首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, we tested the effects of transcranial Direct Current Stimulation (tDCS) on two set shifting tasks. Set shifting ability is defined as the capacity to switch between mental sets or actions and requires the activation of a distributed neural network. Thirty healthy subjects (fifteen per site) received anodal, cathodal and sham stimulation of the dorsolateral prefrontal cortex (DLPFC) or the primary motor cortex (M1). We measured set shifting in both cognitive and motor tasks. The results show that both anodal and cathodal single session tDCS can modulate cognitive and motor tasks. However, an interaction was found between task and type of stimulation as anodal tDCS of DLPFC and M1 was found to increase performance in the cognitive task, while cathodal tDCS of DLPFC and M1 had the opposite effect on the motor task. Additionally, tDCS effects seem to be most evident on the speed of changing sets, rather than on reducing the number of errors or increasing the efficacy of irrelevant set filtering.  相似文献   

2.
Repeated visual processing of an unfamiliar face suppresses neural activity in face-specific areas of the occipito-temporal cortex. This "repetition suppression" (RS) is a primitive mechanism involved in learning of unfamiliar faces, which can be detected through amplitude reduction of the N170 event-related potential (ERP). The dorsolateral prefrontal cortex (DLPFC) exerts top-down influence on early visual processing. However, its contribution to N170 RS and learning of unfamiliar faces remains unclear. Transcranial direct current stimulation (tDCS) transiently increases or decreases cortical excitability, as a function of polarity. We hypothesized that DLPFC excitability modulation by tDCS would cause polarity-dependent modulations of N170 RS during encoding of unfamiliar faces. tDCS-induced N170 RS enhancement would improve long-term recognition reaction time (RT) and/or accuracy rates, whereas N170 RS impairment would compromise recognition ability. Participants underwent three tDCS conditions in random order at ∼72 hour intervals: right anodal/left cathodal, right cathodal/left anodal and sham. Immediately following tDCS conditions, an EEG was recorded during encoding of unfamiliar faces for assessment of P100 and N170 visual ERPs. The P3a component was analyzed to detect prefrontal function modulation. Recognition tasks were administered ∼72 hours following encoding. Results indicate the right anodal/left cathodal condition facilitated N170 RS and induced larger P3a amplitudes, leading to faster recognition RT. Conversely, the right cathodal/left anodal condition caused N170 amplitude and RTs to increase, and a delay in P3a latency. These data demonstrate that DLPFC excitability modulation can influence early visual encoding of unfamiliar faces, highlighting the importance of DLPFC in basic learning mechanisms.  相似文献   

3.
People with anxiety disorders show an attentional bias for threat (AB), and Attention Bias Modification (ABM) procedures have been found to reduce this bias. However, the underlying processes accounting for this effect remain poorly understood. One explanation suggests that ABM requires the modification of attention control, driven by the recruitment of the dorsolateral prefrontal cortex (DLPFC). In the present double-blind study, we examined whether modifying left DLPFC activation influences the effect of ABM on AB. We used transcranial direct current stimulation (tDCS) to directly modulate cortical excitability of the left DLPFC during an ABM procedure designed to reduce AB to threat. Anodal tDCS increases excitability, whereas cathodal tDCS decreases it. We randomly assigned highly trait-anxious individuals to one of three conditions: 1) ABM combined with cathodal tDCS, 2) ABM combined with anodal tDCS, or 3) ABM combined with sham tDCS. We assessed the effects of these manipulations on both reaction times and eye-movements on a task indexing AB. Results indicate that combining ABM and anodal tDCS over the left DLPFC reduces the total duration that participants’ gaze remains fixated on threat, as assessed using eye-tracking measurement. However, in contrast to previous studies, there were no changes in AB from baseline to post-training for participants that received ABM without tDCS. As the tendency to maintain attention to threat is known to play an important role in the maintenance of anxiety, the present findings suggest that anodal tDCS over the left DLPFC may be considered as a promising tool to reduce the maintenance of gaze to threat. Implications for future translational research combining ABM and tDCS are discussed.  相似文献   

4.

Objective

The role of the Dorsolateral Prefrontal Cortex (DLPFC) in recognition memory has been well documented in lesion, neuroimaging and repetitive Transcranial Magnetic Stimulation (rTMS) studies. The aim of the present study was to investigate the effects of transcranial Direct Current Stimulation (tDCS) over the left and the right DLPFC during the delay interval of a non-verbal recognition memory task.

