首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The deactivation of visual pigments involved in phototransduction is critical for recovering sensitivity after exposure to light in rods and cones of the vertebrate retina. In rods, phosphorylation of rhodopsin by rhodopsin kinase (GRK1) and the subsequent binding of visual arrestin completely terminates phototransduction. Although signal termination in cones is predicted to occur via a similar mechanism as in rods, there may be differences due to the expression of related but distinct gene products. While rods only express GRK1, cones in some species express only GRK1 or GRK7 and others express both GRKs. In the mouse, cone opsin is phosphorylated by GRK1, but this has not been demonstrated in mammals that express GRK7 in cones. We compared cone opsin phosphorylation in intact retinas from the 13-lined ground squirrel (GS) and pig, cone- and rod-dominant mammals, respectively, which both express GRK7. M opsin phosphorylation increased during continuous exposure to light, then declined between 3 and 6 min. In contrast, rhodopsin phosphorylation continued to increase during this time period. In GS retina homogenates, anti-GS GRK7 antibody blocked M opsin phosphorylation by 73%. In pig retina homogenates, only 20% inhibition was observed, possibly due to phosphorylation by GRK1 released from rods during homogenization. Our results suggest that GRK7 phosphorylates M opsin in both of these mammals. Using an in vitro GTPgammaS binding assay, we also found that the ability of recombinant M opsin to activate G(t) was greatly reduced by phosphorylation. Therefore, phosphorylation may participate directly in the termination of phototransduction in cones by decreasing the activity of M opsin.  相似文献   

2.
There are two distinct classes of image-forming photoreceptors in the vertebrate retina: rods and cones. Rods are able to detect single photons of light whereas cones operate continuously under rapidly changing bright light conditions. Absorption of light by rod- and cone-specific visual pigments in the outer segments of photoreceptors triggers a phototransduction cascade that eventually leads to closure of cyclic nucleotide-gated channels on the plasma membrane and cell hyperpolarization. This light-induced change in membrane current and potential can be registered as a photoresponse, by either classical suction electrode recording technique1,2 or by transretinal electroretinogram recordings (ERG) from isolated retinas with pharmacologically blocked postsynaptic response components3-5. The latter method allows drug-accessible long-lasting recordings from mouse photoreceptors and is particularly useful for obtaining stable photoresponses from the scarce and fragile mouse cones. In the case of cones, such experiments can be performed both in dark-adapted conditions and following intense illumination that bleaches essentially all visual pigment, to monitor the process of cone photosensitivity recovery during dark adaptation6,7. In this video, we will show how to perform rod- and M/L-cone-driven transretinal recordings from dark-adapted mouse retina. Rod recordings will be carried out using retina of wild type (C57Bl/6) mice. For simplicity, cone recordings will be obtained from genetically modified rod transducin α-subunit knockout (-/-) mice which lack rod signaling8.  相似文献   

3.
Cyclic GMP is essential for the ability of rods and cones to respond to the light stimuli. Light triggers hydrolysis of cGMP and stops the influx of sodium and calcium through the cGMP-gated ion channels. The consequence of this event is 2-fold: first, the decrease in the inward sodium current plays the major role in an abrupt hyperpolarization of the cellular membrane; secondly, the decrease in the Ca2+ influx diminishes the free intracellular Ca2+ concentration. While the former constitutes the essence of the phototransduction pathway in rods and cones, the latter gives rise to a potent feedback mechanism that accelerates photoreceptor recovery and adaptation to background light. One of the most important events by which Ca2+ feedback controls recovery and light adaptation is synthesis of cGMP by guanylyl cyclase. Two isozymes of membrane photoreceptor guanylyl cyclase (retGC) have been identified in rods and cones that are regulated by Ca2+-binding proteins, GCAPs. At low intracellular concentrations of Ca2+ typical for light-adapted rods and cones GCAPs activate RetGC, but concentrations above 500 nM typical for dark-adapted photoreceptors turn them into inhibitors of retGC. A variety of mutations found in GCAP and retGC genes have been linked to several forms of human congenital retinal diseases, such as dominant cone degeneration, cone-rod dystrophy and Leber congenital amaurosis.  相似文献   

