with intermittent rainfall was found conducive for disease onset. Thermic variables (atmospheric, canopy and soil temperature) along with age of crop in the selected varieties showed significant positive correlation with disease severity. Step-wise regression showed high R2 of 0.919, 0.885, 0.967 and 0.956 for the predicative model of stripe rust in RSP 561, HD 2967, Agra Local and PBW 343, respectively.  相似文献   

13.
The relative affinities of various muscarinic drugs in the antagonist ([3H]N-methyl scopolamine ([3H]NMS)) and agonist ([3H]Oxotremorine-m ([3H]OXO-M)) binding assays using a mixture of tissues containing M1–M4 receptor subtypes have been determined. [3H]NMS bound with high affinity (Kd=25±5.9 pM; n=3) and to a high density (Bmax=11.8±0.025 nmol/g wet weight) of muscarinic receptors. [3H]OXO-M appeared to bind to two binding sites with differing affinities (Kd1=2.5±0.1 nM; Kd2=9.0±4.9 M; n=4) and to a different population of binding sites (Bmax1=5.0±0.26 nmol/g wet weight; Bmax2=130±60 nmol/g wet weight). Well known antagonists exhibited high affinity for [3H]NMS binding but a lower affinity for [3H]OXO-M binding. The opposite was true for acetylcholine and other known agonists. However, pilocarpine and McN-A-343 had similar affinities for sites labeled by both radioligands. Using the ratios of antagonist-to-agonist binding affinities, it was possible to group compounds into apparently distinct full agonist (ratios of 180–665; e.g. carbachol, muscarine, OXO-M, OXO-S and arecoline), partial agonist (ratios of 14–132; e.g. McN-A-343, pilocarpine, aceclidine, bethanechol, OXA-22 and acetylcholine) and antagonist (ratios of 0.22–1.9; e.g. atropine, NMS, pirenzepine, methoctramine, 4-DAMP and p-fluorohexahydrosialo-difenidol) classes. These data suggest that the NMS/OXO-M affinity ratios using a mixture of M1–M4 muscarinic receptors may be a useful way to screen and group a large number of compounds into apparent agonist, partial agonist, and antagonist classes of cholinergic agents.  相似文献   

14.
Tryptic serine proteases of bronchial epithelium regulate ion flux, barrier integrity, and allergic inflammation. Inhibition of some of these proteases is a strategy to improve mucociliary function in cystic fibrosis and asthmatic inflammation. Several inhibitors have been tested in pre-clinical animal models and humans. We hypothesized that these inhibitors inactivate a variety of airway protease targets, potentially with bystander effects. To establish relative potencies and modes of action, we compared inactivation of human prostasin, matriptase, airway trypsin-like protease (HAT), and β-tryptase by nafamostat, camostat, bis(5-amidino-2-benzimidazolyl)methane (BABIM), aprotinin, and benzamidine. Nafamostat achieved complete, nearly stoichiometric and very slowly reversible inhibition of matriptase and tryptase, but inhibited prostasin less potently and was weakest versus HAT. The IC50 of nafamostat’s leaving group, 6-amidino-2-naphthol, was >104-fold higher than that of nafamostat itself, consistent with suicide rather than product inhibition as mechanisms of prolonged inactivation. Stoichiometric release of 6-amidino-2-naphthol allowed highly sensitive fluorometric estimation of active-site concentration in preparations of matriptase and tryptase. Camostat inactivated all enzymes but was less potent overall and weakest towards matriptase, which, however was strongly inhibited by BABIM. Aprotinin exhibited nearly stoichiometric inhibition of prostasin and matriptase, but was much weaker towards HAT and was completely ineffective versus tryptase. Benzamidine was universally weak. Thus, each inhibitor profile was distinct. Nafamostat, camostat and aprotinin markedly reduced tryptic activity on the apical surface of cystic fibrosis airway epithelial monolayers, suggesting prostasin as the major source of such activity and supporting strategies targeting prostasin for inactivation.  相似文献   