Method

36 right-handed young healthy subjects participated in the study. The experimental task was an Italian version of Recognition Memory Test for unknown faces. Study included two experiments: in a first experiment, each subject underwent one session of sham tDCS and one session of left or right cathodal tDCS; in a second experiment each subject underwent one session of sham tDCS and one session of left or right anodal tDCS.

Results

Cathodal tDCS over the right DLPFC significantly improved non verbal recognition memory performance, while cathodal tDCS over the left DLPFC had no effect. Anodal tDCS of both the left and right DLPFC did not modify non verbal recognition memory performance.

Conclusion

Complementing the majority of previous studies, reporting long term memory facilitations following left prefrontal anodal tDCS, the present findings show that cathodal tDCS of the right DLPFC can also improve recognition memory in healthy subjects.  相似文献   

5.
Attitude to morality, reflecting cultural norms and values, is considered unique to human social behavior. Resulting moral behavior in a social environment is controlled by a widespread neural network including the dorsolateral prefrontal cortex (DLPFC), which plays an important role in decision making. In the present study we investigate the influence of neurophysiological modulation of DLPFC reactivity by means of transcranial direct current stimulation (tDCS) on moral reasoning. For that purpose we administered anodal, cathodal, and sham stimulation of the left DLPFC while subjects judged the appropriateness of hard moral personal dilemmas. In contrast to sham and cathodal stimulation, anodal stimulation induced a shift in judgment of personal moral dilemmas towards more non-utilitarian actions. Our results demonstrate that alterations of left DLPFC activity can change moral judgments and, in consequence, provide a causal link between left DLPFC activity and moral reasoning. Most important, the observed shift towards non-utilitarian actions suggests that moral decision making is not a permanent individual trait but can be manipulated; consequently individuals with boundless, uncontrollable, and maladaptive moral behavior, such as found in psychopathy, might benefit from neuromodulation-based approaches.  相似文献   

6.
Numerous studies have emerged recently that demonstrate the possibility of modulating, and in some cases enhancing, cognitive processes by exciting brain regions involved in working memory and attention using transcranial electrical brain stimulation. Some researchers now believe the cerebellum supports cognition, possibly via a remote neuromodulatory effect on the prefrontal cortex. This paper describes a procedure for investigating a role for the cerebellum in cognition using transcranial direct current stimulation (tDCS), and a selection of information-processing tasks of varying task difficulty, which have previously been shown to involve working memory, attention and cerebellar functioning. One task is called the Paced Auditory Serial Addition Task (PASAT) and the other a novel variant of this task called the Paced Auditory Serial Subtraction Task (PASST). A verb generation task and its two controls (noun and verb reading) were also investigated. All five tasks were performed by three separate groups of participants, before and after the modulation of cortico-cerebellar connectivity using anodal, cathodal or sham tDCS over the right cerebellar cortex. The procedure demonstrates how performance (accuracy, verbal response latency and variability) could be selectively improved after cathodal stimulation, but only during tasks that the participants rated as difficult, and not easy. Performance was unchanged by anodal or sham stimulation. These findings demonstrate a role for the cerebellum in cognition, whereby activity in the left prefrontal cortex is likely dis-inhibited by cathodal tDCS over the right cerebellar cortex. Transcranial brain stimulation is growing in popularity in various labs and clinics. However, the after-effects of tDCS are inconsistent between individuals and not always polarity-specific, and may even be task- or load-specific, all of which requires further study. Future efforts might also be guided towards neuro-enhancement in cerebellar patients presenting with cognitive impairment once a better understanding of brain stimulation mechanisms has emerged.  相似文献   