4.
Recovery of the light response in vertebrate photoreceptors requires the shutoff of both active intermediates in the phototransduction cascade: the visual pigment and the transducin-phosphodiesterase complex. Whichever intermediate quenches more slowly will dominate photoresponse recovery. In suction pipette recordings from isolated salamander ultraviolet- and blue-sensitive cones, response recovery was delayed, and the dominant time constant slowed when internal [Ca(2+)] was prevented from changing after a bright flash by exposure to 0Ca(2+)/0Na(+) solution. Taken together with a similar prior observation in salamander red-sensitive cones, these observations indicate that the dominance of response recovery by a Ca(2+)-sensitive process is a general feature of amphibian cone phototransduction. Moreover, changes in the external pH also influenced the dominant time constant of red-sensitive cones even when changes in internal [Ca(2+)] were prevented. Because the cone photopigment is, uniquely, exposed to the external solution, this may represent a direct effect of protons on the equilibrium between its inactive Meta I and active Meta II forms, consistent with the notion that the process dominating recovery of the bright flash response represents quenching of the active Meta II form of the cone photopigment.  相似文献   

5.
Rhodopsin kinase (GRK1) is a member of G protein-coupled receptor kinase family and a key enzyme in the quenching of photolysed rhodopsin activity and desensitisation of the rod photoreceptor neurons. Like some other rod proteins involved in phototransduction, GRK1 is posttranslationally modified at the C terminus by isoprenylation (farnesylation), endoproteolysis and α-carboxymethylation. In this study, we examined the potential mechanisms of regulation of GRK1 methylation status, which have remained unexplored so far. We found that considerable fraction of GRK1 is endogenously methylated. In isolated rod outer segments, its methylation is inhibited and demethylation stimulated by low-affinity nucleotide binding. This effect is not specific for ATP and was observed in the presence of a non-hydrolysable ATP analogue AMP-PNP, GTP and other nucleotides, and thus may involve a site distinct from the active site of the kinase. GRK1 demethylation is inhibited in the presence of Ca(2+) by recoverin. This inhibition requires recoverin myristoylation and the presence of the membranes, and may be due to changes in GRK1 availability for processing enzymes upon its redistribution to the membranes induced by recoverin/Ca(2+). We hypothesise that increased GRK1 methylation in dark-adapted rods due to elevated cytoplasmic Ca(2+) levels would further increase its association with the membranes and recoverin, providing a positive feedback to efficiently suppress spurious phosphorylation of non-activated rhodopsin molecules and thus maximise senstivity of the photoreceptor. This study provides the first evidence for dynamic regulation of GRK1 α-carboxymethylation, which might play a role in the regulation of light sensitivity and adaptation in the rod photoreceptors.  相似文献   

6.
Cone photoreceptors show lower light sensitivity and briefer light responses than rod photoreceptors. The light detection signal in these cells is amplified through a phototransduction cascade. The first step of amplification in the cascade is the activation of a GTP-binding protein, transducin (Tr), by light-activated visual pigment (R*). We quantified transducin activation by measuring the binding of GTPγS in purified carp rod and cone membrane preparations with the use of a rapid quench apparatus and found that transducin activation by an R* molecule is ∼5 times less efficient in cones than in rods. Transducin activation terminated in less than 1 s in cones, more quickly than in rods. The rate of GTP hydrolysis in Tr*, and thus the rate of Tr* inactivation, was ∼25 times higher in cones than in rods. This faster inactivation of Tr* ensures briefer light responses in cones. The expression level of RGS9 was found to be ∼20 times higher in cones than in rods, which explains higher GTP hydrolytic activity and, thus, faster Tr* inactivation in cones than in rods. Although carp rods and cones express rod- or cone-versions of visual pigment and transducin, these molecules themselves do not seem to induce the differences significantly in the transducin activation and Tr* inactivation in rods and cones. Instead, the differences seem to be brought about in a rod or cone cell-type specific manner.  相似文献   