15.
On electrolysis of NAD+ in aqueous solution at a potential corresponding to the initial one-electron reduction of NAD+ to a free radical, a greenish-yellow color appears which fades when electrolysis is complete. Literature ultraviolet absorption data for the resulting dimer show considerable variation. When the electrolysis is conducted in darkness, the colored product has ?340 of approx. 5700 M?1 · cm?1 and ?259 of approx. 31000 M?1 · cm?1. On ultraviolet and visible illumination, the color disappears, the 340-nm peak decreases and the 259-nm peak increases. On only visible illumination, the color disappears, both peaks increases, the dimer's polarographic oxidation wave decreases and the wave due to 1-substituted nicotinamide reduction increases. The data suggest that the dimer decomposes to NAD+ and 1,4-NADH.  相似文献   

16.
There is much interest in the role that agricultural practices might play in sequestering carbon to help offset rising atmospheric CO2 concentrations. However, limited information exists regarding the potential for increased carbon sequestration of different management strategies. The objective of this study was to quantify and contrast carbon dioxide exchange in traditional non-mulching with flooding irrigation (TF) and plastic film mulching with drip irrigation (PM) cotton (Gossypium hirsutum L.) fields in northwest China. Net primary productivity (NPP), soil heterotrophic respiration (R h) and net ecosystem productivity (NEP) were measured during the growing seasons in 2009 and 2010. As compared with TF, PM significantly increased the aboveground and belowground biomass and the NPP (340 g C m−2 season−1) of cotton, and decreased the R h (89 g C m−2 season−1) (p<0.05). In a growing season, PM had a higher carbon sequestration in terms of NEP of ∼ 429 g C m−2 season−1 than the TF. These results demonstrate that conversion of this type of land use to mulching practices is an effective way to increase carbon sequestration in the short term in cotton systems of arid areas.  相似文献   

17.
18.
On DE-52 columns, 3H-corticosterone bound GR1 and GR4 components exhibited a biphasic rise to the adult level between days 1 and 22 but the GR2 moiety, like the 3H-triamcinolone acetonide bound GR1 and GR3 subpopulations, rose steadily between days 1 and 16 in rat liver. However, proportionately more GR1 could be eluted earlier in life than GR2 or GR3 which were maximal in the third week post partum. Such differences were furthermore confirmed on Ultrogel columns.  相似文献   

19.
Methylation of 3′-terminal nucleotides of miRNA/miRNA* is part of miRNAs biogenesis in plants but is not found in animals. In Arabidopsis thaliana this reaction is carried out by a multidomain AdoMet-dependent 2′-O-methyltransferase HEN1. Using deletion and structure-guided mutational analysis, we show that the double-stranded RNA-binding domains R1 and R2 of HEN1 make significant but uneven contributions to substrate RNA binding, and map residues in each domain responsible for this function. Using GST pull-down assays and yeast two-hybrid analysis we demonstrate direct HEN1 interactions, mediated by its FK506-binding protein-like domain and R2 domain, with the microRNA biogenesis protein HYL1. Furthermore, we find that HEN1 forms a complex with DICER-LIKE 1 (DCL1) ribonuclease, another key protein involved in miRNA biogenesis machinery. In contrast, no direct interaction is detectable between HEN1 and SERRATE. On the basis of these findings, we propose a mechanism of plant miRNA maturation which involves binding of the HEN1 methyltransferase to the DCL1•HYL1•miRNA complex excluding the SERRATE protein.  相似文献   

20.
Previous studies have identified a specific modification of the capsular polysaccharide as receptor for phages that infect Campylobacter jejuni. Using acapsular kpsM mutants of C. jejuni strains NCTC11168 and NCTC12658, we found that bacteriophage F341 infects C. jejuni independently of the capsule. In contrast, phage F341 does not infect C. jejuni NCTC11168 mutants that either lack the flagellar filaments (ΔflaAB) or that have paralyzed, i.e., nonrotating, flagella (ΔmotA and ΔflgP). Complementing flgP confirmed that phage F341 requires rotating flagella for successful infection. Furthermore, adsorption assays demonstrated that phage F341 does not adsorb to these nonmotile C. jejuni NCTC11168 mutants. Taken together, we propose that phage F341 uses the flagellum as a receptor. Phage-host interactions were investigated using fluorescence confocal and transmission electron microscopy. These data demonstrate that F341 binds to the flagellum by perpendicular attachment with visible phage tail fibers interacting directly with the flagellum. Our data are consistent with the movement of the C. jejuni flagellum being required for F341 to travel along the filament to reach the basal body of the bacterium. The initial binding to the flagellum may cause a conformational change of the phage tail that enables DNA injection after binding to a secondary receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号