7.
Decision often implies a utilitarian choice based on personal gain, even at the expense of damaging others. Despite the social implications of utilitarian behavior, its neurophysiological bases remain largely unknown. To assess how the human brain controls utilitarian behavior, we delivered transcranial direct current stimulation (tDCS) over the ventral prefrontal cortex (VPC) and over the occipital cortex (OC) in 78 healthy subjects. Utilitarian judgment was assessed with the moral judgment task before and after tDCS. At baseline, females provided fewer utilitarian answers than males for personal moral dilemmas (p = .007). In males, VPC-tDCS failed to induce changes and in both genders OC-tDCS left utilitarian judgments unchanged. In females, cathodal VPC-tDCS tended to decrease whereas anodal VPC-tDCS significantly increased utilitarian responses (p = .005). In males and females, reaction times for utilitarian responses significantly decreased after cathodal (p<.001) but not after anodal (p = .735) VPC-tDCS. We conclude that ventral prefrontal tDCS interferes with utilitarian decisions, influencing the evaluation of the advantages and disadvantages of each option in both sexes, but does so more strongly in females. Whereas cathodal tDCS alters the time for utilitarian reasoning in both sexes, anodal stimulation interferes more incisively in women, modifying utilitarian reasoning and the possible consequent actions. The gender-related tDCS-induced changes suggest that the VPC differentially controls utilitarian reasoning in females and in males. The gender-specific functional organization of the brain areas involved in utilitarian behavior could be a correlate of the moral and social behavioral differences between the two sexes.  相似文献   

8.
In this study we aimed to investigate whether transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) reduces interference effects of a dual task (DT) on post-exercise facilitation (PEF) of the motor evoked potentials. Anodal tDCS reversed the DT interference on PEF after a non-fatiguing isometric contraction. We conclude that anodal DLPFC tDCS improves the ability to allocate attentional resources and modulates plastic adaptations across brain systems.  相似文献   

9.
Evidence from neuroimaging and electrophysiological studies indicates that the left dorsolateral prefrontal cortex (DLPFC) is a core region in emotional processing, particularly during down-regulation of negative emotional conditions. However, emotional regulation is a process subject to major inter-individual differences, some of which may be explained by personality traits. In the present study we used transcranial direct current stimulation (tDCS) over the left DLPFC to investigate whether transiently increasing the activity of this region resulted in changes in the ratings of positive, neutral and negative emotional pictures. Results revealed that anodal, but not cathodal, tDCS reduced the perceived degree of emotional valence for negative stimuli, possibly due to an enhancement of cognitive control of emotional expression. We also aimed to determine whether personality traits (extraversion and neuroticism) might condition the impact of tDCS. We found that individuals with higher scores on the introversion personality dimension were more permeable than extraverts to the modulatory effects of the stimulation. The present study underlines the role of the left DLPFC in emotional regulation, and stresses the importance of considering individual personality characteristics as a relevant variable, although replication is needed given the limited sample size of our study.  相似文献   

10.
Anodal transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) has been proposed as a possible therapeutic rehabilitation technique for motor impairment. However, despite extensive investigation into the effects of anodal tDCS on motor output, there is little information on how anodal tDCS affects response processes. In this study, we used a cued go/nogo task with both directional and non-directional cues to assess the effects of anodal tDCS over the dominant (left) primary motor cortex on prepared and unprepared motor responses. Three experiments explored whether the effectiveness of tDCS varied with timing between stimulation and test. Healthy, right-handed young adults participated in a double-blind randomised controlled design with crossover of anodal tDCS and sham stimulation. In Experiment 1, twenty-four healthy young adults received anodal tDCS over dominant M1 at least 40 mins before task performance. In Experiment 2, eight participants received anodal tDCS directly before task performance. In Experiment 3, twenty participants received anodal tDCS during task performance. In all three experiments, participants responded faster to directional compared to non-directional cues and with their right hand. However, anodal tDCS had no effect on go/nogo task performance at any stimulation – test interval. Bayesian analysis confirmed that anodal stimulation had no effect on response speed. We conclude that anodal tDCS over M1 does not improve response speed of prepared or unprepared responses of young adults in a go/nogo task.  相似文献   