7.
Cone photoreceptors of the vertebrate retina terminate their response to light much faster than rod photoreceptors. However, the molecular mechanisms underlying this rapid response termination in cones are poorly understood. The experiments presented here tested two related hypotheses: first, that the rapid decay rate of metarhodopsin (Meta) II in red-sensitive cones depends on interactions between the 9-methyl group of retinal and the opsin part of the pigment molecule, and second, that rapid Meta II decay is critical for rapid recovery from saturation of red-sensitive cones after exposure to bright light. Microspectrophotometric measurements of pigment photolysis, microfluorometric measurements of retinol production, and single-cell electrophysiological recordings of flash responses of salamander cones were performed to test these hypotheses. In all cases, cones were bleached and their visual pigment was regenerated with either 11-cis retinal or with 11-cis 9-demethyl retinal, an analogue of retinal lacking the 9-methyl group. Meta II decay was four to five times slower and subsequent retinol production was three to four times slower in red-sensitive cones lacking the 9-methyl group of retinal. This was accompanied by a significant slowing of the recovery from saturation in cones lacking the 9-methyl group after exposure to bright (>0.1% visual pigment photoactivated) but not dim light. A mathematical model of the turn-off process of phototransduction revealed that the slower recovery of photoresponse can be explained by slower Meta decay of 9-demethyl visual pigment. These results demonstrate that the 9-methyl group of retinal is required for steric chromophore–opsin interactions that favor both the rapid decay of Meta II and the rapid response recovery after exposure to bright light in red-sensitive cones.  相似文献   

8.
In mammals, the blockade of the phototransduction cascade causes loss of vision and, in some cases, degeneration of photoreceptors. However, the molecular mechanisms that link phototransduction with photoreceptor degeneration remain to be elucidated. Here, we report that a mutation in the gene encoding a central effector of the phototransduction cascade, cGMP phosphodiesterase 6alpha'-subunit (PDE6alpha'), affects not only the vision but also the survival of cone photoreceptors in zebrafish. We isolated a zebrafish mutant, called eclipse (els), which shows no visual behavior such as optokinetic response (OKR). The cloning of the els mutant gene revealed that a missense mutation occurred in the pde6alpha' gene, resulting in a change in a conserved amino acid. The PDE6 expressed in rod photoreceptors is a heterotetramer comprising two closely related similar hydrolytic alpha and beta subunits and two identical inhibitory gamma subunits, while the PDE6 expressed in cone photoreceptors consists of two homodimers of alpha' subunits, each with gamma subunits. The els mutant displays no visual response to bright light, where cones are active, but shows relatively normal OKR to dim light, where only rods function, suggesting that only the cone-specific phototransduction pathway is disrupted in the els mutant. Furthermore, in the els mutant, cones are selectively eliminated but rods are retained at the adult stage, suggesting that cones undergo a progressive degeneration in the els mutant retinas. Taken together, these data suggest that PDE6alpha' activity is important for the survival of cones in zebrafish.  相似文献   

9.
One of the fundamental mysteries of the human visual system is the continuous function of cone photoreceptors in bright daylight. As visual pigment is destroyed, or bleached, by light [1], cones require its rapid regeneration, which in turn involves rapid recycling of the pigment's chromophore. The canonical visual cycle for rod and cone pigments involves recycling of their chromophore from all-trans retinol to 11-cis retinal in the pigment epithelium, adjacent to photoreceptors [2]. However, shortcomings of this pathway indicate the function of a second, cone-specific, mechanism for chromophore recycling [3]. Indeed, biochemical [3], [4], [5], [6] and [7] and physiological [8] studies on lower species have described a cone-specific visual cycle in addition to the long-known pigment epithelium pathway. Two important questions remain, however: what is the role of this pathway in the function of mammalian cones, and is it present in higher mammals, including humans? Here, we show that mouse, primate, and human neural retinas promote pigment regeneration and dark adaptation selectively in cones, but not in rods. This pathway supports rapid dark adaptation of mammalian cones and extends their dynamic range in background light independently of the pigment epithelium. This pigment-regeneration mechanism is essential for our daytime vision and appears to be evolutionarily conserved.  相似文献   

10.
Vertebrate retinal cones play a major role in both photopic vision and color perception. Although the molecular mechanism of visual excitation in the cone is not as well understood as in the rod, it is generally thought to involve a cone-specific G protein (cone transducin) that couples the cone visual pigment to a cGMP phosphodiesterase. Like all other G proteins, cone transducin is most likely a heterotrimer consisting of G alpha, G beta, and G gamma subunits. A G alpha subunit of cone transducin has been localized to the outer segment of bovine cones, but its associated G beta and G gamma subunits are unknown. To identify the G beta subunit involved in the phototransduction process of cones, we have developed a panel of antipeptide antisera against the most diverse region of the amino acid sequences encoded by G beta 1, G beta 2, and G beta 3 cDNAs and used them to determine the distribution of the G beta isoforms in different retinal preparations. We found that the G beta 3 subunit is present in bovine retinal transducin and phosducin-T beta gamma complex preparations which were previously thought to contain only G beta 1. Analysis of its subcellular distribution indicated that G beta 3 is predominantly cytoplasmic. Immunocytochemical staining of bovine retinal sections with the anti-G beta 3 antiserum further revealed a specific localization of G beta 3 in cones but not in rods. In contrast, anti-G beta 1 antiserum stained only the rods. These results suggest that G beta 3 is the G beta subunit of cone transducin and confirms the proposition that rods and cones utilize distinct signaling proteins for phototransduction.  相似文献   

11.
The neuronal Ca2+-binding protein Recoverin has been shown to regulate phototransduction termination in mammalian rods. Here we identify four recoverin genes in the zebrafish genome, rcv1a, rcv1b, rcv2a and rcv2b, and investigate their role in modulating the cone phototransduction cascade. While Recoverin-1b is only found in the adult retina, the other Recoverins are expressed throughout development in all four cone types, except Recoverin-1a, which is expressed only in rods and UV cones. Applying a double flash electroretinogram (ERG) paradigm, downregulation of Recoverin-2a or 2b accelerates cone photoresponse recovery, albeit at different light intensities. Exclusive recording from UV cones via spectral ERG reveals that knockdown of Recoverin-1a alone has no effect, but Recoverin-1a/2a double-knockdowns showed an even shorter recovery time than Recoverin-2a-deficient larvae. We also showed that UV cone photoresponse kinetics depend on Recoverin-2a function via cone-specific kinase Grk7a. This is the first in vivo study demonstrating that cone opsin deactivation kinetics determine overall photoresponse shut off kinetics.  相似文献   

12.
Retinas of light and dark adapted post metamorphic American eelAnguilla rostrata were examined. The retinal epithelial pigment migrates vitreally in light and sclerally in darkness. Two layers of rods and a layer of single cones are present. Some cones elongate slightly in the dark and contract in the light. The cone synaptic ribbons show no difference between the light and dark adapted stages. It appears that this eel stage is capable of functioning in bright and dim environments.  相似文献   

13.
Vision in dim light requires that photons absorbed by rod photoreceptors evoke signals that reliably propagate through the retina. We investigated how a perturbation in rod physiology affects propagation of those signals in the retina and ultimately visual sensitivity. Recoverin is a protein in rods that prolongs phototransduction and enhances visual sensitivity. It is not present in neurons postsynaptic to rods, yet we found that light-evoked responses of rod bipolar and ganglion cells were shortened when measured in recoverin-deficient retinas. Unexpectedly, the effect of recoverin on postsynaptic signals could not be explained by its effect on phototransduction. Instead, it is an effect of recoverin downstream of phototransduction in rods that prolongs signal transmission and enhances visual sensitivity. An important implication of our findings is that the recovery phase of the rod photoresponse does not contribute significantly to visual sensitivity near absolute threshold.  相似文献   