11.
The central nervous system seems to have an important role in fatigue and exercise tolerance. Novel noninvasive techniques of neuromodulation can provide insights on the relationship between brain function and exercise performance. The purpose of this study was to determine the effects of transcranial direct current stimulation (tDCS) on physical performance and physiological and perceptual variables with regard to fatigue and exercise tolerance. Eleven physically active subjects participated in an incremental test on a cycle simulator to define peak power output. During 3 visits, the subjects experienced 3 stimulation conditions (anodal, cathodal, or sham tDCS—with an interval of at least 48 h between conditions) in a randomized, counterbalanced order to measure the effects of tDCS on time to exhaustion at 80% of peak power. Stimulation was administered before each test over 13 min at a current intensity of 2.0 mA. In each session, the Brunel Mood State questionnaire was given twice: after stimulation and after the time-to-exhaustion test. Further, during the tests, the electromyographic activity of the vastus lateralis and rectus femoris muscles, perceived exertion, and heart rate were recorded. RM-ANOVA showed that the subjects performed better during anodal primary motor cortex stimulation (491 ± 100 s) compared with cathodal stimulation (443 ± 11 s) and sham (407 ± 69 s). No significant difference was observed between the cathodal and sham conditions. The effect sizes confirmed the greater effect of anodal M1 tDCS (anodal x cathodal = 0.47; anodal x sham = 0.77; and cathodal x sham = 0.29). Magnitude-based inference suggested the anodal condition to be positive versus the cathodal and sham conditions. There were no differences among the three stimulation conditions in RPE (p = 0.07) or heart rate (p = 0.73). However, as hypothesized, RM- ANOVA revealed a main effect of time for the two variables (RPE and HR: p < 0.001). EMG activity also did not differ during the test accross the different conditions. We conclude that anodal tDCS increases exercise tolerance in a cycling-based, constant-load exercise test, performed at 80% of peak power. Performance was enhanced in the absence of changes in physiological and perceptual variables.  相似文献   

12.

Background

Current standardized treatments for cognitive impairment in attention-deficit/hyperactivity disorder remain limited and their efficacy restricted. Transcranial direct current stimulation (tDCS) is a promising tool for enhancing cognitive performance in several neuropsychiatric disorders. Nevertheless, the effects of tDCS in reducing cognitive impairment in patients with attention-deficit/hyperactivity disorder (ADHD) have not yet been investigated.

Methods

A parallel, randomized, double-blind, sham-controlled trial was conducted to examine the efficacy of tDCS on the modulation of inhibitory control in adults with ADHD. Thirty patients were randomly allocated to each group and performed a go/no-go task before and after a single session of either anodal stimulation (1 mA) over the left dorsolateral prefrontal cortex or sham stimulation.

Results

A nonparametric two-sample Wilcoxon rank-sum (Mann-Whitney) test revealed no significant differences between the two groups of individuals with ADHD (tDCS vs. sham) in regard to behavioral performance in the go/no go tasks. Furthermore, the effect sizes of group differences after treatment for the primary outcome measures—correct responses, impulsivity and omission errors—were small. No adverse events resulting from stimulation were reported.

Conclusion

According to these findings, there is no evidence in support of the use of anodal stimulation over the left dorsolateral prefrontal cortex as an approach for improving inhibitory control in ADHD patients. To the best of our knowledge, this is the first clinical study to assess the cognitive effects of tDCS in individuals with ADHD. Further research is needed to assess the clinical efficacy of tDCS in this population.

Trial Registration

ClinicalTrials.gov NCT01968512  相似文献   

13.
Given the polarity dependent effects of transcranial direct current stimulation (tDCS) in facilitating or inhibiting neuronal processing, and tDCS effects on pitch perception, we tested the effects of tDCS on temporal aspects of auditory processing. We aimed to change baseline activity of the auditory cortex using tDCS as to modulate temporal aspects of auditory processing in healthy subjects without hearing impairment. Eleven subjects received 2mA bilateral anodal, cathodal and sham tDCS over auditory cortex in a randomized and counterbalanced order. Subjects were evaluated by the Random Gap Detection Test (RGDT), a test measuring temporal processing abilities in the auditory domain, before and during the stimulation. Statistical analysis revealed a significant interaction effect of time vs. tDCS condition for 4000 Hz and for clicks. Post-hoc tests showed significant differences according to stimulation polarity on RGDT performance: anodal improved 22.5% and cathodal decreased 54.5% subjects' performance, as compared to baseline. For clicks, anodal also increased performance in 29.4% when compared to baseline. tDCS presented polarity-dependent effects on the activity of the auditory cortex, which results in a positive or negative impact in a temporal resolution task performance. These results encourage further studies exploring tDCS in central auditory processing disorders.  相似文献   