14.
Pifferi S  Boccaccio A  Menini A 《FEBS letters》2006,580(12):2853-2859
Cyclic nucleotide-gated (CNG) channels, directly activated by the binding of cyclic nucleotides, were first discovered in retinal rods, cones and olfactory sensory neurons. In the visual and olfactory systems, CNG channels mediate sensory transduction by conducting cationic currents carried primarily by sodium and calcium ions. In olfactory transduction, calcium in combination with calmodulin exerts a negative feedback on CNG channels that is the main molecular mechanism responsible for fast adaptation in olfactory sensory neurons. Six mammalian CNG channel genes are known and some human visual disorders are caused by mutations in retinal rod or cone CNG genes.  相似文献   

15.
Our ability to see in bright light depends critically on the rapid rate at which cone photoreceptors detect and adapt to changes in illumination. This is achieved, in part, by their rapid response termination. In this study, we investigate the hypothesis that this rapid termination of the response in red cones is dependent on interactions between the 9-methyl group of retinal and red cone opsin, which are required for timely metarhodopsin (Meta) II decay. We used single-cell electrical recordings of flash responses to assess the kinetics of response termination and to calculate guanylyl cyclase (GC) rates in salamander red cones containing native visual pigment as well as visual pigment regenerated with 11-cis 9-demethyl retinal, an analogue of retinal in which the 9-methyl group is missing. After exposure to bright light that photoactivated more than approximately 0.2% of the pigment, red cones containing the analogue pigment had a slower recovery of both flash response amplitudes and GC rates (up to 10 times slower at high bleaches) than red cones containing 11-cis retinal. This finding is consistent with previously published biochemical data demonstrating that red cone opsin regenerated in vitro with 11-cis 9-demethyl retinal exhibited prolonged activation as a result of slowed Meta II decay. Our results suggest that two different mechanisms regulate the recovery of responsiveness in red cones after exposure to light. We propose a model in which the response recovery in red cones can be regulated (particularly at high light intensities) by the Meta II decay rate if that rate has been inhibited. In red cones, the interaction of the 9-methyl group of retinal with opsin promotes efficient Meta II decay and, thus, the rapid rate of recovery.  相似文献   

16.
Vertebrate retinal photoreceptors consist of two types of cells, the rods and cones. Rods are highly light-sensitive but their flash response time course is slow, so that they can detect a single photon in the dark but are not good at detecting an object moving quickly. Cones are less light-sensitive and their flash response time course is fast, so that cones mediate daylight vision and are more suitable to detect a moving object than rods. The phototransduction mechanism was virtually known by the mid 80s, and detailed mechanisms of the generation of a light response are now understood in a highly quantitative manner at the molecular level. However, most of these studies were performed in rods, but not in cones. Therefore, the mechanisms of low light-sensitivity or fast flash response time course in cones have not been known. The major reason for this slow progress in the study of cone phototransduction was due to the inability of getting a large quantity of purified cones to study them biochemically. We succeeded in its purification using carp retina, and have shown that each step responsible for generation of a light response is less effective in cones and that the reactions responsible for termination of a light response are faster in cones. Based on these findings, we speculated a possible mechanism of evolution of rods that diverged from cones.  相似文献   

17.
The phototransduction enzymatic cascade in cones is less understood than in rods, and the zebrafish is an ideal model with which to investigate vertebrate and human vision. Therefore, here, for the first time, the zebrafish green cone photoresponse is characterized also to obtain a firm basis for evaluating how it is modulated by exogenous molecules. To this aim, a powerful method was developed to obtain long-lasting recordings with low access resistance, employing pressure-polished patch pipettes. This method also enabled fast, efficient delivery of molecules via a perfusion system coupled with pulled quartz or plastic perfusion tubes, inserted very close to the enlarged pipette tip. Sub-saturating flashes elicited responses in different cells with similar rising phase kinetics but with very different recovery kinetics, suggesting the existence of physiologically distinct cones having different Ca2+ dynamics. Theoretical considerations demonstrate that the different recovery kinetics can be modelled by simulating changes in the Ca2+-buffering capacity of the outer segment. Importantly, the Ca2+-buffer action preserves the fast response rising phase, when the Ca2+-dependent negative feedback is activated by the light-induced decline in intracellular Ca2+.  相似文献   

18.
The shutoff of active intermediates in the phototransduction cascade and the reconstitution of the visual pigment play key roles in the recovery of sensitivity after the exposure to bright light in both rod and cone photoreceptors. Physiological evidence from bleached salamander rods suggests this recovery of sensitivity occurs faster at the outer segment base compared with the tip. Microfluorometric measurements of similarly bleached salamander rods demonstrate that the reduction of all-trans retinal to all-trans retinol also occurs more rapidly at the outer segment base than at the tip. The experiments reported here were designed to test the hypothesis that these two phenomena are linked, e.g., that slowed recovery of sensitivity at the tip of outer segments is rate limited by the reduction of all-trans retinal and results from a shortage of cytosolic nicotinamide adenine dinucleotide phosphate (NADPH), the reducing agent for all-trans retinal reduction. Extracellular measurements of membrane current and sensitivity were made from isolated salamander rods under dark-adapted and bleached conditions while intracellular NADPH concentration was varied by dialysis from a micropipette attached to the inner segment. Sensitivity at the base and tip of the outer segment was assessed before and after bleaching. After exposure to a light that photoactivates 50% of the visual pigment, rods were completely insensitive for nearly 10 minutes, after which the base recovered sensitivity and responsiveness with a time constant of ∼200 seconds, but tip sensitivity recovered more slowly with a time constant of ∼680 seconds. Dialysis of 5 mM NADPH into the rod promoted an earlier recovery and eliminated the previously observed tip/base difference. Dialysis of 1.66 mM NADPH failed to eliminate the tip/base recovery difference, suggesting the steady-state NADPH concentration in rods is ∼1 mM. These results indicate the inner segment is the primary source of reducing equivalents after pigment bleaching, with the reduction of all-trans retinal to all-trans retinol playing a key step in the recovery of sensitivity.  相似文献   

19.
The γ subunit of rod-specific cGMP phosphodiesterase 6 (PDE6γ), an effector of the G-protein GNAT1, is a key regulator of phototransduction. The results of several in vitro biochemical reconstitution experiments conducted to examine the effects of phosphorylation of PDE6γ on its ability to regulate the PDE6 catalytic core have been inconsistent, showing that phosphorylation of PDE6γ may increase or decrease the ability of PDE6γ to deactivate phototransduction. To resolve role of phosphorylation of PDE6γ in living photoreceptors, we generated transgenic mice in which either one or both Threonine (T) sites in PDE6γ (T22 and T35), which are candidates for putative regulatory phosphorylation, were substituted with alanine (A). Phosphorylation of these sites was examined as a function of light exposure. We found that phosphorylation of T22 increases with light exposure in intact mouse rods while constitutive phosphorylation of T35 is unaffected by light in intact mouse rods and cones. Phosphorylation of the cone isoform of PDE6γ, PDE6H, is constitutively phosphorylated at the T20 residue. Light-induced T22 phosphorylation was lost in T35A transgenic rods, and T35 phosphorylation was extinguished in T22A transgenic rods. The interdependency of phosphorylation of T22 and T35 suggests that light-induced, post-translational modification of PDE6γ is essential for the regulation of G-protein signaling.  相似文献   

20.
Retinal rod and cone pigments consist of an apoprotein, opsin, covalently linked to a chromophore, 11-cis retinal. Here we demonstrate that the formation of the covalent bond between opsin and 11-cis retinal is reversible in darkness in amphibian red cones, but essentially irreversible in red rods. This dissociation, apparently a general property of cone pigments, results in a surprisingly large amount of free opsin--about 10% of total opsin--in dark-adapted red cones. We attribute this significant level of free opsin to the low concentration of intracellular free 11-cis retinal, estimated to be only a tiny fraction (approximately 0.1 %) of the pigment content in red cones. With its constitutive transducin-stimulating activity, the free cone opsin produces an approximately 2-fold desensitization in red cones, equivalent to that produced by a steady light causing 500 photoisomerizations s-1. Cone pigment dissociation therefore contributes to the sensitivity difference between rods and cones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号