14.
Cognitive control (CC) of attention is a major prerequisite for effective information processing. Emotional distractors can bias and impair goal-directed deployment of attentional resources. Frustration-induced negative affect and cognition can act as internal distractors with negative impact on task performance. Consolidation of CC may thus support task-oriented behavior under challenging conditions. Recently, transcranial direct current stimulation (tDCS) has been put forward as an effective tool to modulate CC. Particularly, anodal, activity enhancing tDCS to the left dorsolateral prefrontal cortex (dlPFC) can increase insufficient CC in depression as indicated by a reduction of attentional biases induced by emotionally salient stimuli. With this study, we provide first evidence that, compared to sham stimulation, tDCS to the left dlPFC enhances processing speed measured by an adaptive version of the Paced Auditory Serial Addition Task (PASAT) that is typically thwarted by frustration. Notably, despite an even larger amount of error-related negative feedback, the task-induced upset was suppressed in the group receiving anodal tDCS. Moreover, inhibition of task-related negative affect was correlated with performance gains, suggesting a close link between enhanced processing speed and consolidation of CC by tDCS. Together, these data provide first evidence that activity enhancing anodal tDCS to the left dlPFC can support focused cognitive processing particularly when challenged by frustration-induced negative affect.  相似文献   

15.
Humans incur considerable costs to punish unfairness directed towards themselves or others. Recent studies using repetitive transcranial magnetic stimulation (rTMS) suggest that the right dorsolateral prefrontal cortex (DLPFC) is causally involved in such strategic decisions. Presently, two partly divergent hypotheses are discussed, suggesting either that the right DLPFC is necessary to control selfish motives by implementing culturally transmitted social norms, or is involved in suppressing emotion-driven prepotent responses to perceived unfairness. Accordingly, we studied the role of the DLPFC in costly (i.e. third party) punishment by applying rTMS to the left and right DLPFC before playing a Dictator Game with the option to punish observed unfair behavior (DG-P). In addition, sham stimulation took place. Individual differences in empathy were assessed with the German version of the Interpersonal Reactivity Index. Costly punishment increased (non-significantly) upon disruption of the right – but not the left – DLPFC as compared to sham stimulation. However, empathy emerged as a highly significant moderator variable of the effect of rTMS over the right, but not left, DLPFC, suggesting that the right DLPFC is involved in controlling prepotent emotional responses to observed unfairness, depending on individual differences in empathy.  相似文献   

16.
Previous research suggests that anodal transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) modulates NMDA receptor dependent processes that mediate synaptic plasticity. Here we test this proposal by applying anodal versus sham tDCS while subjects practiced to flex the thumb as fast as possible (ballistic movements). Repetitive practice of this task has been shown to result in performance improvements that reflect use-dependent plasticity resulting from NMDA receptor mediated, long-term potentiation (LTP)-like processes. Using a double-blind within-subject cross-over design, subjects (n=14) participated either in an anodal or a sham tDCS session which were at least 3 months apart. Sham or anodal tDCS (1 mA) was applied for 20 min during motor practice and retention was tested 30 min, 24 hours and one week later. All subjects improved performance during each of the two sessions (p < 0.001) and learning gains were similar. Our main result is that long term retention performance (i.e. 1 week after practice) was significantly better when practice was performed with anodal tDCS than with sham tDCS (p < 0.001). This effect was large (Cohen’s d=1.01) and all but one subject followed the group trend. Our data strongly suggest that anodal tDCS facilitates long-term memory formation reflecting use-dependent plasticity. Our results support the notion that anodal tDCS facilitates synaptic plasticity mediated by an LTP-like mechanism, which is in accordance with previous research.  相似文献   

17.
The purpose of this study was to determine whether anodal transcranial direct current stimulation (tDCS) delivered while performing a sustained submaximal contraction would increase time to task failure (TTF) compared to sham stimulation. Healthy volunteers (n = 18) performed two fatiguing contractions at 20% of maximum strength with the elbow flexors on separate occasions. During fatigue task performance, either anodal or sham stimulation was delivered to the motor cortex for up to 20 minutes. Transcranial magnetic stimulation (TMS) was used to assess changes in cortical excitability during stimulation. There was no systematic effect of the anodal tDCS stimulation on TTF for the entire subject set (n = 18; p = 0.64). Accordingly, a posteriori subjects were divided into two tDCS-time groups: Full-Time (n = 8), where TTF occurred prior to the termination of tDCS, and Part-Time (n = 10), where TTF extended after tDCS terminated. The TTF for the Full-Time group was 31% longer with anodal tDCS compared to sham (p = 0.04), whereas TTF for the Part-Time group did not differ (p = 0.81). Therefore, the remainder of our analysis addressed the Full-Time group. With anodal tDCS, the amount of muscle fatigue was 6% greater at task failure (p = 0.05) and the amount of time the Full-Time group performed the task at an RPE between 8–10 (“very hard”) increased by 38% (p = 0.04) compared to sham. There was no difference in measures of cortical excitability between stimulation conditions (p = 0.90). That the targeted delivery of anodal tDCS during task performance both increased TTF and the amount of muscle fatigue in a subset of subjects suggests that augmenting cortical excitability with tDCS enhanced descending drive to the spinal motorpool to recruit more motor units. The results also suggest that the application of tDCS during performance of fatiguing activity has the potential to bolster the capacity to exercise under conditions required to derive benefits due to overload.  相似文献   

18.
Transcranial direct current stimulation (tDCS) has been used as a useful interventional brain stimulation technique to improve unilateral upper-limb motor function in healthy humans, as well as in stroke patients. Although tDCS applications are supposed to modify the interhemispheric balance between the motor cortices, the tDCS after-effects on interhemispheric interactions are still poorly understood. To address this issue, we investigated the tDCS after-effects on interhemispheric inhibition (IHI) between the primary motor cortices (M1) in healthy humans. Three types of tDCS electrode montage were tested on separate days; anodal tDCS over the right M1, cathodal tDCS over the left M1, bilateral tDCS with anode over the right M1 and cathode over the left M1. Single-pulse and paired-pulse transcranial magnetic stimulations were given to the left M1 and right M1 before and after tDCS to assess the bilateral corticospinal excitabilities and mutual direction of IHI. Regardless of the electrode montages, corticospinal excitability was increased on the same side of anodal stimulation and decreased on the same side of cathodal stimulation. However, neither unilateral tDCS changed the corticospinal excitability at the unstimulated side. Unilateral anodal tDCS increased IHI from the facilitated side M1 to the unchanged side M1, but it did not change IHI in the other direction. Unilateral cathodal tDCS suppressed IHI both from the inhibited side M1 to the unchanged side M1 and from the unchanged side M1 to the inhibited side M1. Bilateral tDCS increased IHI from the facilitated side M1 to the inhibited side M1 and attenuated IHI in the opposite direction. Sham-tDCS affected neither corticospinal excitability nor IHI. These findings indicate that tDCS produced polarity-specific after-effects on the interhemispheric interactions between M1 and that those after-effects on interhemispheric interactions were mainly dependent on whether tDCS resulted in the facilitation or inhibition of the M1 sending interhemispheric volleys.  相似文献   

19.
Transcranial direct current stimulation (tDCS) is a technique that has been intensively investigated in the past decade as this method offers a non-invasive and safe alternative to change cortical excitability2. The effects of one session of tDCS can last for several minutes, and its effects depend on polarity of stimulation, such as that cathodal stimulation induces a decrease in cortical excitability, and anodal stimulation induces an increase in cortical excitability that may last beyond the duration of stimulation6. These effects have been explored in cognitive neuroscience and also clinically in a variety of neuropsychiatric disorders – especially when applied over several consecutive sessions4. One area that has been attracting attention of neuroscientists and clinicians is the use of tDCS for modulation of pain-related neural networks3,5. Modulation of two main cortical areas in pain research has been explored: primary motor cortex and dorsolateral prefrontal cortex7. Due to the critical role of electrode montage, in this article, we show different alternatives for electrode placement for tDCS clinical trials on pain; discussing advantages and disadvantages of each method of stimulation.  相似文献   

20.
Current theoretical positions assume that action-related word meanings are established by functional connections between perisylvian language areas and the motor cortex (MC) according to Hebb's associative learning principle. To test this assumption, we probed the functional relevance of the left MC for learning of a novel action word vocabulary by disturbing neural plasticity in the MC with transcranial direct current stimulation (tDCS). In combination with tDCS, subjects learned a novel vocabulary of 76 concrete, body-related actions by means of an associative learning paradigm. Compared with a control condition with "sham" stimulation, cathodal tDCS reduced success rates in vocabulary acquisition, as shown by tests of novel action word translation into the native language. The analysis of learning behavior revealed a specific effect of cathodal tDCS on the ability to associatively couple actions with novel words. In contrast, we did not find these effects in control experiments, when tDCS was applied to the prefrontal cortex or when subjects learned object-related words. The present study lends direct evidence to the proposition that the left MC is causally involved in the acquisition of novel action-related words.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号